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Abstract 

Imaging features associated with neuropsychiatric traits can provide valuable insights into 

underlying pathophysiology. Using data from the UK biobank, we perform tissue-specific TWAS 

on over 3,500 neuroimaging phenotypes to generate a publicly accessible resource detailing the 

neurophysiologic consequences of gene expression. As a comprehensive catalog of 

neuroendophenotypes, this resource represents a powerful neurologic gene prioritization 

schema that can improve our understanding of brain function, development, and disease. We 

show that our approach leads to highly reproducible results. Notably, genetically determined 

expression alone is shown here to enable high-fidelity reconstruction of brain structure and 

organization. We demonstrate complementary benefits of cross-tissue and single-tissue 

analyses towards an integrated neurobiology and provide evidence that gene expression 

outside the central nervous system provides unique insights into brain health. As an application, 

we show that over 40% of genes previously associated with schizophrenia in the largest GWAS 

meta-analysis causally affect neuroimaging phenotypes noted to be altered in schizophrenic 

patients.  
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Introduction 

Several transcriptome-wide association studies (TWAS) have identified associations between 

genetically regulated gene expression (GReX) and neuropsychiatric traits. The contribution of 

GReX variation to disease pathophysiology remains an active area of research, with critical 

implications for our understanding of disease mechanisms1-3. Toward this end, we develop a 

publicly available resource, NeuroimaGene, for identifying the neurophysiological consequences 

of variation in GReX. We link 2 well-validated intermediate phenotypes: endogenous gene 

expression under genetic control and neurophysiology as captured by a broad array of 

neuroimaging derived phenotypes (NIDPs) from MR imaging4-8.  

 

GReX characterizes the component of endogenous gene expression that is driven by germline 

variation in nucleotide sequence. This measure of genetic influence can be used to illuminate 

the biologic mechanisms of neuropsychiatric disease. GReX has been shown to be associated 

with a broad range of neuropsychiatric traits9. By quantifying the component of gene expression 

under genetic control, this measure is to be distinguished from environmental and trait-

determined influences8. Since multiple SNPs often affect regulation of a gene, this transcription-

targeted approach improves statistical power relative to single-SNP analyses by concentrating 

multiple SNP effects onto relatively fewer, biologically-informative (gene) targets10.  

 

In this study, we leverage the UKB neuroimaging data to identify associations between variation 

in GReX and over 3,500 NIDPs. These quantitative descriptors of the structure, connectivity, 

and functional activation of the brain have been shown to be associated with neuropsychiatric 

health11-15. The UKB's application of automated image processing pipelines to magnetic 

resonance imaging permits standardized measurements for an enormous number of cerebral 

data points16-19. These data capture structural information, such as the volume, thickness, and 

surface area of brain regions; organizational variation describing the white matter connections 

between these components; and functional information, such as networks of synaptic activity 

associated with specific tasks or resting states15-18,20. 

 

Through analysis of GReX in a population-based cohort, the resource captures the expression-

mediated genetic architecture of structure and function in the healthy brain, facilitating the 

identification of specific genes and anatomic measurements involved in neurocognitive 

homeostasis21. In our application, we replicate and extend evidence characterizing the 
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neurogenic pathophysiology of schizophrenia (SCZ).  

Results 

NeuroimaGene comprises a searchable atlas of associations between brain 

measures and the genetically regulated transcriptome 

 

To identify associations between GReX and neuroimaging measures of the brain, we applied 

the JTI TWAS framework to summary statistics from the most recent release of the UKB 

neuroimaging GWAS (Figure 1a) (Methods)5. We used in silico gene expression models trained 

on transcriptome data in 19 tissues from the GTEx consortium. This analysis generated 

associations between 3,934 measures of the brain and 22,815 imputed gene expression traits in 

the context of 13 brain tissues and 6 neurologically relevant tissues from outside the central 

nervous system (CNS) (Figure 1d)22,23. We removed non-heritable NIDPs and, recognizing the 

non-independence of NIDPs, we corrected for multiple testing through a study-wide Benjamini 

Hochberg false discovery rate threshold of 0.05. The majority of the significant associations 

represented white matter fibers identified via diffusion MRI and structural partitioning of the brain 

according to T1 imaging (Figure 1e). We provide these data as a searchable atlas detailing 

highly significant, quantitative associations between endogenous gene expression of >16,000 

genes and >3,400 neuroimaging derived measures of the brain (Figure 1f) (See Data 

Accessibility).  
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Figure 1: Resource Overview.  

a. Conceptual overview of the Neuroimaging TWAS framework leveraging the JTI-derived gene expression 

models.  

 

b. In relation to phenotypic risk, GReX can be used to quantify the fraction of SNV-based risk that is 

actualized via the intermediary of endogenous gene expression.  

 

c. The location of the endophenotype TWAS within the etiologic space strategically targets mechanistic 

elements mediating the associations between genetic variation and neuropsychiatric traits.  

 

d.  The total number of GReX-NIDP associations identified in each tissue as well as the number of unique 

genes involved in those associations.  

 

e. Distribution of significant (FDR<0.05) GReX-NIDP associations across all tissue models grouped by the 

imaging modality used to capture each NIDP.  
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f. Manhattan style plot of all GReX associations with NIDPs across the genome from the application of JTI 

models in 19 tissues.  

