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Abstract 

Background: Current medicine falls short at providing systematic data-driven guidance to 

individuals and care providers. While an individual's medical history is the foundation for every 

medical decision in clinical practice and is routinely recorded in most health systems, the 

predictive potential and utility for most human diseases is largely unknown.  

Methods: We explored the potential of the medical history to inform on the phenome-wide 

risk of onset for 1,883 disease endpoints across clinical specialties. Specifically, we developed 

a neural network to learn disease-specific risk states from routinely collected health records of 

502,460 individuals from the British UK Biobank and validated this model in the US-American 

All of US cohort with 229,830 individuals. In addition, we illustrated the potential in 24 

selected conditions, including type 2 diabetes, hypertension, coronary heart disease, heart 

failure, and diseases not formerly considered predictable from health records, such as 

rheumatoid arthritis and endocarditis.  

Results: We show that the medical history stratifies the risk of onset for all investigated 

conditions across clinical specialties. For 10-year risk prediction, the medical history provided 

significant improvements over basic demographic predictors for 1,800 (95.6%) of the 1,883 

investigated endpoints in the UK Biobank cohort. After transferring the unmodified risk models 

to the independent All of US cohort, we found improvements for 1,310 (83.5%) of 1,568 

endpoints, demonstrating generalizability across healthcare systems and historically 

underrepresented groups. Finally, we found predictive information comparable with current 

guideline-recommended scores for the primary prevention of cardiovascular diseases and 

illustrated how the risk scores could facilitate rapid response to emerging pathogenic health 

threats.  

Conclusion: Our study demonstrates the great potential of leveraging the medical history to 

provide comprehensive phenome-wide risk estimation at minimal cost. We anticipate that this 

approach has the potential to disrupt medical practice and decision-making, from early disease 

diagnosis, slowing of disease progression to interventions against preventable diseases.  
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Introduction 

The assessment of an individual's risk for future disease is central to guiding preventive 

interventions, early detection of disease, and the initiation of treatments. However, bespoke 

risk scores are only available for a few common diseases1–4, leaving healthcare providers and 

individuals with little to no guidance on the majority of relevant diseases. Even for diseases 

with established risk scores, little consensus exists on which score to use and associated 

physical or laboratory measurements to obtain, leading to highly fragmented practice in routine 

care5.  

 

At the same time, most medical decisions on diagnosis, treatment, and prevention of diseases 

are fundamentally based on an individual’s medical history6. With the widespread 

digitalization, this information is routinely collected by healthcare providers, insurances, and 

governmental organizations at a population scale in the form of electronic health records7–12. 

These readily accessible records, which include diseases, medications, and procedures, are 

potentially informative about future risk trajectories, but their potential to improve medical 

decision-making is limited by the human ability to process and understand vast amounts of 

data13. 

 

To date, routine health records have been used for etiological14–17, diagnostic18, and prognostic 

research15,16,19–21. Existing efforts often extract and leverage known clinical predictors with 

new methodologies18, augment them with additionally extracted data modalities such as 

clinical notes22, or aim to identify novel predictors among the recorded concepts14–17. Prior 

work on the prediction of disease onset has mainly focused on single diseases, including 

dementia15,23, cardiovascular conditions22,24 such as heart failure25 and atrial fibrillation26,27. In 

contrast, phenome-wide association studies (PheWAS) quantifying the associations of genetic 
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variants with comprehensive phenotypic traits are emerging in genetic epidemiology28,29. 

While approaches have been developed to extract information from longitudinal health 

records30,31, no studies have investigated the predictive potential and potential utility over the 

entire human phenome. Consequently, the predictive information in routinely collected health 

records and its potential to systematically guide medical decision-making is largely 

unexplored. 

 

Here we examined the predictive potential of an individual’s entire medical history and propose 

a systematic approach for phenome-wide risk stratification. We developed, trained, and 

validated a neural network, specifically a multi-layer-perceptron, in the UK Biobank cohort32 

to simultaneously estimate disease risk from routinely collected health records for 1,883 

endpoints across clinical specialties. These endpoints include preventable diseases (e.g. 

coronary heart disease), diseases which are not currently preventable, but early diagnosis has 

been shown to substantially slow down progression and development of complications (e.g. 

heart failure) and outcomes which are currently neither entirely preventable nor treatable (e.g. 

death). They also include both diseases with risk prediction models recommended in guidelines 

and used in practice (e.g. cardiovascular diseases or breast cancer) as well as diseases without 

current risk prediction models (e.g. psoriasis and rheumatoid arthritis).  

