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Abstract 

Background: Recognizing the early signs of cancer risk is vital for informing prevention, early 

detection, and survival.  

Methods: To investigate whether changes in circulating metabolites characterise the early 

stages of colorectal cancer (CRC) development, we examined associations between a genetic 

risk score (GRS) associated with CRC liability (72 single nucleotide polymorphisms) and 231 

circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon 

Longitudinal Study of Parents and Children (N=6,221). Linear regression models were applied 

to examine associations between genetic liability to colorectal cancer and circulating 

metabolites measured in the same individuals at age 8, 16, 18 and 25 years.  

Results: The GRS for CRC was associated with up to 28% of the circulating metabolites at 

FDR-P<0.05 across all time points, particularly with higher fatty acids and very-low- and low-

density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) 

analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites 

measured in a random subset of UK Biobank participants (N=118,466, median age 58y) 

revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) 
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MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most 

strongly associated with higher CRC risk.  

Conclusions: These analyses suggest that higher genetic liability to CRC can cause early 

alterations in systemic metabolism, and suggest that fatty acids may play an important role in 

CRC development. 
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Introduction 1 

 2 

Colorectal cancer (CRC) is the third most frequently diagnosed cancer worldwide and the fourth 3 

most common cause of death from cancer.1,2 There is a genetic component to risk of the disease, 4 

which is thought to explain up to 35% of variability in CRC risk.3–5 In addition, modifiable lifestyle 5 

factors, including obesity, consumption of processed meat, and alcohol are thought to increase 6 

CRC risk.2,6–9 However, the underlying biological pathways remain unclear, which limits targeted 7 

prevention strategies. Whilst CRC has higher mortality rates when diagnosed at later stages, 8 

early-stage CRC or precancerous lesions are largely treatable, meaning colorectal cancer 9 

screening programmes have the potential to be highly effective.10,11 Due to the lack of known 10 

predictive biomarkers for CRC, wide-scale screening (if implemented at all) is expensive and often 11 

targeted crudely by age range. Identifying biomarkers predictive of CRC, or with causal roles in 12 

disease development, is therefore vital. 13 

 14 

One potential source of biomarkers for CRC risk is the circulating metabolome, which offers a 15 

dynamic insight into cellular processes and disease states. It is increasingly clear from 16 

mechanistic studies that both systemic and intracellular tumour metabolism play an important role 17 

in CRC development and progression.12,13 Interestingly, several major risk factors for CRC are 18 

known to have profound effects on metabolism.14 For instance, obesity has been shown via 19 

conventional observational and Mendelian randomization (MR) analyses to strongly alter 20 

circulating metabolite levels.9,15–17 This suggests that the circulating metabolome may play a 21 

mediating role in the relationship between at least some common risk factors, such as obesity, 22 

and CRC – or at least might be a useful biomarker for disease or intermediates thereof. In 23 

particular, previous work has highlighted polyunsaturated fatty acids (PUFA) as potentially having 24 

a role in colorectal cancer development. The term PUFA includes omega-3 and -6 fatty acids. 25 

Recent MR work has highlighted a possible link between PUFAs, in particular omega 6 PUFAs, 26 

and colorectal cancer risk.18 Further investigating the relationship between CRC and circulating 27 

metabolites may therefore provide powerful insights into the causal pathways underlying disease 28 

risk, or alternatively may be valuable in prediction and early diagnosis. 29 

 30 

MR is a genetic epidemiological approach used to evaluate causal relationships between 31 

traits.19,20 This method uses genetic variation as a proxy measure for traits in an instrumental 32 

variable framework to assess the causal relevance of the traits in disease development. As 33 

germline genetic variants are theoretically randomised between generations and fixed at 34 
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conception, this approach should be less prone to bias and confounding than conventional 35 

analyses undertaken in an observational context. Conventionally, MR is used to investigate the 36 

effect of an exposure on a disease outcome. In reverse MR, genetic instruments proxy the 37 

association between liability to a disease and other traits.21 This approach can identify biomarkers 38 

which cause the disease, are predictive for the disease, or have diagnostic potential.21 Given the 39 

suspected importance of the circulating metabolome in CRC development, employing both 40 

reverse MR and conventional forward MR for metabolites in the same study may be an efficient 41 

approach for revealing causal and predictive biomarkers for CRC. Although previous 42 

observational studies have investigated associations between the circulating metabolome and 43 

CRC risk, these studies may have been influenced by confounding bias which should be less 44 

relevant to MR analyses.22–31 Additionally, these studies focussed on adults, who commonly take 45 

medications which may confound metabolite associations, further complicating interpretations.  46 

 47 

Here, we applied a reverse MR framework to identify circulating metabolites which are associated 48 

with CRC liability across different stages of the early life course (spanning childhood to young 49 

adulthood, when use of medications and CRC are both rare) using data from a birth cohort study. 50 

We then attempted to replicate these results using reverse two-sample MR in an independent 51 

cohort of middle-aged adults (UK Biobank). We then performed conventional ‘forward’ MR of 52 

metabolites onto CRC risk using large-scale cancer consortia data to identify metabolites which 53 

may have a causal role in CRC development. 54 

 55 

 56 

 57 

Methods 58 

 59 

Study populations 60 

 61 

This study uses data from 2 cohort studies: the Avon Longitudinal Study of Parents and Children 62 

(ALSPAC) offspring (generation 1) cohort (individual-level data) and the UK Biobank cohort 63 