 

GReX: Genetically Regulated gene Expression, SNV: Single Nucleotide Variant, TWAS: Transcriptome-

Wide Association Study, GWAS: Genome-Wide Association Study, GTEx: Genotype Tissue Expression 

consortium, NIDP: Neuroimaging Derived Phenotype, eQTL: Expression Quantitative Trait Locus, JTI: Joint 

Tissue Imputation. 

Clustering NIDPs according to GReX recapitulates the spatial patterning of the 

brain 

 

We investigated the extent to which unsupervised phenotype clustering of all NIDPs based 

solely on GReX reflected known neurobiology. We performed hierarchical clustering of NIDPs 

according to the nominally significant GReX (Supplementary Figures 8-26). Notably, identical 

brain regions measured via different approaches clustered together and these clusters 

demonstrated close clustering with groups of physically proximal brain regions (Supplementary 

Tables 2-20). To better visualize the spatial patterning of the NIDPs, we applied UMAP to the 

cortical surface area and volume measurements24. Following optimization of parameters for 

global structure, annotation of points according to cortical area not only revealed clusters of 

NIDPs from the same regions, but also a global pattern that closely mimics the 2-dimensional, 

unfolded organization of the human cortex (Figure 2, Supplementary Figure 27). Subcortical 

regions clustered together near the brainstem and NIDPs describing the surface area and 

volume of different cortical regions self-aligned in both the rostral and longitudinal axes. While 

the three-dimensional cortex folds into itself at the longitudinal fissure, projecting the cortical 

surface into two dimensions should locate the deepest aspect of the fissure near the top of the 

image as is observed in the cingulate gyrus and corpus callosum. Classifying NIDPs exclusively 

by GReX thus provides sufficient data to identify a sample's place of origin relative to other 

NIDPs, both underscoring the validity of GReX as a neurologically informative measure and 

highlighting the richness of information contained within the NeuroimaGene resource. 
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Figure 2: Effect of genetically determined transcriptome recapitulates brain structure and organization. 

UMAP projection of NIDPs corresponding to cortical surface area and volumes according to the Amygdala. 

The distribution of points in the cartesian plane is derived exclusively from Euclidean distance between the 

GReX effect size vectors for each NIDP. NIDPs are colored according to cortical region. Shaded areas 

delineated by hand. 

TWAS methodology for identifying neuroimaging GReX associations 

demonstrates high reproducibility in validation cohorts 

 

The UKB neuroimaging GWAS release includes summary statistics of the full 33K subjects as 

well as two smaller GWA studies completed on populations subsets comprised of 22K and 11K 

non-overlapping sets of individuals. As methodological validation, we applied the TWAS pipeline 

to these smaller independent data sets (Methods). Using a nominal 0.05 p-value threshold 

cutoff, we identified 1,262,333 distinct GReX-NIDP associations, across all tissue-specific 
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models from 19 tissues, that met the nominal threshold in the cohorts of 11K and 22K patients. 

These associations collectively represented 395,834 unique GReX-NIDP associations 

irrespective of tissue models. Notably, 75.8% of associations showed concordance in their 

direction of effect between studies (Supplementary Figure 30 a,b). The subset of study-wide 

significant findings (Benjamini Hochberg FDR < 0.05) demonstrated full concordance of 

direction of effect with an effect size Spearman correlation of 0.9812 (Figure 3a). Within each 

NIDP modality, the mean Spearman correlation across all NIDPs was always positive (Figure 

3c). The number of nominally significant NIDPs across all tissue models in each modality 

category was largely skewed in favor of rfMRI, T1, and dMRI modalities (Figure 3b). Consistent 

with the heritability profile of NIDPs in these 3 modalities, the replication correlation was lowest 

for rfMRI but was reasonably high (> 0.5) for both T1 imaging and dMRI modalities (Figure 

3d)16. In summary, our pipeline identified highly replicable associations between GReX and 

NIDPs across two independent, moderately powered data sets.  
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Figure 3: NeuroimaGene Methodology Validation.  

a. The correlation between effect sizes of tissue-concordant GReX-NIDP associations shared across the 

neuroimaging TWAS data from 11K subjects and the neuroimaging TWAS data from 22K subjects. Each 

point represents a study-wide significant finding (Benjamini Hochberg false discovery rate < 0.05). Data are 

plotted according to a pseudolog10 function with point color representing degree of overlap at each 

graphical coordinate. The trend line reflects linear regression. Spearman's correlation = 0.9812 with p-value 

< 2.2e-16. 

 

b. Distribution of nominally significant NIDPs across all tissue models grouped by the imaging modality 

used to capture each NIDP.  
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c. Mean Spearman correlation across all NIDP gene sets across data subsets grouped by the imaging 

modality used to capture the NIDP. Error bars represent the 95% confidence interval.  

 

d. Distribution of all NIDPs plotted according to the Spearman correlation coefficient between gene sets as 

calculated from TWAS in the 11K and 22K data subsets. Panels represent imaging modalities with only 

those representing dMRI, T1, and rfMRI shown. Point color represents the tissue model with all points 

showing anti-correlation filled red. (rho < 0) All data in subplots b-d filtered by a nominal p-value TWAS 

threshold of 0.05. 