We evaluated our approach by integrating the endpoint-specific risk states estimated by the 

neural network in Cox Proportional Hazard models33, investigating the phenome-wide 

predictive potential over basic demographic predictors, and illustrating how phenome-wide risk 

stratification could benefit individuals by providing risk estimates, facilitating early disease 

diagnosis, and guiding preventive interventions. Furthermore, by externally validating in the 

All Of Us cohort34, we show that our models can generalize across healthcare systems and 

populations, including communities historically underrepresented in biomedical research.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.10.23286918doi: medRxiv preprint 

https://paperpile.com/c/LqP01r/CIRs+P2Qv
https://paperpile.com/c/LqP01r/K879+kiwo
https://paperpile.com/c/LqP01r/26rmm
https://paperpile.com/c/LqP01r/XAbG8
https://paperpile.com/c/LqP01r/meJ2
https://doi.org/10.1101/2023.03.10.23286918
http://creativecommons.org/licenses/by/4.0/


5 
 

 

Figure 1: Overview on the study: a) The medical history captures encounters with primary and secondary care, including 

diagnoses, medications, and procedures (ideally) from birth. Here we train a multi-layer perceptron on data before recruitment 

to predict phenome-wide incident disease onset for 1,883 endpoints. b) Location and size of the 22 assessment centers of the 

UK Biobank cohort across England, Wales, and Scotland. c) To learn risk states from individual medical histories, the UK 

Biobank population was partitioned by their respective assessment center at recruitment. d) For each of the 22 partitions, the 

Risk Model was trained to predict phenome-wide incident disease onset for 1,883 endpoints. Subsequently, for each endpoint, 

Cox proportional hazard (CPH) models were developed on the risk states in combination with sets of commonly available 

predictors to model disease risk. Predictions of the CPH model on the test set were aggregated for downstream analysis. e) 

External validation in the All of US cohort. After mapping to the OMOP vocabulary, we transferred the trained risk model to 

the All of US cohort and calculated the risk state for all endpoints. To validate these risk states, we compared the unchanged 

CPH models developed in the UK Biobank with refitted CPH models for age and sex. 
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Finally, we assessed the potential of our approach to aid risk stratification for the primary 

prevention of cardiovascular disease and to respond to emerging health threats at the example 

of COVID-19. Our results demonstrate the currently unused potential of routine health records 

to guide medical practice by providing comprehensive phenome-wide risk estimates. 

 

Results 

Characteristics of the study population and integration of routine health records 

This study is based on the UK Biobank cohort32,35, a longitudinal population cohort of 502,460 

relatively healthy individuals of primarily British descent, with a median age of 58 (IQR 50, 

63) years, 54.4% biological females, 11% current smokers, and a median BMI of 26.7 (IQR 

24.1, 29.9) at recruitment (Table 1 for detailed information). Individuals recruited between 

2006 and 2010 and were followed for a median of 12.6 years resulting in ~6.2M overall person-

years on 1,883 phenome-wide endpoints36 with ≥ 100 incident events (> 0.02% of individuals 

have the event in the observation time). We externally validated our findings in individuals 

from the All of Us cohort, a longitudinal cohort of 229,830 individuals with linked health 

records recruited from all over the United States. Individuals in the All of Us cohort are of 

diverse descent, with 46% of reportedly non-white ethnicity and 78% of groups historically 

underrepresented in biomedical research34,37, and have a median age of 54 (IQR 38, 65) years 

with 61.1% biological females (see Table 1 for detailed information). Individuals were 

recruited from 2019 on and followed for a median of 3.5 years, resulting in ~787,300 person-

years on 1,568 endpoints. 

 

Central to this study is the prior medical history, defined as the entirety of routine health records 

before recruitment. Before further analysis, we mapped all health records to the OMOP 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.10.23286918doi: medRxiv preprint 

https://paperpile.com/c/LqP01r/26rmm+YIjNZ
https://paperpile.com/c/LqP01r/P9Kq
https://paperpile.com/c/LqP01r/cj7D+meJ2
https://doi.org/10.1101/2023.03.10.23286918
http://creativecommons.org/licenses/by/4.0/


7 
 

vocabulary. While most records originate from primary care and, to a lesser extent, secondary 

care (Suppl. Fig 1a), the predominant record domains are drugs and observations, followed by 

conditions, procedures, and devices (Supp. Fig 1b). Interestingly, while rare medical concepts 

(with a record in < 1% of individuals in the study population) are not commonly included in 

prediction models20, they are often associated with high incident event rates (exemplified by 

the mortality rate in Suppl. Figure 1c) compared to common concepts (a record present in >= 

1% of the study population). For example, the concept code for “portal hypertension” (OMOP 

34742003) is only recorded in 0.04% (203) of individuals at recruitment, but 48.7% (99 

individuals) will die over the course of the observation period. Importantly, there are many 

distinct rare concepts, and thus 91.7% of individuals have at least one rare record before 

recruitment, compared with 92.5% for common records. In addition, 60.7% of individuals have 

≥ 10 rare records compared with 78.4% for common records, and individuals have only slightly 

fewer rare than common records (Suppl. Figure 1d). 

After excluding very rare concepts (< 0.01%, less than 50 individuals with the record in this 

study), we integrated the remaining 15,595 unique concepts (Supplementary Table 2) with a 

multi-task multi-layer perceptron to predict the phenome-wide onset of 1,883 endpoints 

(Supplementary Table 1) simultaneously (Figure 1a). 

To ensure that our findings are generalizable and transferable, we spatially validate our models 

in 22 recruitment centers (Fig 1b) across England, Wales, and Scotland. We developed 22 

models, each trained on individuals from 21 recruitment centers, randomly split into training 

and validation sets (Fig 1c). We subsequently tested the models on individuals from the 

additional recruitment center unseen for model development for internal spatial validation. 

