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 2 

Abstract 26 

Objectives 27 
Fever is common among individuals seeking healthcare after traveling to tropical 28 
regions. Despite the association with potentially severe disease, the etiology is often 29 
not determined. Cytokines are soluble mediators dynamically regulated in the 30 
response to infection. Measuring cytokines in the blood can therefore be informative 31 
to understanding the host-response to infection and can potentially indicate the type 32 
of pathogen that causes the disease. 33 
 34 
Method 35 
In this study, we measured 49 host-response proteins in the plasma of 124 patients 36 
with fever after travel to tropical or subtropical regions. The patients had confirmed 37 
diagnosis of either malaria, dengue fever, influenza, bacterial respiratory tract 38 
infection, or bacterial gastroenteritis, representing the most common disease 39 
etiologies. We used multivariate and machine learning methods to assess host-40 
response protein profiles between the different disease groups and healthy control 41 
subjects with the aim of identifying disease-associated protein signatures. 42 
 43 
Results 44 
The host-response varied between disease groups and different combinations of 45 
proteins contributed to distinguishing infected patients from healthy controls, and 46 
from each other. Malaria displayed the most unique protein signature, indicating a 47 
strong immunoregulatory response with high levels of IL10, sTNFRI and II, and 48 
sCD25 but low levels of sCD40L. In contrast, bacterial gastroenteritis had high levels 49 
of sCD40L, APRIL, and IFN-γ, while dengue was the only infection with elevated 50 

IFNα2. 51 
 52 
Conclusions 53 
These results suggest that characterization of the inflammatory profile of individuals 54 
with fever can help to identify disease-specific host responses, which in turn can be 55 
used to guide future research on diagnostic strategies and adjuvant treatment. 56 
 57 
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Author summary 59 

 Upon infection with a pathogen, the host’s immune system will sense the 60 
infection and initiate an immune response. Depending on the type of pathogen and 61 
the cells that sense it, the resulting immune response will be different. Fever is a 62 
common symptom of infection and it is often difficult to identify the specific pathogen 63 
responsible for the disease. In this study, we aimed to characterise and compare 64 
circulating inflammation-associated proteins elicited in response to the most common 65 
pathogens leading to fever after travel to tropical or subtropical areas. The pathogens 66 
included viruses, bacteria, and parasites. Based on the protein signatures, we could 67 
observe both disease-general patterns (upregulated in all disease groups) and 68 
disease-specific patterns (associated with specific diseases). Malaria displayed the 69 
most unique signature and was associated with the upregulation of several 70 
immunoregulatory proteins. Possibly in response to a pro-inflammatory response. 71 
Dengue fever was also associated with a mix of pro- and anti-inflammatory proteins, 72 
while bacterial gastroenteritis had a mainly pro-inflammatory profile. Comparing the 73 
protein profiles between diseases indicated unique patterns that could potentially be 74 
further developed for clinical use. 75 
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Introduction 77 

 Fever is a common symptom of individuals seeking healthcare after returning 78 

from travel to tropical areas (1). In a previous study in Sweden, most of these cases 79 

were shown to be due to gastroenteritis, malaria, influenza, and dengue virus, but 80 

>40% remained with unknown etiology even after healthcare contact (2). Upon 81 

further serological analysis of those with unknown etiology, approximately 9% were 82 

found to have a likely influenza virus infection, 4% dengue virus infection, and 83 

another 4% with Rickettsial infection (2). This highlights the difficulties in travel 84 

medicine as the number of pathogens that need to be considered is numerous, and 85 

patients with various diagnoses often present with overlapping clinical symptoms (3–86 

6). Moreover, clinical markers such as C-reactive protein (CRP) and white blood cell 87 

total and differential counts often provide limited guidance. Pathogens that can give 88 

rise to severe disease are important to detect at an early stage, while at the same 89 

time, unnecessary antibiotic usage should be avoided (7). Learning more about how 90 

immune responses differ between infections with similar clinical presentations could 91 

potentially be informative in developing biomarker signatures for disease 92 

identification and for a better understanding of host-pathogen interaction and 93 

protective immunity.  94 

 During infection, a wide range of inflammatory proteins are up- or 95 

downregulated in the host's response to the pathogen. Depending on the infecting 96 

pathogen, different types of immune responses are important for efficient control (8). 97 