(summary-level data); plus summary-level data from a genome-wide association study (GWAS) 64 

meta-analysis of CRC comprising the Genetics and Epidemiology of Colorectal Cancer 65 

Consortium (GECCO), Colorectal Transdisciplinary Study (CORECT), and Colon Cancer Family 66 

Registry (CCFR).  67 

 68 
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ALSPAC is a population-based birth cohort study in which 14,541 pregnant women with an 69 

expected delivery date between 1 April 1991 and 31 December 1992 were recruited from the 70 

former Avon County of southwest England.32 Since then, 13,988 offspring alive at one year have 71 

been followed repeatedly with questionnaire- and clinic-based assessments.33,34 Sufficient 72 

information was available on 6,221 of these individuals to be included in our analysis, as 73 

metabolomics was not performed for all individuals in the ALSPAC study. Study data were 74 

collected and managed using REDCap electronic data capture tools hosted at the University of 75 

Bristol.35 REDCap (Research Electronic Data Capture) is a secure, web-based software platform 76 

designed to support data capture for research studies. Offspring genotype was assessed using 77 

the Illumina HumanHap550 quad chip platform. Quality control measures included exclusion of 78 

participants with sex mismatch, minimal or excessive heterozygosity, disproportionately missing 79 

data, insufficient sample replication, cryptic relatedness, and non-European ancestry. Imputation 80 

was performed using the Haplotype Reference Consortium (HRC) panel. Offspring were 81 

considered for the current analyses if they had no older siblings in ALSPAC (203 excluded) and 82 

were of white ethnicity (based on reports by parents, 604 excluded) to reduce the potential for 83 

confounding by genotype. The study website contains details of all available data through a fully 84 

searchable data dictionary and variable search tool 85 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). 86 

 87 

UK Biobank is a population-based cohort study based in 22 centres across the UK.36 The cohort 88 

is made up of around 500,000 adults aged 40-80 years old, who were enrolled between 2006 and 89 

2010. Genotyping data is available for 488,377 participants.37 Participants were genotyped using 90 

one of two arrays – either the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix (now 91 

part of Thermo Fisher Scientific), or the closely related Applied Biosystems UK Biobank Axiom 92 

Array. Approaches based on Principal Component Analysis (PCA) were used to account for 93 

population structure. Individuals were excluded: if reported sex differed from inferred sex based 94 

on genotyping data; if they had sex chromosome karyotypes which were not XX or XY; if they 95 

were outliers in terms of heterozygosity and missing rates; or if they had high relatedness to 96 

another participant. Multiallelic SNPs or those with a minor allele frequency of below 1% were 97 

removed. Imputation was performed using the UK10K haplotype and HRC reference panels.  98 

 99 

The GWAS meta-analysis for CRC included up to 52,775 cases and 45,940 controls.38,39 This 100 

sample excluded cases and controls from UK Biobank to avoid potential bias due to sample 101 
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overlap which may be problematic in MR analyses.40 Cases were diagnosed by a physician and 102 

recorded overall and by site (colon, 28,736 cases; proximal colon, 14,416 cases; distal colon, 103 

12,879 cases; and rectal, 14,150 cases). Colon cancer included proximal colon (any primary 104 

tumour arising in the cecum, ascending colon, hepatic flexure, or transverse colon), distal colon 105 

(any primary tumour arising in the pleenic flexure, descending colon or sigmoid colon), and colon 106 

cases with unspecified site. Rectal cancer included any primary tumour arising in the rectum or 107 

rectosigmoid junction.38 Approximately 92% of participants in the overall CRC GWAS were white-108 

European (~8% were East Asian). All participants included in site-specific CRC analyses were of 109 

European ancestry. Imputation was performed using the Michigan imputation server and HRC 110 

r1.0 reference panel. Regression models were further adjusted for age, sex, genotyping platform, 111 

and genomic principal components as described previously.38  112 

 113 

Assessment of CRC genetic liability 114 

 115 

Genetic liability to CRC was based on single nucleotide polymorphisms (SNPs) associated with 116 

CRC case status at genome-wide significance (P<5×10−8). 108 independent SNPs reported by 117 

two major GWAS meta-analyses were eligible for inclusion in a CRC genetic risk score (GRS).38,41 118 

The set of SNPs was filtered, excluding 36 SNPs that were in linkage disequilibrium based on 119 

R2>0.001 using the TwoSampleMR package (SNPs with the lowest P-values were retained).42 120 

This left 72 SNPs independently associated with CRC (Supplementary File 1a), 65 of which 121 

were available in imputed ALSPAC genotype data post quality control. As GWAS of site-specific 122 

CRC have identified marked heterogeneity,43 GRS describing site-specific CRCs were 123 

constructed for sensitivity analyses using the same process outlined above. The GRS for colon 124 

cancer, rectal cancer, proximal colon cancer and distal colon cancer were comprised of 38, 25, 125 

20 and 24 variants, respectively (Supplementary File 1a). For overall CRC and site-specific CRC 126 

analyses, sensitivity analyses excluding any SNPs in the FADS cluster (i.e. within the gene 127 

regions of FADS1, FADS2, or FADS3) (Supplementary File 1a) were performed given a likely 128 

role for these SNPs in influencing circulating metabolite levels directly, in particular via lipid 129 

metabolism (i.e., not primarily due to CRC).44–50  130 

  131 

Assessment of circulating metabolites 132 

 133 

Circulating metabolite measures were drawn from ALSPAC and UK Biobank using the same 134 

targeted metabolomics platform. In ALSPAC, participants provided non-fasting blood samples 135 
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during a clinic visit while aged approximately 8y, and fasting blood samples from clinic visits while 136 

aged approximately 16y, 18y, and 25y. Proton nuclear magnetic resonance (1H-NMR) 137 

spectroscopy was performed on Ethylenediaminetetraacetic acid (EDTA) plasma (stored at or 138 

below -70 degrees Celsius pre-processing) to quantify a maximum of 231 metabolites.51 139 

