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Abstract

Ultra-wide-field Fundus Imaging captures the main components of a patient’s eyes such
as optic dics, fovea and macula, providing doctors with a profound and precise
observation, allowing diagnosis of diseases with appropriate treatment. In this study, we
exploit and compare deep learning models to detect eye disease using Ultra-wide-field
Fundus Images. To fulfil this, a fully-automated system is brought about which
pre-process and amplify 4697 images using cutting-edge computer vision techniques
with deep neural networks. These neural networks are state-of-the-art methods in
modern artificial intelligence system combined with transfer learning to learn the best
representation of medical images. Overall, our system is composed of 3 main steps: data
augmentation, data pre-processing and classification. Our system demonstrates that
ResNet152 achieved the best results amongst the models, with the area under the curve
(AUC) score of 96.47% (95% confidence interval (CI), 0.931-0.974). Furthermore, we
visualise the prediction of the model with the corresponding confidence score and
provide the heatmaps which show the focal point focused by the models, where the
lesion exists in the eye because of damage. In order to help the ophthalmologists in
their assessment, our system is an essential tool to speed up the process as it can
automate diagnosing procedures and giving detailed predictions without human
interference. Through this work, we show that Ultra-wide-field Images are feasible and
applicable to be used with deep learning.

Introduction 1

Deep learning technique is empowering ophthalmologists to speed up the treatment 2

process as it automates diagnosing procedures and giving detailed predictions without 3

human inference. Researches on the detection of diseases on fundus images [1] with the 4

application of deep learning [2–4] has become a matter of importance, ascertaining the 5

captivation and significance of this task. Furthermore, this problem is attractive 6

because the application of fundus images is not limited to only vision problems, as it 7

also points out other health diseases such as diabetics, cancer or even stroke. This is 8
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possible since these scans may provide blood vessels, nerves and connecting tissues, 9

where they show the critical signs of body medical conditions. For example, a scan of 10

blood vessels containing blockages could be an indication of vision closure, and results 11

in a risk of stroke. Ultra-wide-field Fundus Images (UFI), as shown in Fig 1, is one of 12

retinal scans that can be taken easily and non-invasive, allowing examiners who are not 13

well-qualified to capture eye images safely. The ease-of-use nature of UFI makes it ideal 14

especially for telemedicine application in areas where ophthalmologists are not available. 15

Fig 1. Ultra-wide-field Fundus Image and Conventional Fundus Image. Two
fundus image modals, ultra-wide-field fundus image and conventional fundus image,
with their fundamental elements including fovea, macula and optic disc.

Most recent work using UFI adopted the combination of detection, segmentation, 16

and classification to detect the disease from the scans [5]. They focus on detecting most 17

important parts of the eyes captured in the UFI to complement the performance of the 18

classifier. The parts include optic disc, macula, and surrounding areas after being 19

detected and used to classify eye diseases. For detection task, a publicly available eye 20

fundus dataset has been used to pre-train the U-net [6] model with ResNet-18 as 21

encoder, then the model was adopted to the in-house UFI dataset to find the disc 22

regions with the help of ellipse fitting method. For classification, pre-trained (on 23

ImageNet) ResNet-34 is utilised for training and fine-tuning. This is the first paper that 24

performed image processing steps which focus on the typical features on UFI and use 25

them for further experiment. In 2016, Google also introduced ARDA (Automated 26

Retinal Disease Assessment), which uses artificial intelligence (AI) to detect eye 27

diseases, primarily diabetic retinopathy or age-related macular degeneration. This AI 28

system is trained with a large number of eye scans, manually reviewed by a team of 29

ophthalmologists, for interpretation and eventually gives predictions on each of the 30

scans with high accuracy of 98.5% specificity [7]. Moreover, by working directly with 31

the doctors, Google proved that the AI system can further be improved [8, 9], not only 32

its statistical performance but also practical applicability such as detecting other 33

threatening diseases. 34

In this work, we exert ourselves to the problem by utilising the available UFI dataset 35

with current state-of-the-art deep learning methods with the aim of predicting diseases 36

from these images. We first composed a procedure of pre-processing that could aid the 37