 

 

Tissue specificity of neuroimaging GReX associations provides insight into the 

molecular pathways underlying neurobiology 

 

We investigated the extent to which tissue context breadth provides meaningful information 

about GReX mechanisms. First, to characterize the distribution of GReX-NIDP associations 

across the 19 different tissue models, we annotated each gene according to the total number of 

tissue models in which the gene was significantly associated with any brain measure (Figure 

4a). Here we relied on the FDR-significant subset of the data as is appropriate for discovery 

analyses. A plurality of genes demonstrated a statistically significant neurologic association in 

the context of only one single tissue model. Gene counts decreased as replication categories 

increased until reaching a nadir at 14. A similar pattern was observed when considering joint 

GReX-NIDP associations (Figure 4b). Expression of some genes was neurologically relevant in 

only a few tissues while for others, relevance for genetically determined expression was 

ubiquitous across tissue contexts. To explore the functional significance of this distribution, we 

conducted a comparative Gene Ontology enrichment analysis of tissue-specific genes against 

tissue-shared genes (Figure 4d) 25. GReX in both sets independently clustered into multiple 

ontology categories, indicating the non-random nature of the identified associations. The genes 

with tissue-shared GReX associations clustered into pathways that reflect housekeeping 

functions such as cell membrane integrity and mitochondrial function. Conversely, the genes 

with tissue-specific GReX associations included pathways reflecting cell projections such as 

those required for dendrite and axon formation and cell junctions. These categories illustrate the 

relevance of both general and highly cell-specific processes in the healthy development of the 

human brain.  
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We then assessed the relationship between the identified neurologic impact of gene expression 

and the number of tissues in which that expression is neuro-relevant through analysis of the 

mean effect size magnitudes across each category. We identified a positive relationship such 

that GReX-NIDP associations shared across all tested tissues showed relatively higher 

magnitude changes in neural architecture (Spearman rank correlation p = 7.73e-06, rho = 

0.968) (Figure 4c). We calculated the standard deviation of effect size magnitude for each gene 

in each column and identified a negative relationship as tissue count replication increased (p-

value < 5.33e-7, rho = -0.938) (Figure 4e). In summary, GReX-NIDP associations that were 

captured across multiple tissue models demonstrated greater effect size magnitude with less 

variance across tissue models.  

 

These data in conjunction with the previous Gene Ontology suggested that tissue-shared GReX 

associations likely represent general biological processes that occur ubiquitously while those 

GReX-NIDP associations identified in a few tissues demonstrated more moderate, context-

dependent effect sizes. 
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Figure 4: Tissue specificity of GReX is associated with magnitude of GReX effect and provides insights 

into underlying molecular pathways.  

a. Distribution of NIDP-associated GReX annotated on a scale according to the total number of 

tissue models (1 = unique to a single tissue model, 19 = shared across all tissue models).  

 

b. Distribution of GReX-NIDP associations annotated on a scale according to the total number of tissue 

models as in plot 3a.  

 

c. Gene Ontology Enrichment Analysis of NIDP-associated GReX according to tissue model specificity.  
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d. Median effect size of GReX-NIDP associations according to the total number of tissue models.  

 

e. Mean standard deviation of replicated GReX-NIDP associations across tissue models according to the 

number of tissue models. Error bars represent the 95% confidence interval.  
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GReX-NIDP associations identified in non-brain tissue models are highly relevant 

and provide information inaccessible from brain-only analyses 

 

We assessed the significance of tissue model type (brain vs non-brain) with regard to the 

GReX-NIDP associations. As in the previous section, we annotated each gene according to the 

number of tissue models in which it was associated with a neurologic trait. Then we annotated 

the NIDP-associated GReX in each category according to the type of tissue model. The first 

tissue category, labeled as "non-brain", consists of the adrenal gland, sigmoid colon, transverse 

colon, pituitary, liver, and whole blood. The rest of the brain phenotypes and the spinal cord are 

classified as “brain”.  

 

Genes that showed significant associations exclusively in brain tissue models were classified as 

"unique-brain" while those that showed significant associations only in non-brain tissue models 

were classified as "unique-non-brain". Those that demonstrated associations in both were 

labeled as “shared” (Figure 5a).  

 

As expected, the most informative GReX-NIDP associations were identified by models derived 

from brain tissue. Still, nearly 50% of GReX associations detected in brain tissues were also 

detected in non-brain tissues, underscoring the potential for non-brain tissues to serve as proxy 

models for the hard-to-access CNS. Accordingly, for each "shared" GReX-NIDP association, we 

assessed the similarity in estimated effect size across brain and non-brain groups by comparing 

the median effect sizes of the 2 tissue groups (Figure 5c). GReX-NIDP associations captured 

across both brain and non-brain models demonstrated high consistency in cross tissue-type 

effect size directions (Figure 5 c,d). 

 

We noted with interest that there were over 1700 genes for which GReX exclusively outside of 

the brain was significantly associated with neurophysiological traits (Figure 5a). This seemed to 

suggest that transcriptomic variation outside the CNS was highly relevant to brain physiology. 

The median effect size magnitude of GReX associations in non-brain tissues was significantly 

lower than that of brain tissues (p-value < 2.2e-16); however, the difference was small with the 

median effect size falling within the interquartile range for the brain data (Figure 5b).  