Quantified metabolites included the cholesterol and triglyceride content of lipoprotein particles; 140 

the concentrations and diameter/size of these particles; apolipoprotein B and apolipoprotein A-1 141 

concentrations; as well as fatty acids and their ratios to total fatty acid concentration, branched 142 

chain and aromatic amino acids, glucose and pre-glycaemic factors including lactate and citrate, 143 

fluid balance factors including albumin and creatinine, and the inflammatory marker glycoprotein 144 

acetyls (GlycA). This metabolomics platform has limited coverage of fatty acids. In UK Biobank, 145 

EDTA plasma samples from 117,121 participants, a random subset of the original ∼500,000 who 146 

provided samples at assessment centres between 2006 and 2013, were analysed between 2019 147 

and 2020 for levels of 249 metabolic traits (168 concentrations plus 81 ratios) using the same 148 

high-throughput 1H-NMR platform. Data pre-processing and QC steps are described 149 

previously.51–53 To allow comparability between MR and GRS estimates all metabolite measures 150 

were standardised and normalised using rank-based inverse normal transformation. For 151 

descriptive purposes in ALSPAC, body mass index (BMI) was calculated at each time point as 152 

weight (kg) divided by squared height (m2) based on clinic measures of weight to the nearest 153 

0.1 kg using a Tanita scale and height measured in light clothing without shoes to the nearest 0.1 154 

cm using a Harpenden stadiometer.  155 

 156 

CRC liability variants were combined into a GRS using PLINK 1.9, specifying the effect (risk 157 

raising) allele and coefficient (logOR) with estimates from the CRC GWAS used as external 158 

weights.38,41 GRSs were calculated as the number of effect alleles (or dosages if imputed) at each 159 

SNP (0, 1, or 2) multiplied by its weighting, summing these, and dividing by the total number of 160 

SNPs used. Z-scores of GRS variables were calculated to standardize scoring.  161 

 162 

Statistical approach 163 

 164 

An overview of the study design is presented in Figure 1. To estimate the effect of increased 165 

genetic liability to CRC on circulating metabolites we conducted a GRS analysis in ALSPAC and 166 

reverse two-sample MR analyses in UK Biobank. Estimates were interpreted within a ‘reverse 167 

MR’ framework,54 wherein results are taken to reflect ‘metabolic features’ of CRC liability which 168 

could capture causal or predictive metabolite-disease associations. To clarify the direction of 169 
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metabolite-CRC associations, we additionally performed conventional ‘forward’ two-sample MR 170 

analyses to estimate the effect of circulating metabolites on CRC risk using large-scale GWAS 171 

data on metabolites and CRC.  172 

 173 

1. Associations of CRC liability with circulating metabolites in early life 174 

 175 

Separate linear regression models with robust standard errors were used to estimate coefficients 176 

and 95% confidence intervals for associations of GRSs with each metabolite as a dependent 177 

variable measured on the same individuals at age 8y, 16y, 18y, and 25y, adjusted for sex and 178 

age at the time of metabolite assessment. To aid interpretations, estimates were multiplied by 179 

0.693 (loge2) to reflect SD-unit differences in metabolites per doubling of genetic liability to CRC.55 180 

The Benjamini-Hochberg method was used to adjust P-values for multiple testing and an adjusted 181 

P-value of <0.05 was used as a heuristic for evidence for association given current sample sizes.56 182 

 183 

2. Reverse MR of the effects of CRC liability on circulating metabolites in middle adulthood 184 

  185 

“Reverse” MR analyses54 were conducted using UK Biobank for outcome datasets in two sample 186 

MR to examine the effect of CRC liability on circulating metabolites. SNP-outcome (metabolite) 187 

estimates were obtained from a GWAS of metabolites in UK Biobank.57,58 Prior to GWAS, all 188 

metabolite measures were standardised and normalised using rank-based inverse normal 189 

transformation. Genetic association data for metabolites were retrieved using the MRC IEU UK 190 

Biobank GWAS pipeline.59 Full summary statistics are available via the IEU Open GWAS 191 

project.54,60 Up to 3 statistical methods were used to generate reverse MR estimates of the effect 192 

of CRC liability on circulating metabolites using the TwoSampleMR package61: random-effects 193 

inverse variance weighted (IVW), weighted-median, and weighted-mode, which each make 194 

differing assumptions about directional pleiotropy and SNP heterogeneity.62–64 The IVW MR model 195 

will produce biased effect estimates in the presence of horizontal pleiotropy, i.e. where one or 196 

more genetic variant(s) included in the instrument affect the outcome by a pathway other than 197 

through the exposure. In the weighted median model, each genetic variant is weighted according 198 

to its distance from the median effect of all genetic variants. Thus, the weighted median model 199 

will provide an unbiased estimate when at least 50% of the information in an instrument comes 200 

from genetic variants that are not horizontally pleiotropic. The weighted mode model uses a 201 
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similar approach but weights genetic instruments according to the mean effect. In this model, 202 

over 50% of the weight of the genetic instrument can be contributed to by genetic variants which 203 

are horizontally pleiotropic, but the most common amount of pleiotropy must be zero (known as 204 

the Zero Modal Pleiotropy Assumption (ZEMPA))65. As above, estimates were multiplied by 0.693 205 