After checkpoint selection on the validation data sets and obtaining the selected models’ final 

predictions on the individual test sets, the test set predictions were aggregated for downstream 

analysis (Figure 1d). Subsequently, disease-specific exclusions of prior events and sex-
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specificity were respected in all downstream analyses. After development, the models were 

externally validated in the All of Us cohort34. 

Routine health records stratify phenome-wide disease onset  

Central to the utility of any predictor is its potential to stratify risk. The better the stratification 

of low and high-risk individuals, the more effective targeted interventions and disease 

diagnoses are.  

 

To investigate whether health records can be used to identify high-risk individuals, we assessed 

the relationship between the risk states estimated by the neural network for each endpoint and 

the risk of future disease (Figure 2). For illustration, we first aggregated the incident events 

over the percentiles of the risk states for each endpoint and subsequently calculated ratios 

between the top and bottom 10% of risk states over the entire phenome (Fig 2A). Importantly, 

we found differences in the event rates, reflecting a stratification of high and low-risk 

individuals for almost all endpoints covering a broad range of disease categories and etiologies: 

For 1,404 of 1,883 endpoints (74.6%), we observed >10-times as many events for individuals 

in the top 10% of the predicted risk states compared to the bottom 10%. For instance, these 

endpoints included rheumatoid arthritis (Ratio ~ 12.5), coronary heart disease (Ratio ~ 23), or 

chronic obstructive pulmonary disease (Ratio ~ 63). For 286 (15.1%) of the 1,883 conditions, 

including abdominal aortic aneurysm (Ratio ~ 212), and all-cause mortality (Ratio ~ 107), more 

than 100 times the number of individuals in the top 10% of predicted risk states had incident 

events compared to the bottom 10%. For 479 (25.4%) endpoints, the separation between high 

and low-risk individuals was smaller (Ratio < 10), which included hypertension (Ratio ~ 5.5) 

and anaemia (Ratio ~ 6.9), often diagnosed earlier in life or precursors for future comorbidities. 

Notably, the ratios were > 1 for all 1,883 investigated endpoints, even though all models were  
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Figure 2: Routine health records stratify phenome-wide disease onset: a) Ratio of incident events in the Top 10% 

compared with the Bottom 10% of the estimated risk states. Event rates in the Top 10% are higher than in the Bottom 10% for 

all 1,883 investigated endpoints. Red dots indicate 24 selected endpoints detailed in Fig 2B. To illustrate, 1,238 (2.49%) 

individuals in the top risk decile for cardiac arrest experienced an event compared with only 29 (0.06%) in the bottom decile, 

with a risk ratio of 42.69. b) Incident event rates for a selection of 24 endpoints. c) Cumulative event rates for the Top 1%, 

median, and Bottom 1% of risk percentiles over 15ys. Statistical measures were derived from 502.460 individuals. Individuals 

with prevalent diseases were excluded from the endpoints-specific analysis. 
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developed in spatially segregated assessment centers. We found a small positive correlation 

between the number of incident events and the rate ratio of an endpoint, i.e., the model performs 

slightly better on average for more common diseases (Pearson's correlation coefficient 

log(incident events), log(rate ratio): 0.117 CI (0.082, 0.152)). The complete list of all endpoints 

and corresponding statistics can be found in Suppl. Table 4. 

 

In addition to the phenome-wide analysis of 1,883 endpoints, we also provide detailed 

associations between the risk percentiles and incident event ratios (Fig 2b) as well as 

cumulative event rates for up to 15 years (Fig 2c) of follow-up for the top, median, and bottom 

percentiles for a subset of 24 selected endpoints. This set was selected to comprise actionable 

endpoints and common diseases with significant societal burdens, specific cardiovascular 

conditions with pharmacological and surgical interventions, as well as endpoints without 

established tools to stratify risk to date. To illustrate the potential, 1,238 (2.49%) individuals 

in the top risk decile for cardiac arrest experienced an event compared with only 29 (0.06%) in 

the bottom decile, with a risk ratio of 42.69 (Fig. 2A, B). In the top 1% percentile, 332 (6.61%) 

of the 5021 individuals experienced an event 15 years after recruitment, while no event was 

recorded for the 5,022 individuals in the bottom 1% risk percentile (Fig. 2B). Thus, high-risk 

individuals could be, for instance, considered to receive a preventive implantable cardioverter-

defibrillator (ICD)38.   

 

In summary, the disease-specific states stratify the risk of onset for all 1,883 investigated 

endpoints across clinical specialties. This indicates that routine health records provide a large 

and widely unused potential for the systematic risk estimation of disease onset in the general 

population. 
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Discriminative performance indicates potential utility 

While routine health records can stratify incident event rates, this does not prove utility. To test 

whether the risk state derived from the routine health records could provide utility and 

information beyond ubiquitously available predictors, we investigated the predictive 

information over age and biological sex. We modeled the risk of disease onset using Cox 

Proportional-Hazards (CPH) models for all 1,883 endpoints, which allowed us to estimate 

adjusted hazard ratios (denoted as HR in Suppl. Table 6) and 10-year discriminative 

improvements (indicated as Delta C-index in Figure 3a). 