 

Each JTI tissue model involves a variable number of genes. The ratio of total neurophysiological 

associations derived from each tissue model to the number of genes in each tissue model thus 
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reflects a measure of marginal information gained per additional gene. We compared these 

ratios among the tissues (Figure 5e), demonstrating that the amount of information gained by 

increasing the size of non-brain tissue models was statistically no different than the information 

gained by increasing the size of brain tissue models (p-value = 0.949). While brain tissue 

retained an absolute advantage over non-brain tissues, the marginal gain in neurophysiological 

information from each new gene was the same across brain and non-brain models. 

 

To characterize the functional ramifications of this geographic partitioning, we conducted 

comparative Gene Ontology analysis, contrasting the "unique brain" NIDP-associated GReX 

with the "unique non-brain" NIDP-associated GReX (Figure 5f)25. For genes exclusively 

associated with NIDPs via brain expression models, there was again heavy enrichment in cell 

projection pathways as are involved in axonogenesis and dendrite formation. In non-brain 

tissues, there was an enrichment in pathways reflecting cellular metabolism and cell signaling.  
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Figure 5: GReX in both brain and non-brain tissues provides complementary information reflecting the 

integrated nature of neurobiology.    

a. Bar plot showing the counts of all 7,193 GReX classified according to their presence in brain tissue 

training models, non-brain models, or both.  

 

b.  Box plot showing the median normalized effect size across all significantly associated NIDPs and the 

interquartile range for all 7,193 FDR-significant GReX grouped in the same manner as in panel a.  

 

c.  Density plot showing the distribution of median normalized GReX-NIDP effect sizes as measured in 

brain tissue models vs the same measure as captured in non-brain tissues. Only GReX-NIDP associations 

shared across both types of tissue models are represented here (N = 1,262,333, FDR corrected p-value < 

0.05) trend line represents a linear regression.  
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d. Relative counts of tissue-concordant GReX-NIDP associations that share the same direction of effect 

across tissue types vs those that show differing directions of effect.  

 

e. The number of GReX associations per tissue model plotted against the number of genes in the tissue 

model, grouped by model type (brain vs non-brain). Trend lines represent linear regression.  

 

f. Gene Ontology Enrichment Analysis of NIDP-associated GReX according to tissue model type. 

 

 

NeuroimaGene application to schizophrenia recapitulates and extends upon 

previously documented observations 

 

We modeled the utility of the GReX-NIDP association resource through an application to SCZ. 

Remarkable in both its high SNP-based heritability and polygenicity, the most recent GWAS 

meta-analysis identified 263 trait associated loci with mapped variants supporting a narrow 

sense heritability of 60-80%26. Recognizing the joint influence of germline variation and 

neurologic predisposition, we used NeuroimaGene to identify relationships between GReX of 

SCZ associated genes and SCZ associated NIDPs. We gathered 33 SCZ-associated cortical 

NIDPs and 12 subcortical volumes identified by the ENIGMA consortium that were present in 

the UKB Neuroimaging Study (Methods)27,28. We then identified 63 SCZ trait-associated genes 

from a TWAS analysis conducted on the most recent and largest SCZ GWAS meta-analysis to 

date (Methods)26. Of these genes, 50 were present in the tested GReX of the UKB TWAS 

analysis. Accordingly, we queried the NeuroimaGene resource for associations between GReX 

of the SCZ associated genes and SCZ-associated NIDPs (Figure 6a). 

 

SCZ NIDPs are more strongly associated with GReX of SCZ associated genes 

relative to the full imputed transcriptome 

 

We expected that GReX of the trait-associated genes identified by the SCZ TWAS would be 

more associated with the set of SCZ NIDPs than GReX of random genes, owing to the co-

association of both variables (GReX and NIDPs) with SCZ status. Identifying an appropriate 

significance metric is complicated as GReX is highly pleiotropic with regard to brain measures 
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and the NIDPs are largely polygenic. This high level of association between GReX and NIDPs 

represents the background against which the known SCZ associations must distinguish 

themselves. Having previously demonstrated that there was significant information in the 

resource using a nominal threshold (Figure 2), we set 0.05 as an upper limit and then identified 

the p-value threshold that would maximally discriminate between SCZ NIDP-associated GReX 

and the rest of the genome by testing a range of p-values, as is often done in polygenic risk 

score development. 

 

We explicitly tested the null hypothesis that SCZ genes do not have more statistically significant 

associations with SCZ NIDPs (across all tissue models) than random, equally sized sets of 

genes. We conducted permutation testing and repeated the analysis across a range of p-values 

(Methods). We compared the value of the observed test statistic against the 95th percentile of 

the null distribution (Figure 6b-d). We then calculated all significant SCZ-GReX associations 

with SCZ clinical NIDPs using 0.005 as the optimal p-value.  

 

Following causal inference analysis via MR-JTI (a Mendelian randomization framework)5, we 

identified 467 causal associations between GReX of SCZ associated genes and clinical SCZ-

associated NIDPs (Figure 6e, Supplementary Figure 34). These associations highlighted 42 

NIDPs reflecting cortical and subcortical morphology and involved 25 genes. These two classes 

of intermediate variables were previously associated with SCZ (GReX and NIDPs), and we 

demonstrated in the UKB data that they exist in a causal relationship with one another whereby 

GReX drives the measured variation in morphology.  