(loge2) to reflect SD-unit differences in metabolites per doubling of genetic liability to CRC.66  206 

 207 

3. Forward MR of the effects of metabolites on CRC 208 

 209 

Forward MR analyses were conducted using summary statistics from UK Biobank for the same 210 

NMR-measured metabolites (SNP-exposure) and from GECCO/CORECT/CCFR as outlined 211 

above (SNP-outcome). We identified SNPs that were independently associated (R2<0.001 and 212 

P<5x10-8) with metabolites from a GWAS of 249 metabolites in UK Biobank described above. As 213 

before, we used up to 3 statistical methods to generate MR estimates of the effect of circulating 214 

metabolites on CRC risk (overall and site-specific): random-effects IVW, weighted-median, and 215 

weighted-mode. The Benjamini-Hochberg method was used to adjust P-values for multiple testing 216 

and an adjusted P-value of <0.05 was used as a heuristic for nominal evidence for a causal 217 

effect.56 MR outputs are beta coefficients representing the logOR for CRC per SD higher 218 

metabolite, exponentiated to reflect the OR for CRC per SD metabolite.  219 

 220 

MR analyses were performed in R version 4.0.3.67 and GRS analyses in Stata 16.1 (StataCorp, 221 

College Station, Texas, USA). The ggforestplot R package was used to generate results 222 

visualisations.68 223 

 224 

Ethics 225 

Written informed consent was obtained for all study participants. Ethical approval was obtained 226 

from the ALSPAC Law and Ethics Committee and the local research ethics committee (proposal 227 

B3538). Consent for biological samples has been collected in accordance with the Human Tissue 228 

Act (2004). Informed consent for the use of data collected via questionnaires and clinics was 229 

obtained from participants following the recommendations of the ALSPAC Ethics and Law 230 

Committee at the time. Ethics for the CRC GWAS were approved by respective institutional review 231 

boards. 232 

 233 

Results 234 
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 235 

 236 

Associations of CRC liability with circulating metabolites in early life  237 

 238 

At the time the ALSPAC blood samples were taken, the mean age of participants was 7.5y 239 

(N=4,767), 15.5y (N=2,930), 17.8y (N=2,613), and 24.5y (N=2,559) for the childhood, early 240 

adolescence, late adolescence and young adulthood time points respectively. The proportion of 241 

participants which were male were 50.5%, 47.4%, 44.5%, and 39.1% and mean BMI was 16.2, 242 

21.4, 22.7, and 24.8 kg/m2 for each time point respectively. The socio-demographic profile of 243 

ALSPAC offspring participants has been reported previously.69 Mean and standard deviation (SD) 244 

values for metabolites on each measurement occasion in ALSPAC are shown in Supplementary 245 

File 1b.  246 

 247 

In the GRS analysis, there was no strong evidence of association of CRC liability with metabolites 248 

at age 8y (Supplementary File 1c). At age 16y, there was evidence for association with several 249 

lipid traits including higher cholesteryl esters to total lipids ratio in large low-density lipoprotein 250 

(LDL) (SD change per doubling CRC liability = 0.06, 95% CI = 0.02 to 0.10) and higher cholesterol 251 

in very small very low-density lipoprotein (VLDL) (SD change per doubling CRC liability = 0.06, 252 

95% CI = 0.03 to 0.10). There was strong evidence for association with several traits at age 18y 253 

including higher non-high-density lipoprotein (non-HDL) lipids, e.g., a 1 doubling CRC liability was 254 

associated with higher levels of total cholesterol (SD change = 0.05 95% CI = 0.01 to 0.09), VLDL-255 

cholesterol (SD change = 0.05, 95% CI = 0.01 to 0.09), LDL-cholesterol (SD change = 0.06, 95% 256 

CI = 0.02 to 0.09)), apolipoproteins (apolipoprotein B (SD change = 0.06, 95% CI = 0.02 to 0.09)), 257 

and fatty acids (omega-3 (SD change = 0.08, 95% CI = 0.04 to 0.11), docosahexaenoic acid 258 

(DHA) (SD change = 0.05, 95% CI = 0.02 to 0.09)) (Supplementary File 1c). Figure 2(-figure 259 

supplements 1-6) shows results for all clinically validated metabolites. At age 25y, there was no 260 

strong evidence of association of CRC liability with metabolites. In anatomical site-specific 261 

analyses, there was strong evidence for association of liability to colon cancer with omega-3 (SD 262 

change = 0.07, 95% CI = 0.03 to 0.11) and DHA (SD change = 0.07, 95% CI = 0.03 to 0.10) at 263 

age 18y. There was little evidence for any associations at any other CRC site or age 264 

(Supplementary File 1c). When SNPs in the FADS cluster gene regions were excluded due to 265 

possible horizontal pleiotropy given the role of FADS in lipid metabolism, there was a reduction in 266 

strength of evidence for an association of liability to CRC with any metabolite measured, although 267 

estimates were in a largely consistent direction with the prior analysis (Supplementary File 1d). 268 
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 269 

Reverse MR of the effects of CRC liability on circulating metabolites in middle adulthood  270 

 271 

All instrument sets from the reverse MR analysis had an F-statistic greater than 10 (minimum F-272 

statistic = 36, median = 40), suggesting our analyses did not suffer from weak instrument bias 273 