AI system in the decision-making process. Then we used most recent models that were 38

pre-trained on ImageNet [9] that achieved the most outstanding results in images 39

classifying tasks, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet 40

and ConVNext to perform detection on our dataset. As a result, the model attains an 41

AUC score up tp 96.47% . Furthermore, we also analyse and evaluate among these 42

models and determine the most appropriate one. Using this model, a visualisation of 43

prediction criteria, demonstrating the focal point within the images that show the 44

existing location of disease in the human eyes, is generated to help analyse and further 45

study. Our main contributions and findings include: 46

1. Pre-processing UFI dataset, involving brightness or contrast adjustment. This 47

enhances the quality of images since UFI is normally taken with unwanted 48

artefacts such as light sources and human eye lashes. 49

2. Data augmenting in order to increase the size of the dataset. Augmentation is 50

performed by random flipping or rotation of images to have a new dataset with 51

size 3 times bigger than original. 52

3. Training the different state-of-the-art deep learning models such as ResNet or 53

Vision Transformer to classify and predict which images contain eye diseases and 54
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comparing the performance to investigate the best model. 55

4. Visualising the output and providing heat maps that show the focal points where 56

diseases exist. 57

Materials and methods 58

Data 59

Conventional fundus cameras, originated to capture the surface of the eyes, could only 60

yield a range between 30 to 60 degrees around the posterior pole and provided a 61

restricted view of the retinal. Recently, a more advanced method that captures upto 200 62

degrees of the pole called Ultra-wide-field imaging (UFI) has been introduced. Optos 63

camera, designed in Dunfermline, United Kingdom, uses ellipsoidal mirror to take 64

images of the retinal in a variety of modalities such as pseudocolour images, fundus 65

autofluorescence (FAF), fluorescein angiography (FA), optical coherence tomography 66

(OCT) and Ultra-wide-field Image (UFI). UFI has been created to overcome the 67

limitation of conventional cameras, where it is not only bringing about more information 68

from the scans, but also rendering the easiness of the capturing process such as no eyes 69

dilation is needed. UFI has been widely used in clinical application and telemedicine for 70

disease detection such as the visualisation of diabetic retinopathy or retinal vascular 71

occlusion. Our dataset consists of images captured using this UFI techniques. 72

For this study, we use a inhouse dataset that contains a total of 4697 images collected 73

from KangBuk Samsung Hospital. Upon receiving, the patients’ ID and information will 74

be removed in order to protect the privacy and confidentiality of patients, then these 75

images will be sent to a doctor for labelling. We note that this study adhered to the 76

tenets of the Declaration of Helsinki, and the protocol was reviewed and approved by 77

the Institutional Review Boards (IRB) of Kangbuk Samsung Hospital (No. KBSMC 78

2020-01-031-001). This is a retrospective study of medical records, and our data were 79

fully anonymized. Therefore, the IRB waived the requirement for informed consent. 80

The dataset, with the original sizes of 2600 x 2048 pixels, contains two classes: 81

normal and abnormal. Normal class includes images of eyes with no disease, and 82

abnormal class contains images of eyes having one or more disease. This includes 1605 83

normal images (eyes with no disease) and 3092 abnormal images (eyes with diseases), 84

classified by a professional eye doctor. Of the 1605 normal images, 1444 were used for 85

training and 161 were used for testing. While for 3092 abnormal images, 2782 were used 86

for training and 310 were used for testing. 87

Proposed System 88

Our proposed system, as shown in Fig 2, consists of 3 main steps: data augmentation, 89

quality enhancement and classification. Labelled medical images are expensive in terms 90

of availability, since it is difficult to get the confirmation and permission of patients. 91

Therefore, data augmentation is implemented to increase the size of the dataset. After 92

that, all of these images are then undergone a quality enhancement process before being 93

fed into the neural network. Finally, the processed images are then transformed tensor 94

and classified using state-of-the-art deep neural networks. The process involves no 95

intervention and intuition from implementers or doctors in between, toughen our 96

hypothesis of a fully automated system for detection of diseases. 97

The images that we had collected from the hospital have the original size of 98

2600x2048 pixels, this is really high resolution for an image. If we feed this directly to 99

the model, the computation cost will be extremely high and it is not effective to train 100

this kind of model. The reason is deep learning has a different way of interpreting 101
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Fig 2. Deep-learning aided eye disease detection system. The images firstly
undergo a augmentation and pre-processing process. After that, the pre-processed
images will be fed into deep learning neural networks to learn the feature representations.
The model will then output the predictions, which are normal or abnormal eyes.