These inflammatory responses tend to be short-lived and self-regulatory as the 98 

pathogen is controlled. However, in some instances, the inflammatory response 99 

becomes dysregulated leading to severe disease manifestations (9–11). Measuring 100 

inflammatory proteins in the blood can therefore help to understand the host 101 

inflammatory response to infection and predict disease severity (12–17) or disease 102 

etiology (18). Different infections may induce overlapping inflammatory protein 103 

profiles and studying a single infection in isolation will make it difficult to understand 104 

the pathogen-specificity of the responses and limit the possibility to discern how 105 

patterns differ between infections. Recently developed experimental and 106 

bioinformatics methods allow for comprehensive analysis of cytokine profiles useful 107 

for mapping immunological events as well as for identification of clinically relevant 108 

markers of disease and its severity (18–22). 109 
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 This study provides a comprehensive mapping of inflammatory proteins in the 110 

plasma of individuals with a known etiology of infection who presented with fever 111 

after travel to tropical or sub-tropical areas. By comparing the inflammatory profile 112 

between the different disease groups, we could identify patterns associated with the 113 

respective etiologies. These patterns provide insights regarding the pathogen 114 

specificity of the host inflammatory response to infection and could potentially be 115 

further explored as biomarkers for clinical practice in the future.  116 

 117 

Methods 118 

Study inclusion 119 

 Patients with a history of travel were invited to participate when seeking care at 120 

the Emergency Department at Karolinska University Hospital, Stockholm, Sweden. 121 

Inclusion criteria were: i) Travel within the past 2 months to a tropical (defined as 122 

between latitude 0°-±23.5°) or sub-tropical area (defined as between latitude ±23.5°-123 

±40°), ii) age ≥18 years, and iii) documented body temperature >38°C at the hospital 124 

or self-reported fever within the previous 2 days. Blood samples for serum and EDTA 125 

plasma isolation were collected from all individuals and aliquots were frozen at –80°C 126 

for later analysis. Demographic and clinical data, including microbiological diagnosis 127 

after routine clinical investigation, were extracted from medical records and a 128 

questionnaire filled in by patients. Five groups of diagnoses were selected for further 129 

study: 1) Malaria caused by Plasmodium falciparum as defined by microscopy and 130 

qPCR, 2) Dengue diagnosed by a positive result in qPCR for dengue virus, 3) 131 

Gastroenteritis with fecal culture positive for enteropathogenic bacteria, 4) Influenza 132 

diagnosed by positive qPCR for influenza virus in the nasopharyngeal swab, and 5) 133 

Bacterial respiratory tract bacterial infections defined as nasopharyngeal culture 134 

positive together with chest x-ray with infiltrate or sputum culture positive for a 135 

respiratory pathogen together with signs or symptoms indicative of bronchitis or 136 

pneumonia. In addition, 13 healthy adult individuals without a current history of travel 137 

were sampled as controls. The study was approved by the Swedish Ethical Review 138 

Authority (2016/2512-31/2 with amendment 2021-04087). Study participants were 139 

provided with written and oral information and written consent was obtained. 140 

 In addition to the study inclusion for all tropical fevers, patients with 141 

symptomatic malaria had since 2011 been included in a prospective malaria 142 
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immunology cohort previously investigated for longitudinal parasite persistence (23), 143 

cellular aging dynamics (24), parasite-specific antibodies (25,26), B cell responses 144 

(27), and immunoregulatory cellular and antibody interplay (19). These individuals 145 

were enrolled at the Karolinska University Hospital after confirmed microscopy for P. 146 

falciparum and providing informed consent. The study was approved by the 147 

Stockholm regional ethical committee (2006/893-31/4 with amendments 2018/2354-148 

32 and 2019-03436). 149 

 150 

Multiplex cytokine measurements 151 

 Plasma aliquots were thawed at room temperature (RT) and cytokines and 152 

chemokines were measured using the LEGENDplex™ pre-defined 13-plex panels 153 

according to the manufacturer’s instructions with some modifications. The panels 154 

used were; cytokine panel 2, inflammation panel 2, proinflammatory chemokine 155 

panel, and the B cell panel (all from Biolegend), measuring 49 unique inflammatory 156 

markers in total (Supplementary Table 1). 157 

 Briefly, 12.5 μl plasma was mixed with 12.5 μl multiplex beads and diluted to 75 158 

μl and incubated for 2h at RT in a plate shaker (700 rpm). The beads were then 159 

washed and incubated with 12.5 μl biotin-conjugated marker-specific antibodies 160 

diluted to 25 μl with phosphate buffered saline (PBS) for 45 min at RT in a plate 161 

shaker (700 rpm). 12.5 μl PE-conjugated streptavidin was then diluted with PBS to 25 162 

μl and added to each well without washing and incubated for 30 min at RT in a plate 163 

shaker (700 rpm). The beads were then washed twice, and the fluorescent signal 164 

was measured on a BD 4-laser Fortessa using the 488 nm laser (forward scatter vs 165 

side scatter) to separate beads based on size and granularity and the 640 nm laser 166 