(Supplementary File 1e). There was little evidence of an association of CRC liability (overall or 274 

by anatomical site) on any of the circulating metabolites investigated, including when the SNP in 275 

the FADS gene region was excluded, based on our pre-determined cut-off of FDR-P < 0.05; 276 

however, the direction of effect estimates was largely consistent with those seen in ALSPAC GRS 277 

analyses, with higher CRC liability weakly associated with higher non-HDLs, lipoproteins and fatty 278 

acid levels (Supplementary File 1f-g). Figure 3(-figure supplements 1-3) shows the results for 279 

clinically validated metabolites. In subsite stratified analyses, there was strong evidence for a 280 

causal effect of genetic liability to proximal colon cancer on several traits, including total fatty acids 281 

(SD change per doubling of liability = 0.02, 95% CI = 0.01 to 0.04) and omega-6 fatty acids (SD 282 

change per doubling of liability = 0.03, 95% CI = 0.01 to 0.05). 283 

 284 

Forward MR for the effects of metabolites on CRC risk  285 

 286 

All instrument sets from the forward MR analysis had an F-statistic greater than 10 (minimum F-287 

statistic = 54, median = 141), suggesting that our analyses were unlikely to suffer from weak 288 

instrument bias (Supplementary File 1h-i). There was strong evidence for an effect of several 289 

fatty acid traits on overall CRC risk, including of omega-3 fatty acids ( CRC OR = 1.13, 95% CI = 290 

1.06 to 1.21), DHA (OR CRC = 1.76, 95% CI = 1.08 to 1.28), ratio of omega-3 fatty acids to total 291 

fatty acids (OR CRC = 1.18, 95% CI = 1.11 to 1.25), ratio of DHA to total fatty acids (CRC OR = 292 

1.20, 95% CI = 1.10 to 1.31), and ratio of omega-6 fatty acids to omega-3 fatty acids (CRC OR = 293 

0.86, 95% CI = 0.80 to 9.13) (Supplementary File 1j, Figure 4-figure supplements 1-3). These 294 

estimates were overlapping with variable precision in MR sensitivity models. When SNPs in the 295 

FADS gene region were excluded, there was little evidence for a causal effect of any metabolite 296 

investigated on CRC risk based on the predetermined FDR-P cut of off < 0.05, although the 297 

directions of effect estimates were consistent with previous analyses (Supplementary File 1k). 298 

 299 

In anatomical subtype stratified analyses evidence was strongest for an effect of fatty acid traits 300 

on higher CRC risk, and this appeared specific to the distal colon, e.g., omega-3 (distal CRC OR 301 

= 1.20, 95% CI = 1.09 to 1.32), and ratio of DHA to total fatty acids (distal colon OR = 1.29, 95% 302 
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CI = 1.16 to 1.43). There was also evidence of a negative effect of ratio of omega-6 to omega-3 303 

fatty acids (distal CRC OR = 0.80, 95% CI = 0.74 to 0.88) and a positive effect of ratio of omega-304 

3 fatty acids to total fatty acids (distal CRC = 1.24, 95% CI = 1.15 to 1.35; seen also for proximal 305 

CRC OR = 1.15, 95% CI = 1.07 to 1.23) (Supplementary File 1j). These estimates were also 306 

directionally consistent in MR sensitivity models.  307 

 308 

 309 

Discussion 310 

 311 

Here, we used a reverse MR framework to identify circulating metabolites which are associated 312 

with genetic CRC liability across different stages of the early life course and attempted to replicate 313 

results in an independent cohort of middle-aged adults. We then performed forward MR to 314 

characterise the causal direction of the relationship between metabolites and CRC. Our GRS 315 

analysis provided evidence for an association of genetic liability to CRC with higher circulating 316 

levels of lipoprotein lipids (including total cholesterol, VLDL-cholesterol, and LDL-cholesterol), 317 

apolipoproteins (including apolipoprotein B), and fatty acids (including omega-3 and DHA) in 318 

young adults. These results were largely consistent in direction (though smaller in magnitude and 319 

weaker in strength of evidence) in a two-sample MR analysis in an independent cohort of middle-320 

aged adults. Results were attenuated, but consistent in direction, when potentially pleiotropic 321 

SNPs in the FADS gene regions were excluded. However, it should be noted that use of a narrow 322 

window for exclusion based on being within one of the three FADS genes may mean that some 323 

pleiotropic SNPs remain. Our subsequent forward MR analysis highlighted polyunsaturated fatty 324 

acids as potentially having a causal role in the development of CRC.   325 

 326 

Our analyses highlight a potentially important role of polyunsaturated fatty acids in colorectal 327 

cancer liability. However, these analyses may be biased by substantial genetic pleiotropy among 328 

fatty acid traits. SNPs which are associated with levels of one fatty acid are generally associated 329 

with levels of many more fatty acid (and non-fatty acid) traits.70,71 For instance, genetic instruments 330 

within the FADS cluster of genes will likely affect both omega-3 and omega-6 fatty acids, given 331 

FADS1 and FADS2 encode enzymes which catalyse the conversion of both from shorter chain 332 

into longer chain fatty acids.71 In addition, the NMR metabolomics platform utilised in the analyses 333 

outlined here has limited coverage of fatty acids, meaning many putative causal metabolites for 334 