digital images, compared to how human/doctors interpret those. Therefore, these 102

images need to be resized into smaller size, this means that lower number of pixels. In 103

this experiment, we resize the image to 512x512 pixels. 104

Data augmentation 105

State-of-the-art deep learning models often have great depth with many stacks of 106

convolution layers, this allows the model to be trained with more parameters, therefore 107

learning more complex and profound presentations of data. However in order to achieve 108

this, they require a considerable amount of labelled data for training and testing. 109

Medical images are limited in terms of quantity as it is subjected to patients’ 110

confidential. To overcome this, we perform data augmentation using computer vision 111

techniques to amplify the amount of data that we have, while preserving the content and 112

characteristics of the original data. One of the methods for augmentation is horizontal 113

and vertical flipping, which is done using image transpose. Transpose swap the indices 114

of X and Y, hence flip the image horizontal and vertical. The second method that was 115

applied is rotation around the centre of the image using affine transformation. This 116

technique is a geometric transformation that preserves lines and parallelism, but not 117

necessarily distances and angles. The transformation metric for rotation is defined by: 118[
x’
y’

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
(1)

where x’ and y’ is the new data point, x and y is the original data point, and theta is 119

the angle of rotation. We perform this operation for all the coordinates of the images to 120

achieve final image rotation. All operations are done in a random manner to generalise 121

the dataset and prevent overfitting. This means that for each image, flipping can be 122

done or not (with the probability of 0.5) and the angle of rotation is also a random 123

number. 124

Data pre-processing 125

Before training, a total of 4226 images go through pre-processing steps, shown in Fig 3, 126

to improve the performance of the model. Firstly, to increase the size of the dataset, we 127

perform data augmentation methods including random horizontal/vertical flipping and 128

random rotation. These processes create a new image that is different in terms of pixels, 129

but still keep the same features as the original, this helped amplify our dataset to more 130

than 21,000 images. Imaging enhancement is one of the most important techniques in 131

order to improve the performance of deep learning models, especially when working 132

with medical images. This is achieved by handling brightness using the images’ 133

histogram, or increasing the global contrast so as the pixel intensities could be better 134

distributed. In both training and testing, the images were resized to 512 x 512 pixels 135

normalised to be trained with neural networks. The images that were initially collected 136

from the hospital have an original size of 2600 x 2048, which is too large and inefficient 137

to train. Therefore we first resize the images to 512 x 512 pixels, using bi–linear 138

interpolation. This method interpolates function of 2 variables (x,y) using repeated 139

linear interpolation in two directions (x and y), defined by: 140
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Fig 3. Pre-processing process. Data augmentation and pre-processing procedures to
increase the quantity and enhance the quality of the medical images. Data
augmentation include random flipping and random rotation, pre-processing includes
resizing, data augmenting and images enhancing.

x-direction: 141

f(x, y1) =
x2 − x

x2 − x1
f(Q11) +

x− x1

x2 − x1
f(Q21) (2)

142

f(x, y2) =
x2 − x

x2 − x1
f(Q12) +

x− x1

x2 − x1
f(Q22) (3)

y-direction: 143

f(x, y) =
y2 − y

y2 − y1
f(x, y1) +

y − y1
y2 − y1

f(x, y2) (4)

Although capturing UFI is non-invasive and convenient, the quality of these images 144

are not good (in terms of image property) and often include artefacts (such as camera 145

light) or body parts (such as eyelashes). These elements could be a problem for deep 146

learning, as the models consider them as an aspect of the image that needed to be 147

considered. To overcome these problems, some image enhancing techniques have been 148

applied such as brightness or contrast adjustment. This could be done by multiplying 149

all the pixels in the images (for each channel in case of RGB) with a constant, which is 150

normally between -1 and 1. This is called brightness/contrast factor, where -1 will make 151

the image darker, and 1 will make the image brighter. Furthermore, histogram 152

equalisation technique is also adopted in order to equally distribute intensity values of 153

the images. 154

Deep learning classification 155

There have been much work focus on the problem [10–18] that utilised popular deep 156

learning model such as VGG, CenterNet, ResNet, or recently Vision Transformer. 157