(780/60 filter) to separate beads based on cytokine specificity. The 561 nm laser 167 

(582/16) filter was then used to detect the amount of marker signal, translating to the 168 

amount of cytokine. The median fluorescent signals were then exported, and the 169 

concentration of each marker was determined for each sample based on interpolation 170 

from sigmoidal dose-response curves established for each cytokine based on the 171 

standards included with the kits. All concentrations below the lower limit of detection 172 

(LOD) or above the upper LOD of the assays (as determined by the included 173 

standard curve) were assigned a concentration corresponding to the lower and upper 174 

LODs, respectively. 175 
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 176 

Statistical analysis and machine learning 177 

Differential abundance analysis 178 

 Data management and statistical analysis were performed using R version 179 

4.3.1. Data visualization was performed using ggplot2 (28). All data on cytokine 180 

levels were log-transformed prior to analysis. Spearman’s rank correlation was used 181 

to construct correlation networks of cytokine levels within each disease group. For 182 

the graphical display of correlation networks, only correlations with absolute values of 183 

Spearman’s rho > 0.7 were included. Mann-Whitney-U tests were applied to evaluate 184 

differences in the median cytokine levels between the different types of infections or 185 

healthy controls. All p-values were adjusted for false discovery rate (FDR) (29). FDR-186 

adjusted P-values < 0.05 were considered significant. 187 

 188 

Discriminant analysis of principal components 189 

 Discriminant analysis of principal components (DAPC) was used to examine the 190 

multidimensional cytokine data (49 proteins) for specific cytokine profiles/signatures 191 

associated with each infection type (30). DAPC is a dimensionality reduction method 192 

that identifies the vectors (linear discriminants) in multidimensional space which 193 

provides maximum discrimination of groups while minimizing variation within groups. 194 

DAPC first transforms the data into uncorrelated variables using principal component 195 

analysis and then performs a discriminant analysis on the retained principal 196 

components (PCs). Prior to DAPC analysis, all log-transformed values of cytokine 197 

levels were scaled and centered by dividing by the median absolute deviation and by 198 

subtracting the median, respectively. 199 

 200 

Feature selection and ROC analysis 201 

 The Boruta feature selection algorithm (31) based on binary classification was 202 

applied to identify only plasma proteins that contribute significant information for 203 

identifying each type of infections from the others and healthy controls.  For each 204 

infection type, random forest classifiers were then fitted to all the down selected 205 

cytokines identified by the Boruta algorithm and the predictive performance was 206 

evaluated using receiver operating characteristic (ROC) analysis with 5-fold cross-207 

validation. All data was divided into five parts and in each run, four parts of data were 208 

used for model training and the remaining one was used for testing. To further reduce 209 
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the risk of over-fitting of the classification algorithms, a repeated k-fold cross-210 

validation with 10 repeats and 10 folds was applied for parameter tuning within the 211 

model training process. Finally, all ROC plots obtained from five different runs of the 212 

model were aggregated into one ROC plot to show the average performance of the 213 

model. An imbalanced dataset can result in biased learning algorithms due to 214 

differences in the number of individuals in each class. This bias can lead to overly 215 

optimistic ROC results that may not be realistic. To address this issue, we also used 216 

precision-recall curves to provide a more accurate representation of each model's 217 

performance. 218 

  219 
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Results 220 

Clinical characteristics 221 

 In total, 124 patients with self-reported fever seeking healthcare at the 222 

Karolinska University Hospital after travel to tropical or subtropical areas were 223 

included in the study. A total of 17 patients had dengue fever, 26 had gastroenteritis, 224 

26 had influenza, 49 had malaria, and 6 had bacterial respiratory tract infections. In 225 

addition, 14 volunteers were included as healthy controls (Table 1). Patients with P. 226 

falciparum malaria were admitted to the hospital per routine (93.6% of patients) for 227 

treatment and observation. Hospital admission was lower in the other groups, with 228 

dengue (35.3%), gastroenteritis (38.5%), influenza (19.2%), and respiratory tract 229 

infection (66.7%).  Among patients with nasal swabs positive for Influenza, 12 230 

patients had Influenza A and 14 had Influenza B by qPCR. Fecal cultures in the 231 

group with clinical gastroenteritis revealed growth of either Salmonella spp. (n=12) or 232 