 

We found significant improvements over the baseline model (age and biological sex only) for 

1,800 (95.6%) of the 1,883 investigated endpoints (Figure 3, Supplementary Table 5). For 

several of these endpoints, the discriminative improvements were considerable (Delta C-Index 

Q25%: 0.099, Q50: 0.119, Q75: 0.139). We found significant improvements for 23 of the 

highlighted subset of 24 endpoints (indicated in Fig 2A), with the largest increases for the 

prediction of suicide attempts (C-Index: 0.608 (CI 0.602, 0.615) → 0.831 (CI 0.826, 0.837)), 

back pain (C-Index: 0.519 (CI 0.517, 0.521) → 0.72 (CI 0.719, 0.722)), all-cause mortality (C-

Index 0.701 (CI 0.699, 0.703) → 0.878 (CI 0.877, 0.88)) and chronic obstructive pulmonary 

disease (C-Index 0.662 (0.66, 0.666) → 0.818 (CI 0.815, 0.82)). In contrast, we did not find 

improvements in the prediction of other endpoints, e.g., Parkinson's disease (C-Index: 0.738 

(CI 0.732, 0.745) → 0.737 (CI 0.731, 0.743)).  

 

For illustration, we also present individual phenome-wide risk profiles (Figure 3c, Suppl. 

Figure 2a+b, Suppl. Figure 3a+b). The risk profiles varied substantially in the predispositions 

relative to the age and sex reference (the inner circle, see methods for details) and the absolute 

10-year risk estimates (the outer circle). The first individual (Figure 3c), a 60-year-old man, is 
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predicted to be at a particularly high 10-year risk of metabolic, cardiovascular, respiratory, and 

genitourinary conditions, including diabetes mellitus (19.4%), heart failure (22%), COPD 

(14.9%), and chronic kidney disease (16.8%). Increased risk of neoplastic, dermatological, and 

musculoskeletal conditions was not predicted by the prior health records of this individual. In 

contrast, another individual, a 48-year-old woman (Suppl. Figure 3b), is not estimated at 

increased cardiovascular risk but conversely to have almost 10x the risk for suicide ideation 

and attempt or self-harm compared to the reference group. 

 

We provide the highest attributed records in the study population for selected endpoints (Fig 

3d, Suppl. Figure 2c, Suppl. Figure 3c) and the full attributions for all 24 highlighted endpoints 

(Supplementary Table 9). 

 

These findings indicate that health records contain substantial predictive information beyond 

basic demographic predictors for a wide range of endpoints from across clinical specialities. 
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Figure 3: Discriminative performance indicates potential utility: a) Differences in discriminatory performance quantified 

by the C-Index between CPH models trained on Age+Sex and Age+Sex+RiskState for all 1,883 endpoints. We find significant 

improvements over the baseline model (Age+Sex, age, and biological sex only) for 1800 (95.6%) of the 1,883 investigated 

endpoints. Red dots indicate selected endpoints in Fig. 3b. b) Absolute discriminatory performance in terms of C-Index 

comparing the baseline (Age+Sex, black point) with the added routine health records risk state (Age+Sex+RiskState, red point) 

for a selection of 24 endpoints. c) The direct C-index differences for the same models. Dots indicate medians and whiskers 

extend to the 95% confidence interval for a distribution bootstrapped over 100 iterations. d) Example of individual predicted 

phenome-wide risk profile. Predisposition (10-year risk estimated by Age+Sex+RiskState compared to risk estimated by 

Age+Sex alone) is displayed in the inner circle, and absolute 10-year risk estimated by Age+Sex+RiskState can be found in 

the outer circle. Labels indicate endpoints with a high individual predisposition (> 2 times higher than the Age+Sex-based 

reference estimate) and absolute 10-year risk > 10%. e) Top 5 highest attributed records for selected endpoints.  
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Predictive models can generalise across healthcare systems and populations 

While our findings indicate potential utility in the UK Biobank, health records vary 

substantially across healthcare systems and over time due to differences in medical and coding 

practices (“distribution shift”) and underlying differences in the populations. Thus, predictive 

models can fail to learn robust and generalisable information39–41. 

 

To understand better the generalisability across different healthcare systems, we predicted risk 

states and absolute risk estimates for all individuals in the All of Us cohort with linked medical 

records (N=229,830; see Table 1). Importantly, we found significant improvements over the 

baseline model (age and biological sex only) for 1,310 (83.5%) of the 1,568 investigated 

endpoints with at least 100 incident events (Figure 4A, Supplementary Table 8). We 

furthermore found significant improvements for all of the 24 selected endpoints, with 

improvements ranging from modest for hypertension (C-Index: 0.627 (CI 0.623, 0.632) → 

0.643 (CI 0.639, 0.648)) and Parkinson's disease (C-Index: 0.817 (CI 0.800, 0.834) → 0.849 

(CI 0.832, 0.0.863)) to substantial for, e.g., All-Cause Death (C-Index: 0.693 (CI 0.685, 0.704) 

→ 0.807 (CI 0.799, 0.815)), Pulmonary embolism (C-Index: 0.590 (CI 0.578, 0.603) → 0.711 

(CI 0.701, 0.723)), and Cardiac arrest (C-Index: 0.641 (CI 0.625, 0.659) → 0.818 (CI 0.804, 