Lately, most image classification tasks are carried out using Transformer because of the 158

superiority of its attention mechanism [18]. The main idea of this mechanism is to train 159

the model to pay attention to only the most important parts of the inputs. Before 160

Vision Transformer was introduced, Computer Vision tasks relied exceedingly on 161

Convolution Neural Network (CNN) [19], which was made up of neurons that is able to 162

learn the images properties and produce representations. However, after the presence of 163

Transformer, researchers started to apply it as a replacement to CNN [20], since the 164

performance of Transformer outperformed CNN under similar settings [21]. In [22], 165

Vision Transformer outperforms CNN in detecting or grading individual diseases by 166

capturing important features in the medical images. 167

Using large and complex deep neural networks such as ResNet or Transformer could 168

lead to an above mentioned problem, which is the lack of labelled data to train. To 169

tackle this issue, transfer learning has been widely used in medical imaging tasks. This 170

method allows the model to learn the knowledge to solve a problem and applies it to 171

another one, within the same domain. It succeeded since there is an enormous amount 172

of labelled data that is available such as ImageNet or Cifar [23], that is efficient enough 173

to pre-trained large models. Using these dataset, the weights of these models are 174

pre-adjusted and then trained again using our UFI dataset. This helps leverage the 175

performance of the model and accelerate convergence, while reducing the number of 176

required labelled data, as well as computational time of training. The training 177
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configurations are showns in Table 1. Our results also showed that pre-trained model 178

AUC score is higher from the beginning of the training process (85.6%), compare with 179

not pre-trained one (65.4%). 180

Table 1. Training configurations of deep learning models.

ResNet152, InceptionResNetV2,
RegNet, ConVNext

Vision Transformer

Image size 512x512 224x224
Batch size 64 32
Number of epochs 100 100
Learning rate 0.001 0.0001

Normalisation factor.
(0.485, 0.456, 0.406),
(0.229, 0.224, 0.225)

(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)

Optimizer Stochastic gradient descent(SGD) Adam

ResNet [24], or Residual Network, had been proved that it outperformed VGG [25], 181

which was the best model at that time for computer vision tasks. ResNet achieved 182

higher accuracy scores and ran faster compared to VGG. The reason is that generally 183

deep learning models like to add more layers since it helps solve complex problems, 184

however as the number of layers increases, the performance of the network gets worsened. 185

ResNet was created with the purpose of attacking this problem, when using residual 186

blocks to improve the accuracy of models. Residual block contains a key idea of ResNet, 187

which is the well-known “Identity Shortcut Connection”. In general, this mechanism 188

skips one or more stacked layers that satisfy an identity mapping in the network, this 189

allows the model to have fewer presentations (hence fewer parameters) when still 190

performing as effectively as the original one. A residual block can be defined as: 191

y = F(x, {Wi}) + x (5)

where x, y are input, output of the current layer, and F(x, {Wi}) + x is the residual 192

mapping to be learnt. 193

Inception-ResNet-v2 is a convolution neural network architecture that was built 194

upon Inception structure but further fused with residual network, which is the most 195

important feature of ResNet architecture. The network, which is a variation of 196

InceptionV3, has 164 layers and pre-trained on 1000 categories, with the input size of 197

299x299 pixels. The main idea of these inception blocks is to go ‘wider’ instead of 198

‘deeper’, which includes convolution operations in different sizes in the same layer, 199

followed by dimension reductions. Inception-ResNet-v2 introduced Residual Inception 200

Blocks, where convolutions in each inception blocks are combined with residual 201

connections. The model that has been used extensively in computer vision tasks as well 202

as in the application with UFI dataset. 203

In Vision Transformer, the main idea of attention mechanism is to train the model to 204

pay attention to only the most important parts of the inputs, and to predict the outputs. 205