CRC, for example arachidonic acid, could not be investigated. Therefore, although our results 335 

indicate that polyunsaturated fatty acids may be important in colorectal cancer risk, given the 336 
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pleiotropic nature of the fatty acid genetic instruments and the limited coverage of the NMR 337 

platform, we are unable to determine with any certainty which specific classes of fatty acids may 338 

be driving these associations. 339 

 340 

Our analyses featured evaluating the effect of genetic liability to CRC on circulating metabolites 341 

across repeated measures in the ALSPAC cohort. The mean ages at the time of the repeated 342 

measures were 8y, 16y, 18y, and 25y, representing childhood, early adolescence, late 343 

adolescence, and young adulthood respectively, and therefore individuals in this cohort are 344 

unlikely to be taking metabolite-altering medication such as statins, and unlikely to have CRC. 345 

The strongest evidence for an effect of liability to CRC on metabolite levels was seen in late 346 

adolescence. The reason for this remains unclear. It is possible that this represents a true 347 

biological phenomenon if late adolescence is a critical window in CRC development or metabolite 348 

variability, which may be likely given the limited variance in metabolite levels at the later age of 349 

25y (Supplementary File 1b). The lack of an effect at the younger ages could be explained by 350 

the fact that the CRC GRS may capture many key life events or experiences which could impact 351 

the metabolome (e.g., initiation of smoking, higher category of BMI reached, educational 352 

attainment level set, etc) but may not have yet happened at younger ages, thus obscuring an 353 

effect of genetic liability to CRC on the metabolome. Our results suggest that puberty could be 354 

important, with an effect seen seemingly particularly at the end of puberty. Repeating our analysis 355 

with sex-stratified data may aid in determining whether this is likely to be the case; sex-stratified 356 

GWAS for metabolites are not currently available to replicate such analyses. An alternative 357 

explanation is selection bias due to loss of follow-up, leading to a change in sample characteristics 358 

over time. 359 

 360 

Another key finding in the reverse MR analysis was that genetic liability to CRC was associated 361 

with increased levels of total cholesterol, VLDL-cholesterol, LDL-cholesterol, and apolipoprotein 362 

B, though we find little evidence for a causal effect of these traits on risk of CRC in the forward 363 

MR, replicating previous forward MR analyses for total and LDL-cholesterol.9,72–74 This suggests 364 

that these traits may either be only predictive of (i.e., non-causal for) later CRC development, or 365 

may be influenced by the development of CRC and could have diagnostic or predictive potential. 366 

Given that the participants in the ALSPAC cohort are many decades younger than the average 367 

age of diagnosis for CRC (mean age 25 years in the latest repeated measure analysed in 368 

ALSPAC; whereas the median age at diagnosis of CRC is 64 years),75 the former seems the most 369 

likely scenario. Previous conventional observational studies have presented conflicting results 370 
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when investigating the association between measures of cholesterol and CRC risk with some 371 

finding an inverse association and others a positive association, possibly reflecting residual 372 

confounding in conventional observational analyses.76–82 Previous MR studies have had similar 373 

findings to our forward MR analysis, in that there seems to be little evidence for a causal effect of 374 

cholesterol on CRC development.72–74 One possible explanation for how circulating levels of total 375 

cholesterol, VLDL-cholesterol, LDL-cholesterol and apolipoprotein B could predict (without 376 

necessarily causing) future CRC development could be linked to diet. A previous MR analysis 377 

suggested an effect of increased BMI on several measures of circulating cholesterol.9 Consuming 378 

a diet which is high in fat may increase CRC risk both through and possibly independently of 379 

adiposity, alongside increasing levels of circulating cholesterol.83–88 The potential for lipoprotein 380 

or apolipoprotein lipid measures in future CRC risk prediction should be further investigated. 381 

 382 

Our analyses stratified by anatomical subsite highlighted fatty acids as being affected by genetic 383 

liability to colon and proximal colon cancer, with the forward MR confirming that fatty acid traits 384 

may be particularly important in the development of these subsites of CRC as well as distal colon 385 

cancer.  386 

 387 

In our forward MR analyses we were unable to replicate the findings of three previous MR studies 388 

which found evidence for a causal effect of circulating linoleic acid levels on CRC development in 389 

terms of strength of evidence, though the direction of the effect estimate was similar to previous 390 

studies.89–91 This is surprising as all three previous analyses had a much smaller sample size than 391 

that included in our analysis (the largest had sample size of 24,748 for exposure vs 118,466 392 

presently; and 11,016 cases and 13,732 controls for outcome vs 52,775 cases and 45,940 393 

controls presently).  Our analysis using updated genetic instruments to proxy fatty acids may be 394 

more successful in accurately instrumenting heterogenous phenotypes such as metabolite levels 395 

compared with previous analyses. All other findings in our forward MR analysis are consistent 396 

with previous MR studies where they exist.72–74 397 

 398 

Limitations 399 

 400 

The limitations of this study include firstly the relatively small sample size included in the ALSPAC 401 

analysis, which may have implications for power and precision. Secondly, mostly due to the 402 

longitudinal nature of the ASLAPC study, our sample at each time point is composed of slightly 403 

different individuals. This could be influencing our results, and should be taken into account when 404 
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comparing across time points. Thirdly, our analyses involving genetic instruments for CRC liability 405 

may have suffered from horizontal pleiotropy, even after excluding genetic variants in or near the 406 

FADS gene. Fourthly, our analyses were mostly restricted to white Europeans, which limits the 407 

generalisability of our findings to other populations. Fifthly, our analysis would benefit from being 408 

repeated with sex-stratified data. Although such GWAS results for metabolites are not currently 409 

available, the data to perform such GWAS are available in UK Biobank for future analyses. Sixthly, 410 

for our forward MR analysis, we used the UK Biobank for our exposure data. The UK Biobank 411 

has a median age of 58 at the time these measurements were taken, meaning statin use may be 412 

widespread in this population, which could be attenuating our effect estimates. Future work could 413 

attempt to replicate our analysis in a population with lower prevalence of statins intake. Finally, 414 

we included only metabolites measured using NMR. Confirming whether our results replicate 415 

using metabolite data measured with an alternative method would strengthen our findings. 416 