Campylobacter spp. (n=14). 233 

 There was no significant difference in axillary temperature between the 234 

infections. They did however differ significantly in leukocyte and platelet counts and 235 

levels of C-reactive protein (Supplementary Figure 1). Patients with dengue and 236 

malaria had significantly lower leukocyte counts compared to bacterial gastroenteritis 237 

while dengue also had significantly lower counts compared to influenza and bacterial 238 

respiratory tract infection. Platelet counts were significantly lower in the malaria group 239 

compared to all other infections. CRP was significantly elevated in all infections 240 

except dengue fever which remained close to the reference values. There was no 241 

significant difference in CRP values between bacterial gastroenteritis, influenza, and 242 

bacterial respiratory tract infection, while malaria was significantly higher than 243 

influenza (Supplementary Figure 1). 244 

 245 

Table 1. Clinical characteristics of patients included in the study (n=124) 246 
 Dengue 

n=17 
Bacterial 
gastroenteritis 
n=26 

Influenza 
n=26 

Malaria 
n=49 

Bacterial 
respiratory 
tract 
infection 
n=6 

Healthy 
controls 
N=14 

Age, median 
(IQR) 

37 (33-
50) 

36 (28-46) 37 (31-
55) 

38 (30-
44) 

57 (39-68) 30 (26-
34) 

Female sex, n 
(%) 

6 (35.3) 12 (46.2) 15 (57.7) 9 (18.4) 4 (66.7) 10 
(71.4%) 

Admitted to 
hospital, n (%) 

6 (35.3) 10 (38.5) 5 (19.2) 46 
(93.9) 

4 (66.7) NA 

Leukocytes†, 3.1 (2- 8.8 (4.2-18.9) 5.5 (3-20) 5 (1.9- 8.9 (6.9- ND 
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(×�109/L), 
median 
(range)  

7.4) 35) 11.3) 

Platelets§, 
(×�109/L), 
median 
(range) 

157 (58-
346) 

205 (131-549) 194 (106-
442) 

85 (12-
210) 

233 (188-
367) 

ND 

C-reactive 
protein‡, 
(mg/L), 
median 
(range)  

4 (1-62) 39 (0-274) 29 (2-
277) 

92 (6-
294) 

65 (33-223) ND 

Microbiologica
l findings 

Dengue 
virus 
qPCR 
positive  
n=17 

Feces culture 
positive for 
Salmonella 
species: n=12, 
Campylobacte
r: n=14 

Influenza 
qPCR 
nasal 
swab 
positive 
for 
Influenza 
A: n=12, 
Influenza 
B: n=14 

Blood 
smear 
and 
qPCR 
positive 
for P. 
falciparu
m n=49. 
Mean 
parasite
mia 1.7 
% 
(range 
0.01-17) 

Culture 
positive for 
Hemophilus 
influenzae 
Sputum 
n=4 
Nasophary
ngeal swab 
n=2 

NA 

†Normal range for leucocyte count 3.8–8.8 × 109/L 247 
§Normal range for platelet count 150-400 ×�109/L 248 
‡Normal range for C-reactive protein 0–3 mg/L 249 
N/A – Not applicable 250 
ND – Not done 251 
 252 
Different types of infection display unique profiles of inflammatory markers 253 

 We measured the levels of 52 inflammatory proteins in the plasma from the 254 

study participants and healthy controls using four separate 13-plex suspension bead 255 

assays. Two proteins were overlapping between assays, IL12p70 and sCD40L, and 256 

had an assay correlation with a Pearson r=0.66 and r=0.82 and both p<0.0001, 257 

respectively. One protein (PAI-1) was not quantifiable in all donors and since we 258 

could not determine the cause and did not want to introduce potential bias, the PAI-1 259 

data was excluded, leading to a dataset including 49 unique proteins (Figure 1). 260 

There was a substantial variation in the levels of the proteins among individual 261 

donors (Figure 1A), however, several disease-specific patterns could be observed 262 

(Figure 1B). For many of the measured cytokines, levels were highly positively 263 

correlated across infections (Supplementary Figure 2) as well as within specific 264 

infections (Supplementary Figure 3). 265 

 266 
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 267 
Figure 1. Levels of inflammatory proteins in plasma in different types of 268 
infections. (A) Heatmap of normalized individual cytokine levels. Each column 269 
represents an individual and each row represents a cytokine. Columns are ordered 270 
based on disease etiology and rows are ordered using hierarchical clustering based 271 
on euclidean distance. (B) Heatmap of normalized group-wise median cytokine 272 
levels. Each column represents a disease etiology group while each row represents a 273 
cytokine. 274 
 275 
 We next compared the levels of the 49 inflammatory markers between each 276 

group and healthy controls using  Mann-Whitney-U tests, corrected for multiple 277 

testing, to assess if different disease etiologies were associated with up- or 278 

downregulation of specific proteins (Figure 2A). Out of the 49 proteins, 29 were 279 

significantly up- or downregulated between the different infections or healthy controls 280 