 

We observed notable degrees of polygenicity and pleiotropy with regards to the NIDPs and 

GReX, respectively. The GReX of all 25 SCZ associated genes showed association with an 

average of 5.2 SCZ-associated NIDPs. Each NIDP was associated with an average of 3.0 

NIDP-associated genes (Figure 6d). 
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Figure 6: NeuroimaGene application to SCZ informs clinical neuroimaging findings.  

a. Schematic overview of the application of the pipeline to identified tri-fold associations between GReX, 

SCZ and NIDPs.  

 

b. Comparison of total associations between SCZ GReX and SCZ NIDPs (scz_ct) and total associations 

between random GReX and SCZ NIDPs (null_ct) at different p-value thresholds.  

 

c. Difference plot detailing the total number of associations between SCZ GReX and SCZ NIDPs (scz_ct) 

minus the total number of associations between random GReX and SCZ NIDPs (null_ct) at different p-value 

thresholds.  
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d.  Quantification of SCZ GReX associations with SCZ NIDPs compared to a null distribution at p-value <= 

0.005. The experimental gene set represents the set of GReX measures associated with SCZ according to 

Trubetskoy et al. The histogram represents the distribution of associations between 1000 random equally 

sized gene sets and SCZ NIDPs. The line in red represents the limit of association counts exceeded by 

only 0.05 of the random gene sets. The blue line represents the number of total associations between SCZ-

associated NIDPs.  

 

e. Distribution of MR-JTI significant associations between GReX of SCZ GReX and SCZ-associated NIDPs 

with significance values <= 0.005.  Polygenicity of individual NIDPs within the set of SCZ GReX can be 

observed across the x-axis. The pleiotropic effects of SCZ GReX on SCZ NIDP’s can be observed along 

the y-axis.  
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Discussion 

In NeuroimaGene, we provide a publicly available resource for examining neurological 

correlates of genetic variation. The number of studies identifying associations between genetic 

variation and neuropsychiatric traits is constantly increasing and so too does the importance of 

enriching these observational studies with data on a wide array of intermediate phenotypes. By 

characterizing the impact of genetically regulated gene expression on diverse measures of brain 

structure and function, we provide a tool that is broadly applicable to questions of development, 

neural maintenance, neurodegeneration, cognition, and psychiatric health.  

The resource leverages joint-tissue imputation enriched models which have been demonstrated 

to outperform traditional single-tissue models. By analyzing multiple tissues rather than a single 

cross-tissue analysis, we retain information on the geographic partitioning of predictive and 

causal GReX variation. This is enhanced by the inclusion of non-brain tissues. The breadth of 

NIDPs characterized by the UKB and subsequently described here represents a major 

advantage of this resource as well. There is substantial variation in how different cortical, 

subcortical, and DTI atlases parcellate the brain. Because NeuroimaGene includes a wide 

breadth of such atlases, conversion between atlases is rarely necessary when searching for 

GReX associated with an NIDP of interest. 

 

The utility of GReX as an informative endophenotype for neurologic features is strongly 

underscored by the clustering analyses wherein we recapitulate the 2-dimensional structure of 

the human cortex and subcortex, using effect of the genetically determined transcriptome alone. 

The highly significant replication of associations across the two independent population subsets 

further demonstrates the strength of our approach. Additionally, stratifying the neuro-relevant 

genes according to tissue specificity followed by Gene Ontology analysis demonstrated that 

tissue specificity approximates differentiation. While associations shared across tissues, as are 

prioritized by cross-tissue analyses, capture a high-confidence set of associations with larger 

and more uniform effect sizes, they miss some associations captured in single-tissue analyses 

that are reflective of greater differentiation/specificity. 

Clinically, the link between corporeal health and neuropsychiatric health is well-established with 

conditions such as hepatic encephalopathy and pheochromocytoma-induced panic disorder 

representing high visibility instances. Using 6 non-brain tissues with a priori evidence for 

neurologic relevance, we present data suggesting that transcriptomic variation in tissues outside 
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the brain has important effects on neurologic homeostasis that are large enough to be captured 

by neuroimaging methods.   

 

By prioritizing SCZ-associated GReX, these data support a genetic basis for cortical 

morphology changes observed in SCZ. Furthermore, we provide specific gene candidates for 

which expression variation may be driving these cortical changes. 

 

This work is limited by several factors. First, regulatory genomic architecture and linkage 

disequilibrium scores translate poorly across populations of different ancestral backgrounds. In 

relying on genetic data derived from the fraction of genetic diversity contained in European 

ancestry, these findings are severely limited in their wide-scale application to human 

populations. In future studies we hope to leverage a broader range of data as reference 

transcriptome resources become available for less well-characterized populations. Second, the 

use of MR controls for horizontal pleiotropy at the level of SNPs; however, we do not control for 

confounding that is mediated through genetic co-expression29. Though mitigated by using cis-

eQTL models, this limits the rigor of causal inference and necessitates the use of functional 

studies to validate findings.  