 417 

Conclusions 418 

 419 

Our analysis provides evidence that genetic liability to CRC is associated with altered levels of 420 

metabolites at certain ages, some of which may have a causal role in CRC development. Further 421 

investigating the role of polyunsaturated fatty acids in CRC risk and circulating cholesterol in CRC 422 

prediction may be promising avenues for future research. 423 

 424 

Figure legends 425 

Figure 1: Study design. First, linear regression models were used to examine the relationship 426 
between genetic susceptibility to adult colorectal cancer and circulating metabolites measured in 427 
ALSPAC participants at age 8, 16, 18 and 25 years. Next, we performed a reverse Mendelian 428 
randomization analysis to identify metabolites influenced by CRC susceptibility in an 429 
independent population of adults. Finally, we performed a conventional (forward) Mendelian 430 
randomization analysis of circulating metabolites on CRC to identify metabolites causally 431 
associated with CRC risk. Consistent evidence across all three methodological approaches was 432 
interpreted to indicate a causal role for a given metabolite in CRC aetiology. 433 
 434 

Figure 2: Associations of genetic liability to adult colorectal cancer (based on a 72 SNP genetic 435 
risk score) with clinically validated metabolic traits at different early life stages among ALSPAC 436 
offspring (age 8y (N=4,767), 16y (N=2,930), 18y (N=2,613), and 25y (N=2,559)). Estimates 437 
shown are beta coefficients representing the SD difference in metabolic trait per doubling of 438 
genetic liability to colorectal cancer (purple, 8y; turquoise, 16y; red, 18y; black, 25y). Filled point 439 
estimates are those that pass a Benjamini–Hochberg FDR multiple-testing correction (FDR < 440 
0.05). 441 
 442 
Figure 2-figure supplement 1: Associations of genetic liability to adult colon cancer with 443 
clinically validated metabolic traits at different early life stages among ALSPAC offspring (age 444 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.03.10.23287084doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287084
http://creativecommons.org/licenses/by/4.0/


 

17 
 

8y, 16y, 18y, and 25y). Estimates shown are beta coefficients representing the SD difference in 445 
metabolic trait per doubling of genetic liability to colon cancer (purple, 8y; turquoise, 16y; red, 446 
18y; black, 25y). Filled point estimates are those that pass a Benjamini–Hochberg FDR multiple-447 
testing correction (FDR < 0.05). 448 
 449 
Figure 2-figure supplement 2: Associations of genetic liability to proximal colon cancer with 450 
clinically validated metabolic traits at different early life stages among ALSPAC offspring (age 451 
8y, 16y, 18y, and 25y). Estimates shown are beta coefficients representing the SD difference in 452 
metabolic trait per doubling of genetic liability to proximal colon cancer (purple, 8y; turquoise, 453 
16y; red, 18y; black, 25y). Filled point estimates are those that pass a Benjamini–Hochberg 454 
FDR multiple-testing correction (FDR < 0.05). 455 
 456 
Figure 2-figure supplement 3: Associations of genetic liability to distal colon cancer with 457 
clinically validated metabolic traits at different early life stages among ALSPAC offspring (age 458 
8y, 16y, 18y, and 25y). Estimates shown are beta coefficients representing the SD difference in 459 
metabolic trait per doubling of genetic liability to distal colon cancer (purple, 8y; turquoise, 16y; 460 
red, 18y; black, 25y). Filled point estimates are those that pass a Benjamini–Hochberg FDR 461 
multiple-testing correction (FDR < 0.05). 462 
 463 
Figure 2-figure supplement 4: Associations of genetic liability to rectal cancer with clinically 464 
validated metabolic traits at different early life stages among ALSPAC offspring (age 8y, 16y, 465 
18y, and 25y). Estimates shown are beta coefficients representing the SD difference in 466 
metabolic trait per doubling of genetic liability to rectal cancer (purple, 8y; turquoise, 16y; red, 467 
18y; black, 25y). Filled point estimates are those that pass a Benjamini–Hochberg FDR multiple-468 
testing correction (FDR < 0.05). 469 
 470 
Figure 2-figure supplement 5: Associations of genetic liability to adult colorectal cancer 471 
(excluding rs174533) with clinically validated metabolic traits at different early life stages among 472 
ALSPAC offspring (age 8y, 16y, 18y, and 25y). Estimates shown are beta coefficients 473 
representing the SD difference in metabolic trait per doubling of genetic liability to colorectal 474 
cancer (purple, 8y; turquoise, 16y; red, 18y; black, 25y). Filled point estimates are those that 475 
pass a Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05). 476 
 477 
Figure 2-figure supplement 6: Associations of genetic liability to adult colon cancer (excluding 478 
rs174535) with clinically validated metabolic traits at different early life stages among ALSPAC 479 
offspring (age 8y, 16y, 18y, and 25y). Estimates shown are beta coefficients representing the 480 
SD difference in metabolic trait per doubling of genetic liability to colorectal cancer cancer 481 
(purple, 8y; turquoise, 16y; red, 18y; black, 25y). Filled point estimates are those that pass a 482 
Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05). 483 
 484 
Figure 3: Associations of genetic liability to colorectal cancer with clinically validated metabolic 485 
traits in an independent sample of adults (UK Biobank, N=118,466, median age 58y) based on 486 
reverse two sample Mendelian randomization analyses. Estimates shown are beta coefficients 487 
representing the SD-unit difference in metabolic trait per doubling of liability to colorectal cancer. 488 
Filled point estimates are those that pass a Benjamini–Hochberg FDR multiple-testing 489 
correction (FDR < 0.05). 490 
 491 
Figure 3-figure supplement 1: Associations of genetic liability to colorectal cancer with 492 
clinically validated metabolic traits in an independent sample of adults based on reverse two 493 
sample Mendelian randomization analyses. Estimates shown are beta coefficients representing 494 
the SD-unit difference in metabolic trait per doubling of liability to colorectal cancer by site 495 
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(colorectal, colon, distal colon, proximal colon and rectal cancer). Filled point estimates are 496 
those that pass a Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05). 497 
 498 
Figure 3-figure supplement 2: Associations of genetic liability to colorectal cancer (excluding 499 
genetic variants in the FADS gene region) with clinically validated metabolic traits in an 500 
independent sample of adults based on reverse two sample Mendelian randomization analyses. 501 
Estimates shown are beta coefficients representing the SD-unit difference in metabolic trait per 502 
doubling of liability to colorectal cancer. Filled point estimates are those that pass a Benjamini–503 
Hochberg FDR multiple-testing correction (FDR < 0.05). 504 
 505 
Figure 3-figure supplement 3: Associations of genetic liability to colorectal and colon cancer 506 
with clinically validated metabolic traits in an independent sample of adults based on reverse 507 
two sample Mendelian randomization analyses with FADS variants excluded from colorectal 508 
cancer instruments. Estimates shown are beta coefficients representing the SD-unit difference 509 
in metabolic trait per doubling of liability to colorectal cancer by site (colorectal, colon). Filled 510 
point estimates are those that pass a Benjamini–Hochberg FDR multiple-testing correction 511 
(FDR < 0.05). 512 
 513 
Figure 4: Associations of clinically validated metabolites with colorectal cancer based on 514 
conventional (forward) two sample Mendelian randomization analyses in individuals from UK 515 
Biobank (N=118,466, median age 58y) . Estimates shown are beta coefficients representing the 516 
logOR for colorectal cancer per SD metabolite. Filled point estimates are those that pass a 517 
Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05). 518 
 519 