(Figure 2A). Compared to healthy controls, dengue patients had a significant 281 

increase in 14 out of the 49 measured proteins (logFC>1 and FDR p-value<0.05), 282 

while bacterial gastroenteritis led to a significant increase in 18 proteins, and bacterial 283 

respiratory tract infection of 3 proteins. Influenza had a significant increase of 12 284 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.03.10.23287085doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287085
http://creativecommons.org/licenses/by-nc/4.0/


 12

proteins and the reduction of 1 protein whereas malaria led to significantly increased 285 

levels of 17 proteins and reduced levels of 3 proteins. A set of proteins, including 286 

BAFF, IL6, IP10 (CXCL10), ITAC (CXCL11), MCP1 (CCL2), MIG (CXCL9), MIP1β, 287 

PTX3, sCD25, and sST2 were increased in most infections, potentially indicating 288 

quite general markers of febrile illness. There were, however, considerable 289 

differences in levels between the groups for some of the markers, such as IP10, 290 

where all individuals with dengue had levels above the limit of detection for the 291 

assay, and sCD25, which was higher in especially malaria (Figure 2B). 292 

 Some proteins were primarily associated with specific pathogens, such as IFNγ 293 

and APRIL which were significantly increased in bacterial gastroenteritis, and IFNα2 294 

which was upregulated in dengue compared with bacterial gastroenteritis, malaria, 295 

and healthy controls. IL10 levels were significantly elevated in influenza, dengue, and 296 

malaria, with progressively higher levels, while changes to IL18, CD40L, sTNFRI, and 297 

TARC were largely specific for malaria. GMCSF levels were slightly lower in influenza 298 

compared to healthy controls only (Figure 2A). In total, 20 out of the 49 proteins did 299 

not differ significantly in any comparison between the different diseases and healthy 300 

controls (Supplementary Figure 4). 301 
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 302 
 303 
Figure 2. Comparison of inflammatory proteins between disease groups. (A) 304 
Log-transformed levels (pg/mL) of inflammation-associated proteins were compared 305 
between all groups and significant differences, as determined by the FDR-adjusted 306 
Mann-Whitney tests, are shown as dots where the size of the dot indicates the p-307 
value and the color indicates a positive (red) or negative (blue) fold-change between 308 
the compared groups. BRTI refers to bacterial respiratory tract infection. (B) Log-309 
transformed cytokine levels are shown for individual donors in each group. Box plots 310 
indicate median and interquartile range. 311 
 312 
Immune signatures associated with different infectious diseases 313 

 The inflammatory response to infection is complex and is likely affected by the 314 

type of pathogen, its virulence, and the anatomical location of the infection. To be 315 

able to assess the complexity of the inflammatory response and examine if different 316 

diseases were associated with different inflammatory patterns, we used discriminant 317 

analysis of principal components (DAPC) (Figure 3 and Supplementary Figures 5 318 

and 6). This type of analysis enables us to focus on between-group variability while 319 

minimizing within-group variability to identify key markers that segregate the groups 320 
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included in the analysis (30). The optimal number of PCs to retain for discriminant 321 

analysis was determined by cross-validation to be 26. Given the small number of 322 

different infections (i.e. clusters) in the data (k = 6) all discriminant functions (k-1) 323 

were retained regardless of their eigenvalue, as they could easily be examined 324 

graphically. Data for the first three discriminant functions which explains most of the 325 

variation between different infections are presented below in Figure 3, while the full 326 

data for all five discriminant functions are presented in Supplementary Figure 5. 327 

 Discriminant function 1 (DF1) provided clear segregation between malaria and 328 

the other diseases (Figure 3A). Differences in DF1 were largely driven by IL10 levels 329 

but also influenced by several other proteins, especially IL6, CXCL12, CD40L, 330 

sCD25, and sRAGE (Figure 3B). DF2 was instead important for segregating the 331 

infected groups from the healthy controls and somewhat from each other. This was 332 

largely driven by MIG, but also further influenced by sCD130, IFNα2, CCL11, and 333 

IL2. DF3 provided a weaker separation primarily of bacterial gastroenteritis from 334 

dengue. This was associated with e.g., IFNα2, as described before, but also TSLP, 335 

IL6, MIG, and IL10. 336 

 337 
Figure 3. Analysis of marker profiles by discriminant analysis of principal 338 
components (DAPC). (A) DAPC scatter plots show the separation of groups based 339 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2023.03.10.23287085doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287085
http://creativecommons.org/licenses/by-nc/4.0/