 

SNP variation can affect a phenotype through many different mechanisms. By measuring the 

impact of SNPs only on gene expression, our approach does not capture the proportion of 

narrow-sense heritability mediated through other mechanisms9. This loss in breadth is 

redeemed by the increase in mechanistic specificity. Because our source data comes from 

healthy patients, neuroanatomical changes exclusive to disease-causing variants will be poorly 

covered7. Because GReX is a continuous exposure, we anticipate that some neurological 

predisposition will be present in the brains of individuals with non-realized genetic risk. 
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Methods 

Data Acquisition 

The UK biobank (UKB) is a large-scale prospective cohort study, which has collected genotypic 

and phenotypic data from 500,000 residents of the United Kingdom. The standardization of data 

collection methods across patients and the large sample size of this study provides enormous 

advantages for epidemiological analysis. In 2014 the UKB began collecting neuroimaging data 

on patients in the form of functional, diffusion, and structural MRI7. The study developed an 

automated image processing pipeline to standardize and quantify their findings, generating 

3,935 ‘image derived phenotypes’20. In 2016, Elliot et al published a GWAS for each of the 

3,144 image derived phenotypes using genetic information from 8,428 patients available in the 

UKB database at the time17. In 2021, an additional release of neuroimaging GWAS data was 

made available detailing associations for 3,935 NIDPs as measured in 39,691 brain imaged 

samples derived from approximately 33,000 patients16. The summary statistics results for these 

GWAS are publicly available at their website (https://open.win.ox.ac.uk/ukbiobank/big40/). 

Statistical analysis 

All analyses are conducted in R version 4.0.5, Python Python 3.8.6, and Linux.  

Model building and JTI framework 

We leveraged pre-built gene expression models trained on RNA data from post-mortem 

samples in order to predict gene expression from SNP profiles. The construction of these 

models is described in Zhou et al 20205. The GTEx consortium maintains a repository of RNA 

expression data and genetic data collected from 54 non-diseased tissue sites across 

approximately 1000 individuals30.  As described in Zhou et al, each model quantifies the 

association between SNPs and gene expression levels across the genome for each tissue. The 

genetic regulation of gene expression is highly shared across tissues and JTI exploits this 

shared regulatory architecture to substantially improve expression prediction. These models, 

trained on the GTEx data and enriched via JTI, are publicly available at Zenodo (see Data 

Availability).  
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TWAS of neuroimaging phenotypes 

We applied  the JTI TWAS models derived from 19 GTEx (version 8) tissues to UKB GWAS 

summary statistics for all 3,935 NIDPs published by Smith et al. to identify GReX associations 

with NIDPs4. We used S-PrediXcan, which generates the TWAS summary statistics. The 

methodology incorporates variance and covariance data of SNPs according to a linkage 

disequilibrium reference panel.  

Multiple Testing Correction in Discovery Cohort 

Our study analyzed 22,815 genes and 19 GTEx-derived JTI tissue expression models across 

3,935 NIDPs. We adjusted for the multiple hypothesis testing using the Benjamini-Hochberg 

false discovery rate threshold of 0.05. For all analyses involving significance testing, we 

considered only the subset of NIDPs with significant SNP-mediated heritability (3,546)16. 

Gene set analysis 

We conducted GO term enrichment analyses using the ClusterProfiler R tool25. For all GO 

analyses, we set the size range for gene sets as 15-500 and used a Benjamini Hochberg p-

value cutoff of 0.05 for filtering of pathway associations. The Cellular Components library of 

Gene Ontologies was used.  

Correlation Analysis of TWAS results 

We estimated the correlations in TWAS associations among the NIDPs. We first stratified the 

TWAS associations according to the tissue model. Each tissue model was represented by a 

matrix detailing the normalized effect size (z-score) of each gene on each NIDP. Each matrix 

consists of ~22,000 rows (genes), 3,934 columns (phenotypes), and each data point is the 

normalized effect size (z-score) of GReX on the NIDP. Instances where specific genes were not 

associated with certain phenotypes were coded as NA. Concerning data completeness, we 

used a 99% completion threshold for the inclusion of phenotypes in the tissue specific NIDP 

clustering analyses. No phenotypes failed thresholding. Using the matrix for each tissue model, 

we calculated the pairwise Spearman correlation for all NIDP pairs according to the TWAS z-

scores.  

 

After identifying the Spearman correlation distance between all NIDPs according to the z-scores 

from the GReX effect, we reproduced the data in the form of a heatmap with axes ordered by 
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ward’s agglomerative hierarchical clustering method (Supplementary Figures 8-26). The NIDPs 

involved in this ordering can be categorized according to a variety of criteria, including imaging 

modality, atlas used, lobe of the brain (for cortical measures), direction of fibers (for white matter 

tractography), left or right hemisphere, etc. To classify the NIDPs according to these categories, 

we annotated each NIDP according to the multi-dimensional phenotypic descriptors provided by 

the UKB (Supplementary table 1). These annotations allow for visual annotation of each of the 

elements in the clustered correlations. Using the R package complexheatmap, we created 

annotated, clustered heatmaps for all the phenotypes according to z-scores for each tissue 

model.31 

 

UMAP Dimensional Reduction of T1 and dMRI phenotypes 

We applied the Uniform Manifold Approximation and Projection for Dimension Reduction 

(UMAP) package in R to improve the visual interpretability of clustering analyses for 2 subsets 

of GReX-NIDP associations24. Replicated across all 19 tissue models, we conducted UMAP 

analysis on the GReX measures nomically associated with (1) T1-weighted cortical and 

subcortical surface area/volume measures (Supplementary Figure 27) and (2) dMRI 

tractography measures (Supplementary Figure 28). We optimized the parameter values for 

n_neighbors (number of approximate nearest neighbors used to construct the initial high-

dimensional graph), and min_dist (minimum distance between points in low-dimensional space) 

in order to prioritize global structure over local structure. This was performed through iterative 

analyses of each data subset across multiple combinations of the two parameter values and 

visual evaluation of cluster projection. Final parameter sets were selected based on those which 

generated the most interpretable separation and clustering between NIDPs according to 

annotations of side, region, and type of measurement. For the T1 dataset, we selected 

n_neighbors = 150 and min_dist = 0.09. For the dMRI dataset, these values were n_neighbors 

= 60 and min_dist = 0.1. We set initial seed values for the R-session as well for the UMAP 

internal functionality to improve the reproducibility of the analysis (see Code Availability). 