0.831)) (Figure 4B,C). For a subset of 65 (3.93%) endpoints, the discriminative performance 

deteriorated significantly with the addition of health record information over age and biological 

sex alone. 
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Figure 4: Predictive models can generalize across health care systems and populations: a) External validation of the 

differences in discriminatory performance quantified by the C-Index between CPH models trained on age and biological sex 

and age, biological sex and the risk state for 1.568 endpoints in the All of Us cohort. We find significant improvements over 

the baseline model (age and biological sex only) for 1.310 (83.5%) of the 1.658 investigated endpoints. b) Absolute 

discriminatory performance in terms of C-Index comparing the baseline (age and biological sex, black point) with the added 

routine health records risk state (red point) for a selection of 24 endpoints. c) The differences in C-index for the same models. 

d) Distribution of C-Indices for the 1.658 investigated endpoints stratified by communities historically underrepresented in 

biomedical research (UPD). e) For the same groups, confidence intervals for the additive performance as measured by the C-

Index compared to the baseline model. 
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As the risk states were largely derived from white, middle-aged, and generally affluent and 

healthy individuals from the UK, it was critical to validate the discriminative performance in 

diverse and historically underserved and underrepresented groups and ethnicities. Generally, 

we found comparable discriminative performances (Figure 4D) and substantial benefits over 

basic demographic predictors (example of cardiac arrest in Fig 4E) across all investigated 

groups.  

 

Taken together, our findings suggest that predictive models based on the medical history can 

generalise across health systems and diverse populations. 

 

Predictions can support cardiovascular disease prevention and the response to emerging 

health threats. 

While comprehensive phenome-wide risk profiles provide opportunities to guide medical 

decision-making, not all of the predictions are actionable. To illustrate the immediately 

actionable potential, we focused on the primary prevention of cardiovascular disease and the 

response to newly emerging health threats.  

 

Risk scores are well established in the primary prevention of cardiovascular events and have 

been recommended to guide preventive lipid-lowering interventions42. While cardiovascular 

predictors are accessible at a low cost, dedicated visits to healthcare providers for physical and 

laboratory measurements are required. Therefore, we compared our phenome-wide risk score, 

based only on age, sex, and routine health records, to models based on established 

cardiovascular risk scores, the SCORE243, the ASCVD3, and the British QRISK34 score. 

Interestingly, the discriminative performance of our phenome-wide model is competitive with 

the established cardiovascular risk scores for all investigated cardiovascular endpoints (Suppl. 
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Figure 4a, Suppl. Table 7): we found comparable C-Indices with differences +0.002 (CI -0.001, 

0.005) for ischemic stroke, +0.003 (CI 0.001, 0.005) for ischemic heart disease and +0.007 (CI 

0.004, 0.009) for myocardial infarction compared with the comprehensive QRISK3 score. It is 

noteworthy, that these discriminative improvements are substantially better for later-stage 

diseases, including heart failure (+0.02 (CI 0.017, 0.022)), cardiac arrest (+0.055 (CI 0.049, 

0.062)), and all-cause mortality (+0.136 (CI 0.134, 0.138)), when prior health records are 

considered.  

 

With newly emerging pathogenic health threats, rapid and reliable risk stratification is required 

to protect high-risk groups and prioritise preventive interventions. We investigated how our 

phenome-wide risk states could be repurposed for COVID-19, a respiratory infection with 

pneumonia and sepsis as common, life-threatening complications of severe cases. We 

repurposed the risk states for pneumonia, sepsis, and all-cause mortality to calculate a 

combined COVID-19 severity risk score using information available at the end of 2019 before 

the global spread of the COVID-19 pandemic (see Methods for details). The COVID-19 

severity risk score resembles the risk for developing severe or fatal COVID-19 and illustrates 

how health records could help to identify individuals at high risk and to prioritize individuals 

in initial vaccination campaigns better. Augmenting age with the COVID-19 severity risk 

score, we found substantially improved discriminative performance for both severe and fatal 

COVID-19 outcomes (Severe: C-Index (age) 0.598 (CI 0.590, 0.605) → C-Index (age + 

COVID-19 severity risk score) 0.649 (CI 0.642, 0.655); Fatal: C-Index (age) 0.720 (CI 0.710, 

0.729) → C-Index (age + COVID-19 severity risk score) 0.783 (CI 0.775, 0.792). These 

discriminative improvements translate into higher cumulative incidence in the Top 5% 

population compared to age alone (Suppl. Figure 4C, age (left),  COVID-19 severity score 

(right), severe COVID-19 (top), fatal COVID-19 (bottom)): In the top 5% of the age-based risk 
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group  (~ 79 (IQR 77, 81) years old), 0.42% (CI 0.34%, 0.5%, n=105) have been hospitalised, 

and 0.26% (CI 0.2%, 0.33%, n=66) had died by the end of the first wave. By the end of the 

second wave, around 0.96% (CI 0.83%, 1.08%, n=240) had been hospitalised and 0.44% 

(0.36%, 0.52%, n=111) had died. In contrast, for individuals in the top 5% of the COVID-19 

severity risk score, by the end of the first wave, around 0.61% (CI 0.51%, 0.71%, n=153) had 

been hospitalised, and 0.54% (0.45%, 0.63%, n=136) had died, while by the end of the second 

wave, 1.24% (CI 1.1%, 1.38%, n=312) had been hospitalised and 0.83% (0.72%, 0.94%, 

n=208) had died. 