Figure 4-figure supplement 1: Associations of clinically validated metabolites with colorectal 520 
cancer by site (colorectal, colon, distal colon, proximal colon and rectal cancer) based on 521 
conventional (forward) two sample Mendelian randomization analyses. Estimates shown are 522 
ORs for colorectal cancer per SD metabolite. Filled point estimates are those that pass a 523 
Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05). 524 
 525 
Supplementary file legends 526 
Supplementary File 1a: Genetic variants used to construct genetic risk scores reflecting 527 
colorectal cancer liability 528 
 529 
Supplementary File 1b: Mean and SD values for raw metabolic traits at different life stages 530 
among ALSPAC offspring 531 
 532 
Supplementary File 1c: Associations of genetic liability to colorectal cancer with metabolic 533 
traits at different early life stages among ALSPAC offspring 534 
 535 
Supplementary File 1d: Associations of genetic liability to colorectal cancer (excluding SNPs in 536 
the FADS gene region) with metabolic traits at different early life stages among ALSPAC 537 
offspring 538 
 539 
Supplementary File 1e: Assesment of instrument strength for MR analyses 540 
 541 
Supplementary File 1f: Associations of genetic liability to colorectal cancer with metabolic traits 542 
based on two-sample MR 543 
 544 
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Supplementary File 1g: Associations of genetic liability to colorectal cancer with metabolic 545 
traits based on two-sample MR, excluding variants in the FADS gene region 546 
 547 
Supplementary File 1h: Genetic variants used to instrument circulating metabolites 548 
 549 
Supplementary File 1i: Assesment of instrument strength for MR analyses 550 
 551 
Supplementary File 1j: Estimated effects of circulating metabolites on colorectal cancer risk 552 
based on two-sample MR 553 
 554 
Supplementary File 1k: Estimated effects of circulating metabolites on colorectal cancer risk 555 
based on two-sample MR, excluding variants in the FADS gene region  556 
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Association of CRC 
susceptibility with 
circulating metabolites in 
early life

ALSPAC cohort (n = 
6,221)
• Exposure: genetic 

susceptibility to adult 
colorectal cancer 
(based on GECCO 
summary statistics)

• Outcome: 230 
metabolites at 8, 16, 18 
and 25 years detected 
by NMR spectroscopy

Reverse Mendelian 
randomization of CRC on 
metabolites

UK Biobank (n = 118,466)
• Exposure: genetic 

susceptibility to adult 
colorectal cancer 
(based on GECCO 
summary statistics)

• Outcome: GWAS 
summary statistics for 
249 metabolites 
detected by NMR 
spectroscopy (median 
age 58 years)

Forward Mendelian 
randomization of 
metabolites on CRC

GECCO (n = 58,131 cases 
and 67,347 controls)
• Exposure: genetically 

instrumented circulating 
metabolite levels 
(based on UK Biobank 
summary statistics)

• Outcome: GWAS 
summary statistics for 
colorectal cancer, 
overall and by subsite 
(mean age 60-69 
across cohorts)

Causal/confounded
Causal/reverse 

causal/confounded Causal

Metabolites associated with CRC (Benjamini–Hochberg FDR multiple-testing correction (FDR < 0.05))
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