PCA Dimensional Reduction of T1 phenotypes 

We conducted Principal Component Analysis of the T1 structural NIDPs in R according to the 

normalized effect size of each GReX-NIDP association. Pooling data from all 19 tested tissue 

models, we displayed the first two principal components of the data (Supplementary Figure 29). 
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We annotated the NIDPs by color with variation representing the type of cortical measure 

(surface area, thickness, or volume.)  

Replication Analysis for Neuroimaging TWAS 

The UKB generated the Neuroimaging GWAS in 33K patients. In addition to this large data set, 

the UKB released 2 mirror versions following the same analytic pipeline but using 2 independent 

subsets of the populations with sample sizes of 11,000 and 22,000. To test the replication of the 

Neuroimaging TWAS methodology, we replicated our initial TWAS in these two smaller data 

sets for independent comparison. We applied the 19 JTI TWAS models to the 11K dataset and 

the 22K dataset independently. In order to compare these two TWAS datasets, we took a 

conservative approach and selected all associations from both studies that meet a nominal p-

value of 0.05. From these data, we selected the GReX-NIDP associations that are present in 

both the 11K and 22K cohorts (matched on JTI TWAS models). These data represent TWAS 

associations between GReX and NIDPs derived from independent cohorts curated by the UKB. 

We present all these associations in Figure 3a with the effect size as derived from the 11K 

cohort on the y axis and from the 22K cohort on the x axis. We calculated the (non-parametric) 

Spearman correlation as effect sizes were not normally distributed.  

 

We identified the direction of effect (-1, 1) for each association in each cohort and identified the 

distribution of shared associations with concordant direction of effect vs discordant direction of 

effect (Figure 3b). Using the MRI modalities described in the Neuroimaging GWAS supplement, 

we assessed the distribution of all shared associations grouped by modality (Figure 3c).  

 

We calculated the mean Spearman correlation between the 11K cohort and the 22K cohort for 

each NIDP. These data were presented by modality in Supplementary Figure 31. We then took 

the mean of all NIDPs in each modality category to identify the mean Spearman correlation 

value for each NIDP per modality (Figure 3d). We replicated this analysis, dividing the data by 

both modality and JTI model (Supplementary Figure 32).  

 

Schizophrenia-associated GReX curation 

We identified GReX associated with SCZ using the most recent major SCZ GWAS meta 

analysis from Trubetskoy et al26. This extended GWAS consists of the core Psychiatric 
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Genomics Consortium dataset, an African American dataset, a Latino dataset, and the deCODE 

SCZ cohorts. Sample details are provided in the Supplementary information for the initial 

publication. Trubetskoy et al performed secondary analyses on the findings from the extended 

GWAS using patients from the core PGC cohort owing to accessibility of individual level data. Of 

relevance to this work, they performed Summary Mendelian Randomization on the extended 

GWAS findings to highlight 101 unique genes associated with SCZ through genetically 

regulated expression. For TWAS models, they leveraged those derived from PsychENCODE, 

eQTLGen, and fetal brain data. For the sake of uniformity in data analysis, we selected the 

subset of 88 genes identified via SMR using the PsychENCODE data. These data included 

GReX associations from eQTL models trained on brain and whole blood. Only the GReX from 

the whole blood analysis that were also replicated in brain models were reported by Trubetskoy 

et al. for the sake of prioritizing neurological relevance. Of these 88 GReX, 63 were able to be 

mapped to unique Ensembl IDs, 50 of which were present in the NeuroimaGene resource.  

 

Schizophrenia NIDP curation 

SCZ NIDPs were derived from two studies published by the ENIGMA consortium, one 

highlighting cortical regions and the other subcortical regions27,28.  

 

In assessing cortical changes associated with SCZ, van Erp et al analyzed patient data from 39 

different centers across the globe. These data represent 4474 individuals with SCZ and 5098 

healthy controls, all of whom were assessed using a standardized approach. Cohort details and 

analysis methods were described in the Methods section of the initial publication. Of relevance 

to this work, all imaging data in the study represents T1-weighted structural brain scans that 

were processed using the Desikan-Killiany (DK) cortical atlas in Freesurfer32. They used 

univariate linear regression to identify group differences in the thickness and cortical area of the 

measured DK-atlas regions. Random-effects meta-analyses of both Cohen’s d and the partial 

correlation effect sizes were performed for each DK atlas region. Multiple testing correction was 

performed using the false discovery rate with a threshold or 0.05. Additional details on 

confounding and covariate analyses were included in the original publication. Following multiple 

testing correction and meta-analysis, 33 hemisphere-specific cortical surface area and thickness 

measures showed statistically significant differences between SCZ cases and healthy controls. 