 

In summary, our findings indicate that medical history facilitates both the primary prevention 

of cardiovascular diseases and the rapid response to emerging health threats. 

 

Discussion 

Current clinical practice falls short of providing systematic data-driven guidance to individuals 

and care providers. In this study, we demonstrated for the first time the potential of the medical 

history to systematically inform on phenome-wide risk across clinical specialties. Our results 

indicated utility beyond conventional predictors, for preventable diseases, treatable diseases 

and diseases without existing risk stratification tools. We anticipate that this approach has the 

potential to disrupt medical practice and facilitate population health at scale.  

 

There are three main scenarios of potential utility: First, the disease is preventable and effective 

interventions exist and can be recommended early to individuals at high risk, e.g., in the case 

of lipid-lowering medication for primary prevention of coronary heart disease42. Here, for 

example lowering LDL cholesterol in 10,000 individuals at increased risk by 2mmol/L with 

atorvastatin 40mg daily (~2€ per month) for 5 years would prevent 500 vascular events, 
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reducing the individual relative risk by more than a third44,45. Second, while most diseases are 

not currently preventable, early detection has been shown to slow substantially the progression 

and development of adverse events of other conditions, e.g., optimal medical therapy in 

individuals with type 2 diabetes46 or systolic heart failure47. In individuals with heart failure 

with reduced ejection fraction a comprehensive treatment regime (including ARNI, beta 

blockers, MRA and SGLT2 inhibitors) compared to a conventional regime (ACEi or ARB and 

beta blockers) reduced the hospital admissions for heart failure by more than two thirds, all-

cause mortality by almost half48. For a 55-year old male, this translated into an estimated 8.3 

additional years free from cardiovascular death or readmission for heart failure. Finally, even 

if an outcome is not preventable or treatable, estimates of prospective individual risk may be 

of high importance for personal decisions or planning of advanced care, e.g., a high short-term 

mortality could identify patients in need of transitioning from curative to palliative strategies 

for optimal care49,50. Multiple studies have shown that palliative care services can improve 

patients symptoms, life quality and may even increase survival51. In conclusion, our approach 

could facilitate the identification and targeting of high risk populations for specific screening 

programs, and thus has the potential to improve the value of national health programmes. 

 

In addition, our findings indicate that predictive models based on routine health records can 

generalise across diverse health systems, populations, and ethnicities. Surprisingly, despite the 

vast differences in the records from the U.S. health system in the All of Us cohort and the 

records from England, Wales, and Scotland in the UK Biobank, the models could be 

successfully transferred without further modification or retraining. In contrast to the UK 

Biobank, it is highly diverse and emphasises enrollment of groups historically 

underrepresented in biomedical research. Notably, records in the All of Us cohort originate 

from a highly fragmented healthcare system with vastly different coding standards and patterns 
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compared to the UK. Nonetheless, two central challenges remain to be considered before the 

application of the described approach in routine care: First, despite our promising initial 

findings, health records are recorded as a consequence of interactions with the medical system. 

As such, health records are subject to biological, procedural, and socio-economic biases52 as 

well as conditional on the ever-changing nature of medical knowledge and policies. Closely 

connected, our findings indicate that not all diagnoses are captured explicitly in the health 

records but can still be inferred from the prescribed drugs (e.g., 66 individuals have a record of 

Calcipotriol medication, but no prior diagnosis of Psoriasis, and the model utilises this 

information to predict a high likelihood of a future diagnostic code) or procedures (e.g., the 

presence of a record of Impaired glucose tolerance test in 30 individuals without recorded 

diagnosis increases the models’ predicted likelihood of Diabetes mellitus) for some individuals. 

While this indicates successful identification of disease phenotypes, not excluding these 

individuals could lead to an overestimation of the discriminative performance for incident 

events and could limit the actionable potential for these individuals. Second, as individuals in 

research cohorts are often healthier and have lower disease prevalence than the general 

populations53, absolute risks are expected to be underestimated. However, downstream 

recommendations critically depend on the choice of absolute decision thresholds. Ultimately, 

if routine health records are to be used for risk prediction, robust governance rules to protect 

individuals, such as opt-out and usage reports, need to be implemented. With many national 

initiatives emerging to curate routine health records for millions of individuals in the general 

population, future studies will allow us to understand better how to overcome these challenges.  

 

Our study presents the first systematic approach to simultaneous risk stratification for 

thousands of diseases across clinical specialties. It is based on the medical history, which is 

available in real-time in many healthcare systems at no additional cost. Our findings show the 
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potential to disrupt medical practice, leveraging data as a central element to inform and guide 

preventive interventions, early diagnosis, and treatment of disease.  
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Methods 

Data source and definitions of predictors and endpoints 

To derive risk states, we analysed data from the UK Biobank cohort. Participants were enrolled 

from 2006 to 2010 in 22 recruitment centers across England, Scotland, and Wales; the follow-

up is ongoing and records until the 24th of September 2021 are included in this analysis. The 