 15

on discriminant functions 1-3. (B) Proteins associated with separation (loading plots) 340 
for each discriminant function. Loading cut-off set to 0.03. Additional data for 341 
discriminant functions 4 and 5 are presented in Supplementary Figure 5. 342 
 343 
Selection of proteins indicating different etiologies 344 
 To further assess if we could identify an inflammatory signature associated with 345 

each type of infection, we used the Boruta feature selection algorithm to identify 346 

proteins that contributed significant information for the accurate classification of each 347 

disease (Figure 4). Since there were only six bacterial respiratory tract infections in 348 

the dataset, we did not try to identify a specific signature for this group, although the 349 

samples were retained in the dataset when classifying the other groups. For the four 350 

remaining diseases, the algorithm identified different numbers of cytokines that 351 

provided significant information for classification, indicated by the green color (Figure 352 

4). We identified 19, 17, 15, and 21 cytokines for dengue, bacterial gastroenteritis, 353 

influenza, and malaria, respectively (Figure 4). Several cytokines were selected as 354 

important for the classification of more than one pathogen (Supplementary Figure 355 

7), such as IL10, MIG, sCD25, and sTNFRI which were selected for all four diseases 356 

(Supplementary Figure 7).  357 

 358 
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 359 
Figure 4. Selecting signatures for detecting individuals infected by each 360 
pathogen using the Boruta feature selection algorithm. (A-D) Variable 361 
importance plots from the Boruta feature selection algorithm fitted jointly to data for 362 
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all proteins in detecting dengue, bacterial gastroenteritis, influenza, and P. falciparum 363 
malaria, respectively. Proteins are ordered from left to right by their importance for 364 
classification. The importance measure is defined as the Z-score of the mean 365 
decrease in accuracy (normalized permutation importance). Blue boxes correspond 366 
to the minimal, average, and maximum Z-scores of shadow features. Red boxes 367 
indicate variables not contributing significantly to accurate classification. Green boxes 368 
indicate the proteins contributing significantly to the accurate identification of each 369 
infection type. 370 
 371 
Performance analysis of the classification of different disease etiologies 372 

Following the Boruta feature selection algorithm, binary random forest classifiers 373 

were fitted separately to the data for the proteins selected for each infection (from all 374 

individuals) in order to evaluate whether they were informative in identifying 375 

individuals with a specific infection type. The best cross-validated classifier 376 

performance, as determined by the aggregated classifier area-under-curve (AUC), 377 

was observed for malaria, followed by bacterial gastroenteritis, influenza, and then 378 

dengue (Figure 5A). In malaria, we observed an aggregated cross-validated AUC of 379 

0.97 for a combination of 21 cytokines, while for bacterial gastroenteritis, an 380 

aggregated AUC of 0.94 was seen for a set of 15 cytokines.  For influenza and 381 

dengue, aggregated AUCs of 0.91 and 0.90 were observed from combinations of 17 382 

and 19 proteins, respectively.  Overall, all classifiers showed good performance 383 

(sensitivity > 0.87 and specificity > 0.72) for detecting each particular infection type 384 

using the selected signature. 385 

 In our binary classification problem, the goal was to distinguish a specific 386 

infection (i.e. the case class) from the other infections and healthy controls (i.e. the 387 

control class). In each case, the number of individuals in the control class was 388 

greater than the case class, resulting in an imbalanced dataset. To address this issue 389 

and report a more accurate model performance, we calculated precision-recall curves 390 

(Figure 5B). In malaria, the dataset imbalance was very low, resulting in a low bias 391 

and a good model performance in terms of both AUC and area under the precision-392 

recall curve (AUPR) (with a sensitivity and precision of 0.9). However, for bacterial 393 

gastroenteritis and influenza, with a moderate dataset imbalance, the highest 394 

sensitivity and precision were 0.8 and 0.7, respectively. For dengue, we observe the 395 

lowest sensitivity and precision, of approximately 0.6, mainly due to a larger class 396 

imbalance in the data set (Figure 5B). 397 
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 To further examine to what extent the immune signatures identified above, and 398 

the performance of the random forest classifiers, were influenced by differences in 399 

inflammatory protein levels between a given infection and healthy controls we 400 

repeated the feature selection and classification analysis after first excluding the data 401 

for healthy controls. The disease-specific immune signatures as well as the order of 402 

importance of different proteins identified in the absence of data for healthy controls 403 

differed slightly compared to the original analysis (Supplementary Figure 8A). 404 