Of the NIDPs reported by the UKB, we matched all 33 of these according to Freesurfer 

parcellation of T1-weighted structural imaging using the DK atlas.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.10.23287072doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287072
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Maximally discriminatory GReX threshold determination 

In the style of polygenic risk score analyses, we assessed the GReX-NIDP significance 

threshold at which the data in NeuroimaGene was maximally predictive of SCZ risk. We 

identified all NeuroimaGene GReX associations corresponding to the NIDPs and GReX from 

the SCZ studies carried out by the ENIGMA consortium and Trubetskoy et al. respectively. 

These represent associations between GReX measures and NIDPs that have each been 

associated with SCZ in independent studies. Beginning with a nominal p-value threshold of 

0.05, we assessed the total number of associations that satisfied the threshold as well as the 

number of unique NIDPs represented by the association set. These represent two observed 

statistics: the number of SCZ GReX-NIDP associations that surpass the significance threshold 

and the number of unique NIDPs in the SCZ GReX-NIDP associations that surpass the 

significance threshold.  

 

 

We then performed permutation testing to establish null distributions against which these 

statistics can be tested. To generate the null distribution, we selected 50 random genes 

(matching by 50 SCZ GReX measures that entered the experimental analysis). We then 

identified all NeuroimaGene associations that involve any of the 50 GReX measures and SCZ 

NIDPs at a p-value less than or equal to 0.05. Similarly to the experimental gene set, we then 

calculated null statistics detailing the total number of associations and the total number of 

unique NIDPs. We thus quantified the number of associations between SCZ NIDPs and random 

gene sets for comparison with associations between SCZ NIDP associations and SCZ GReX. 

We repeated this procedure 1000 times to estimate the distribution for each of the two test 

statistics “under the null.” 

 

Using each empirically-derived distribution, we then identified the value below which 95% of null 

statistics fall. We performed this same analysis for the total number of GReX-NIDP associations 

and for the unique NIDPs included in each set, in line with the different null statistics (Figure 6b, 

Supplementary Figure 33a). 
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We repeated the permutation analysis at 6 different p-value thresholds to identify the threshold 

at which the association between SCZ GReX and SCZ NIDPs was maximally greater than for 

random genes. We show the difference between the experimental gene set statistics and the 

95% threshold in Figure (6c) and Supplementary Figure 33b. From these data, we selected 

0.005 as the optimal discriminatory threshold. Using this threshold, the value of the 

experimental test statistic relative to the simulated null distribution annotated with the 95th 

percentile for each statistic is shown in Figure 6d for total GReX associations and 

Supplementary Figure 33c for unique NIDPs.   

Mendelian Randomization-Joint Tissue Imputation 

TWAS associations are susceptible to confounding from LD contamination. As a Mendelian 

Randomization approach, MR-JTI models variant-level heterogeneity to obtain an unbiased 

estimate the gene causal effect on phenotype. Using MR-JTI, we performed causal inference for 

the SCZ GReX associations.  

We used the LiftOver script provided by the UCSC genome browser to convert the UKBB 

GWAS variant identifiers from Human Genome build 19 to build 3833. We then retrieved the full 

set of eQTL associations from the GTEx consortium Google cloud repository30. We intersected 

the retrieved eQTL data with each of the GWAS files from the UKB NIDPs prioritized by the 

initial TWAS. We harmonized SNPs between the two studies according to the chromosomal 

location and the effect/reference allele. We retrieved the LD scores obtained from the 1000 

genomes project based on the RSID34. Using the MR-JTI script, we conducted Mendelian 

Randomization causal inference on these findings (See Code Availability). 

Data availability 

The Neuroimaging TWAS resource is available on Zenodo at (to be provided upon publication). 

The summary statistics for the UKBB Neuroimaging GWAS are available at their BIG40 online 

data repository (https://open.win.ox.ac.uk/ukbiobank/big40/). Summary statistics for the 

ENIGMA dataset are available upon request from their website 

(https://enigma.ini.usc.edu/research/download-enigma-gwas-results/). Processed GTEx data 

(for example, gene expression and eQTLs) are available from the GTEx portal 

(https://gtexportal.org). The Chain files required for running the UCSC LiftOver script are 

accessible upon request from the UCSC genome store (https://genome-store.ucsc.edu/). LD 

scores from the 1000 genomes project were downloaded from the google repository maintained 
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by the Alkes Price group at the Broad Institute 

(https://alkesgroup.broadinstitute.org/LDSCORE/) in the file labeled 

“1000G_Phase3_ldscores.tgz”. The tissue specific gene expression models trained on GTEx 

and enriched via JTI are available for download from Zenodo 

(https://doi.org/10.5281/zenodo.3842289).  

Code availability 

The command line script required to run the UCSC LiftOver tool is available upon request from 

the UCSC genome store (https://genome-store.ucsc.edu/). Code for MultiXcan is available on 

the Hakyim Github repository (https://github.com/hakyimlab/MetaXcan). Code for the JTI model 

training and MR-JTI causal inference analysis is hosted at the Gamazon Github repository 

(https://github.com/gamazonlab/MR-JTI). All code required for the reproduction of this analysis 

and replication of all tables and figures is hosted at the corresponding author's Github repository 

(https://github.com/xbledsoe/NeuroimaGene). Data required for replication as well as large 

supplementary data sets can be accessed at (https://zenodo.org).  

**[these last two resource links will be made active upon publication.] 
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