UK Biobank cohort comprises 273.353 women and 229.107 men aged between 37-73 years at 

the time of their assessment visit. Participants are linked to routinely collected records from 

primary care (GP), hospital records (HES, PEDW and SMR), and death registries (ONS), 

providing longitudinal information on diagnosis, procedures, and prescriptions for the entire 

cohort from Scotland, Wales, and England. Routine health records were mapped to the OMOP 

CDM and represented as a 71.036-dimensional binary vector, indicating whether a concept has 

been recorded at least once in an individual prior to recruitment. A subset of 15.595 unique 

concepts, all found in at least 50 individuals, was chosen for model development. Endpoints 

were defined as the set of PheCodes X36,54, and after the exclusion of very rare endpoints 

(recorded in < 100 individuals), 1,883 PheCodes X endpoints were included in the development 

of the models. Due to the adult population, congenital, developmental, and neonatal endpoints 

were excluded. For each endpoint, subsequently, time-to-event outcomes were extracted, 

defined by the first occurrence after recruitment in primary care, hospital or death records. 

Detailed information on the predictors and endpoints is provided in Supplementary Table 1+2.  

 

While all individuals in the UK Biobank were used to integrate the routine health records, 

develop the model, and estimate phenome-wide log partial hazards, individuals were excluded 

from endpoint-specific downstream analysis if they were already diagnosed with a disease 

(defined by a prior record of the respective endpoint) or are generally not eligible for the 

specific endpoint (females were excluded from the risk estimation for prostate cancer).  
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To externally validate our risk states, we investigate individuals from the All of Us cohort34, 

containing information on 229,830 individuals of diverse descent and from minorities 

historically underrepresented in biomedical research37. Because we only use the All of Us 

cohort for validation, we evaluate the predictive performance for the subset of 1,568 endpoints 

with at least 100 incident events in the All of Us cohort. 

 

The study adhered to the TRIPOD (Transparent Reporting of a multivariable prediction model 

for Individual Prognosis Or Diagnosis) statement for reporting55. The completed checklist can 

be found in the Supplementary Information. 

 

Extraction and preparation of the routine health records 

To extract the routine health records of each individual, we first aggregated the linked primary 

care, hospital records, and mortality records and mapped the aggregated records to the OMOP 

CDM (mostly SNOMED and RxNorm). Specifically, we used mapping tables provided by the 

UK Biobank, the OHDSI community, and SNOMED International to map concepts from the 

provider and country-specific non-standard vocabularies to OMOP standard vocabularies. We 

restricted the analysis to the domains “Observation”, “Condition”, “Procedure”, “Drug” and 

“Device”. To reduce the complexity we did not include any laboratory measures. The PheCode 

X endpoints36,54 were derived from either mapping directly from ICD-10 (hospital and death 

records) or mapping from SNOMED to ICD-10 (using the official mapping table) and 

subsequently to Phecodes X.  

 

Spatial validation and data preprocessing  

For model development and testing, we split the data set into 22 spatially separated partitions 

based on the location of the assessment center at recruitment. We analyzed the data in 22-fold 
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nested cross-validation, setting aside one of the spatially separated partitions as a test set, 

aggregating the remaining partitions, and randomly selecting 10% of the aggregated data for 

the validation set. Within each of the 22 cross-validation loops, the individual test set (i.e. the 

spatially separated partition) remained untouched throughout model development, and the 

validation set was used to validate the fitting progress and checkpoint selection. All 22 obtained 

models were then evaluated on their respective test sets. We assumed missing data occurred 

randomly and performed multiple imputations using chained equations with gradient boosting 

machines56,57. Imputation models were fitted on the training sets and applied to the respective 

validation and test sets. Continuous variables were standardised; Categorical variables were 

one-hot encoded.  

 

Development of the phenome-wide risk model 

The risk model is a multi-task neural network that uses the binary representations of an 

individual’s prior health records before recruitment to simultaneously predict log partial 

hazards58 for a set of 1,883 endpoints. The model consists of three fully connected linear layers 

with 4,096 hidden units, each with layer normalisation59, dropout60, and leaky ReLU 

activations. The last latent representation serves as a regulariser as it incentives the extraction 

of robust features for multiple diseases. The model subsequently computes the log partial 

hazard (the risk state) for each endpoint with an adapted proportional hazards loss58, resulting 

in a 1,883-dimensional output representation. The individual losses are averaged and then 

summed to derive the final loss of the model. We subsequently tuned hyperparameters (via 

Bayesian Optimization) on train and validation splits over a constrained parameter space, 

tuning batch size, learning rate, weight decay, number of nodes in the layers of the endpoint 

heads, number of hidden layers, dropout rates, and size of the output vector of the shared 

network. The final models were trained with batch size 512 using the Adam optimiser61 with a 
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learning rate of 0.0006 and weight decay of 0.3, and early stopping tracking of the performance 

on the validation set. We implemented the model in Python 3.9 using PyTorch 1.1162 and 

PyTorch-lightning 1.5.5 (for code availability, see below). 