However, the classification performance was largely comparable except for malaria 405 

where it was somewhat reduced (Supplementary Figures 8B). 406 

 407 
Figure 5. Evaluating performance in identifying individuals infected by each 408 
pathogen based on a combination of protein responses. Individual panels display 409 
(A) cross-validated receiver operating characteristic (ROC) curves and (B) 410 
aggregated precision-recall (PR) curves for the identification of dengue (red), 411 
bacterial gastroenteritis (blue), influenza (purple), and malaria (orange). Random 412 
forest classifiers fitted to data on selected proteins that were identified using feature 413 
selection for each pathogen. Gray curves in (A) correspond to the ROC curves 414 
obtained from the 5-fold cross-validation method and the aggregation of all five ROC 415 
curves for the classification of each pathogen is shown with a colored thick ROC 416 
curve. The area under the ROC/PR curve (AUC) shows the performance of the 417 
classifier. An AUROC/AUPR of 0.5 indicates a classifier that performs no better than 418 
random, and an AUROC/AUPR of 1 indicates a perfect classifier. 419 
 420 

  421 
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Discussion 422 

 Fever is one of the most common symptoms in patients presenting in an 423 

emergency setting, especially following travel to tropical- and subtropical regions 424 

(32). However, fever is a non-specific symptom associated with many different 425 

conditions, some potentially dangerous (6). Despite this, a large proportion of 426 

patients seeking care after travel are discharged without identification of the 427 

etiological agent causing the disease (2). This could be due to the lack of awareness 428 

and/or specific tests for rare pathogens, or difficulty in selecting the accurate test to 429 

perform. 430 

 Cytokines are immune mediators temporarily produced at high levels during 431 

infection, where they provide important functions, such as directly inhibiting pathogen 432 

dissemination, stimulating or dampening immune activation, and controlling cellular 433 

migration, among other functions (33). The response is generated as a reaction to 434 

pathogen-specific patterns and via antigen-specific recognition, potentially making it 435 

specific for a given pathogen (34,35). This makes it possible to better understand 436 

how the immune system responds to a given infection and potentially predict the type 437 

of pathogen based on the inflammatory markers that are increased during the 438 

infection. With a broad approach of including viral, parasitic, and bacterial infections 439 

in febrile patients we show that many cytokines are up- or downregulated compared 440 

to healthy controls and further differ between the infections, making us able to identify 441 

disease-specific inflammatory profiles. 442 

 We used three complementary approaches to assess the disease-specific 443 

inflammatory protein profiles; i) A univariate differential abundance analysis, where 444 

protein levels for each individual protein is compared across disease groups; ii) 445 

DAPC, an approach that combines both unsupervised and supervised dimensionality 446 

reduction techniques, i.e. a principal components analysis (PCA) which reduces 447 

dimensionality without considering class labels and a discriminant analysis (DA) that 448 

works to maximize the variance between the predefined disease groups, effectively 449 

finding the combination of features that best separates these classes, and iii) 450 

Random forest classification, a supervised machine learning method, which 451 

combines multiple decision trees to predict disease group membership for each given 452 

sample, that was used to distinguish each disease from the others. Although the 453 

three methods answer fundamentally different questions about the data, they all 454 
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highlighted a similar set of key proteins that can characterize the main differences in 455 

the host inflammatory response towards the different diseases. 456 

 Using Boruta feature selection, four proteins (IL10, MIG, sCD25, and sTNFRI) 457 

were identified to contribute significantly to stratifying between the four infections 458 

included in the analysis, indicating a varied expression in different diseases. These 459 

proteins were also highly selected by DAPC for DF1 and DF2. IL10 was among the 460 

top three features selected for patients with P. falciparum malaria where IL10 was 461 

markedly upregulated (also to some extent in dengue virus infection) and for patients 462 

with enteric bacterial infection where it remained at baseline levels similar to healthy 463 

controls. The increased level of IL10 in patients with malaria is in line with several 464 

previous reports (36–38). However, by comparing IL10-levels in malaria with other 465 

infections in this study, it becomes clear that the levels reached during acute P. 466 

falciparum malaria are very high and appear to be a relatively specific hallmark of the 467 

disease. In addition to IL10, patients with P. falciparum malaria also had especially 468 

high levels of sCD25 and sTNFRI. Both these proteins are soluble receptors with 469 

sCD25 corresponding to the IL2 receptor and sTNFRI corresponding to the soluble 470 

tumor necrosis factor receptor 1 or CD120a, which binds TNF-α. It has been 471 

suggested that sCD25 is a marker of T cell activation (39) and has been shown to be 472 

increased during different infections, inflammatory diseases, and cancer (40–42). Its 473 

purpose remains relatively unclear, but it has been suggested to sequester IL2 and 474 

thereby inhibit excessive T cell activation while simultaneously skewing towards the 475 

survival of CD25high regulatory T cells (43). sTNFRI is expressed by most cells while 476 

sTNFRII is mainly induced in a subset of cells during inflammatory responses. Both 477 

receptors are elevated in blood during malaria and correlate with parasitemia in both 478 

symptomatic and non-symptomatic infections (44,45) and with the clinical stage and 479 

progression of HIV and sepsis (46). sTNFRI is suggested to bind and deactivate 480 

excessive TNF to reduce overall inflammation (45). CD40L is another membrane-481 

derived protein belonging to the tumor necrosis factor superfamily. It can have both 482 

immunostimulatory and immunoinhibitory effects and soluble CD40L has been 483 

associated with the induction of regulatory T cells and immunosuppression in HIV 484 

and cancer (47,48). One of the main sources of both membrane-bound and soluble 485 

CD40L is platelets (49). In this study, soluble CD40L was somewhat elevated in 486 

enteric bacteria compared to healthy controls, but the main difference was a relatively 487 

specific and significant reduction in plasma during P. falciparum malaria. A potential 488 
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reason for this strong reduction in soluble CD40L could be thrombocytopenia, as 489 

observed in the current study and previous studies of malaria (50,51). Taken 490 

together, the high levels of IL10, sCD25, sTNFRI and II, and low levels of soluble 491 

CD40L suggest that there is a greatly expanded regulatory or immunosuppressive 492 

response generated during acute malaria, perhaps as a counter-effect to the strong 493 

immunostimulation coming from high levels of parasites in the blood (52). However, 494 

consequently, it has also been proposed that the strong inflammatory and anti-495 

inflammatory response could affect the long-lived adaptive B- and T-cell 496 

compartment and reduce the generation of protective immunity (53–55). Although it is 497 

difficult to determine the exact effect of this combined response, it is clear that 498 

repeated malaria episodes lead to reduced activation of innate immune responses 499 

(56–58). This could be an effect of innate training (59,60) or cellular dysregulation 500 

(57,61), but could also be influenced by adaptive responses affecting innate 501 

activation (19,62,63). 502 

 MIG, also called CXCL9, was elevated in all groups compared to healthy 503 

controls, potentially working as a general marker of infection. However, the levels 504 

were also different between the infections with enteric bacteria and P. falciparum 505 

malaria having significantly higher levels than both viral and bacterial respiratory tract 506 

infections. MIG is induced by IFN-γ and mainly mediates lymphocyte recruitment via 507 

binding to its receptor CXCR3 (64). MIG is often also co-expressed with IP10 (also 508 

called CXCL10), which was among the top three features selected for dengue virus 509 

infection. Like MIG, IP10 was also elevated in all infections, but more so in the 510 

dengue group. Since the IFN-γ levels were not higher in dengue compared with 511 

enteric bacteria or P. falciparum malaria, the increased IP10 levels could come from 512 

induction via direct sensing by pattern-recognition receptors (65). In support of this, 513 

the level of type I IFN (IFNa2) was elevated in dengue virus infection, but not in the 514 

other groups. 515 

 A universal marker or combination of markers that could identify specific 516 

pathogens would be highly valuable. Clinically available markers, especially the most 517 

widely used CRP, WBC, and differential count, can provide some indication of 518 

whether acute fever is due to a bacterial or viral infection but they remain relatively 519 

unspecific (66–70). In this study, based on 49 markers, we did not observe 520 

signatures that were unique to viral or bacterial infections as a group. However, since 521 

profiles enriched in several highly important pathogens were identified, these 522 
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combinations of markers could be further analyzed to improve our understanding of 523 

disease-specific immune responses and potentially the identification of disease 524 

etiologies.  525 

 A strength of this study is that we have explored immune responses in the 526 

plasma of individuals with similar symptoms but due to a variety of different 527 

microbiological etiologies, contrasting with many studies where only one pathogen 528 

and fewer cytokines are studied (71–73). Furthermore, travelers provide a unique 529 

opportunity to study host responses following limited exposure and in the absence of 530 

re-exposure, in contrast to studies in areas endemic to the disease. The study 531 

population was also healthy in general with a median age of 37 years, and therefore 532 

with little impact from other chronic diseases or medication, which is often prevalent 533 

in patients at the hospital level of care. Conversely, the study also has several 534 

limitations. The groups are relatively small for each disease and unbalanced in the 535 

number of study participants. They are also not perfectly matched in age or gender. It 536 

is therefore important to note that the study primarily has an observational 537 

exploratory aim, rather than identifying clinical signatures translating to patient 538 

stratification. 539 

 In conclusion, our results show that the mapping of plasma protein profiles in 540 

febrile patients can identify biomarker combinations that indicate different etiologies. 541 

Additionally, we identified cytokines that were uniquely high or low between the 542 

infection, indicating different biological functions in the host's response to infection. 543 

Future studies, with larger and more balanced groups with independent training and 544 

testing sets, will be important to narrow down the disease signatures to key proteins 545 

that could be further developed for clinical tests. 546 
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