 

Downstream analysis and performance comparisons 

We fitted Cox proportional hazards models33 (CPH) to derive absolute risk predictions from 

the endpoint-specific risk states for the individual endpoints. For each endpoint, we developed 

models with distinct covariate sets: For all endpoints, we investigated age, biological sex, and 

the risk states from the health records. For cardiovascular endpoints, we additionally 

investigated predictors from established and guideline-recommended scores for the primary 

prevention of cardiovascular diseases, the SCORE2, ASCVD, and QRISK3. Model 

development was repeated independently for each assessment center thus, for each cross-

validation split, models were trained on the respective train set, and checkpoints were selected 

on the respective validation set. For the final evaluation, test set predictions from the spatially 

separate recruitment centers were aggregated. Harell’s C-Index was calculated with the 

lifelines package63 by bootstrapping both the aggregated test set and individual assessment 

centers. Statistical inferences about model differences were based on the distribution of 

bootstrapped differences in the C-Index; models were considered different whenever the 95% 

CI of the difference did not overlap cross zero. CPH models were fitted with the CoxPHFitter 

from the python package lifelines63 with default parameters and a step size of 0.5, 0.1, or 0.01 

to facilitate model convergence. Confidence intervals for all statistical analyses were calculated 

over 1,000 bootstrapping iterations. 
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Independent validation in the All Of Us cohort 

After mapping the linked health records from All Of Us to the OMOP vocabulary, we 

transferred the neural networks developed in the UK Biobank to the All Of Us research 

environment. We then inferred the models to predict the disease-specific risk states for all 

individuals. Subsequently, we predicted absolute risks with the CPH models developed in the 

UK Biobank. For baseline comparison with Age and Sex, we developed new CPH models in 

the All Of Us cohort. 

 

Calculation of record attributions  

To determine which records are most important on an individual level, we calculated 

attributions for the selection of 24 endpoints based on Shapley values. For computational 

efficiency, we approximated Shapley values via sampling for only 18432 individuals unseen 

to the model during development64. Please see Supplementary Table 9 for the calculated 

attributions for individuals with and without prior events. 

 

Data availability 

UK Biobank data, including all linked routine health records, are publicly available to bona 

fide researchers upon application at http://www.ukbiobank.ac.uk/using-the-resource/. In this 

study, primary care data was used following the COPI regulations. The All Of Us cohort data 

were provided by the All of Us Research Program by permission that can be sought by scientists 

and the public alike. Currently, however, data access requires affiliation with a US institution. 

All patient data used throughout this study has been subject to patient consent as covered by 

the UK Biobank and All Of Us. Detailed information on the predictors and endpoints is 

presented in Supplementary Tables 1-3.  
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Code availability 

All code developed and used throughout this study has been made open source and is available 

on GitHub. The code to train the medical history model can be found here: 

github.com/nebw/medhist, while the code to run analysis on trained models can be found here: 

github.com/JakobSteinfeldt/MedicalHistoryPhenomeWide.  
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Tables 

Table 1: The study population. 
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Supplementary Figures 

Supplementary Figure 1: Characterisation of routine health records: a) Yearly counts of health records stratified by GP, 

hospital, and death records. c) Yearly counts of health records stratified by record domain. c) Mortality rate conditional on 

prior records. Highlighted are high-risk records with gradually increasing frequency. d) Percentage of individuals with prior 

rare or common records. e) Ratio of rare and common records per individual. 
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Supplementary Figure 2: Individual predicted phenome-wide risk profiles: a+b) Example of individual predicted 

phenome-wide risk profile for a 60-year-old (a) and a 48-year-old female (b). Predisposition (10-year risk estimated by 

Age+Sex+RiskState compared to risk estimated by Age+Sex alone) is displayed in the inner circle, and absolute 10-year risk 

estimated by Age+Sex+RiskState can be found in the outer circle. Labels indicate endpoints with a high individual 

predisposition (> 2 times higher than the Age+Sex-based reference estimate) and absolute 10-year risk > 10%. e) Top 5 highest 

attributed records for selected endpoints.  
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Supplementary Figure 3: Individual predicted phenome-wide risk profiles: a+b) Example of individual predicted 

phenome-wide risk profile for a 67-year-old male (a) and a 67-year-old female (b). Predisposition (10-year risk estimated by 

Age+Sex+RiskState compared to risk estimated by Age+Sex alone) is displayed in the inner circle, and absolute 10-year risk 

estimated by Age+Sex+RiskState can be found in the outer circle. Labels indicate endpoints with a high individual 

predisposition (> 2 times higher than the Age+Sex-based reference estimate) and absolute 10-year risk > 10%. e) Top 5 highest 

attributed records for selected endpoints.   
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Supplementary Figure 4: Predictions can support cardiovascular disease prevention and the reaction to emerging 

health threats: a) Discriminatory performances in terms of absolute C-Indices comparing risk scores (Age+Sex, SCORE2, 

ASCVD, and QRISK as indicated, black point) with the risk model based on Age+Sex+RiskState (red segment). b) Direct 

differences between risk scores (Age+Sex, SCORE2, ASCVD, and QRISK as indicated) and the risk model based on 

Age+Sex+RiskState in terms of C-index. Dots indicate medians and whiskers extend to the 95% confidence interval for a 

distribution bootstrapped over 100 iterations. c) Estimated cumulative event trajectories of severe (with hospitalization) and 

fatal (death registry) COVID19 outcomes stratified by the Top, Median and Bottom 5% based on age (left) or risk states of 

pneumonia, sepsis and all-cause mortality as estimated by Kaplan-Meier analysis.  
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