In order to do this, the model needs to have the ability to identify those most important 206

parts and extract these features. In [26], they introduced 3 values: query (Q), key (K), 207

value (V) and together with positional encoding, we can learn the attention weighting 208

through an encoder-decoder framework. Vision Transformer is built to preserve most of 209

the properties from Transformer, so that it would be able to keep most of the benefits 210

from the original structure. Firstly, the input images are split into patches: 211

xp ∈ RH×W×C → xp ∈ RN×(P 2·C) (6)

where (H, W) is the resolution of the original images, (C) is the number of channels, (P, 212

P) is the resolution of each image patch, and N = HW/P2 is the number of patches. 213
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After being flattened into 2D sequence, these patches are then used to create learnable 214

embeddings. A classification head is attached to these patches, which is implemented by 215

a Multi-layer Perceptron with one hidden layer in pre-training and single linear layer in 216

fine-tuning. Finally, positional embeddings are added to retain the positional 217

information and context of the input. 218

RegNet [27] was developed in 2020, with an aim to adapt to different neural network 219

architecture using parameterisation. This parameterisation could be understood simply 220

as widths and depths of a network can be explained by a quantised linear function. To 221

achieve this, they first designed a space that included all unconstrained networks called 222

AnyNet. These networks are then trained and evaluated to find the best ones, eventually 223

the most relevant parameters of the models are induced. After these ‘designing’ steps, 224

they finally obtained a simplified design space containing only regular network structure 225

which is RegNet. To evaluate these design spaces, a tool for measuring the error called 226

empirical distribution function (EDF) has been used, defined by: 227

F (e) =
1

n

n∑
i=1

1[ei < e] (7)

where F(e) is the fraction of models with error less than e. The main idea behind this is 228

in order to compare between design spaces, we sample a set of models and analyse the 229

error distribution inside each space. 230

So far, we have experimented 2 types of deep learning methods to perform 231

classification which are Convolutional Neural Network (ResNet152, InceptionResNetV2, 232

RegNet) and Transformer (Vision Transformer). However, recently there is a model 233

which inherits the most compelling effect of both methods called ConVNext. ConVNext, 234

introduced in 2022, is a convolutional neural network inspired from Vision Transformer 235

structure. It is claimed to be a pure convolution net, ‘modernised’ from a standard 236

ResNet toward the design of Vision Transformer, and outperformed the original 237

design [28]. Table 2 shows the characteristics of each model, where ConVNext is the 238

largest model in Size (337.95MB) has the most number of parameters amongst all the 239

models (88,600,000 parameters). 240

Table 2. Deep learning model characteristics.

Models Size(MB)
Total number
of parameters

ResNet152 230.19 60,192,808
Vision Transformer 330.23 86,567,656
InceptionResNetV2 207.41 54,309,538
RegNet 319.34 83,590,140
ConVNext 337.95 88,600,000

Measurement Metrics 241

AUC score 242

An ROC curve (receiver operating characteristic curve) is a graph showing the 243

performance of a classification model at all classification thresholds. The graph contains 244

2 thresholds: True Positive Rate (TPR) and False Positive Rate (FPR). Sensitivity tells 245

us what proportion of the positive class got correctly classified, while FPR tells us what 246

proportion of the negative class got incorrectly classified by the classifier. TPR is 247
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equivalent to sensitivity and FPR is equivalent to (1 – specificity). 248

TruePositiveRate (TPR) =
true positive

true positive+ false negative
(8)

249

False PositiveRate (FPR) =
false positive

false positive+ true negative
(9)

The Area Under the Curve (AUC) is the measure of the ability of a classifier to 250

distinguish between classes and is used as a summary of the ROC curve. The higher the 251

AUC, the better the performance of the model at distinguishing between the positive 252

and negative classes. 253

F1 score 254

Precision is a metric to measure correctly labeled positive class amongst all 255

positive-labeled samples (both correctly or incorrectly), and is measured using: 256

precision =
true positive

true positive+ false positive
(10)

The main focus of precision is positive class. This score will get higher if the model 257

classifies correctly more positive samples, or fewer incorrectly positive samples. 258

Therefore, if precision is high, the model is doing well in terms of detecting positive 259

samples. 260

Recall measures correctly labeled positive class amongst all positive samples, 261

calculated using: 262

recall =
true positive

true positive+ false negative
(11)

This metric is calculated without considering the performance of the model on negative 263

class.It is used to estimate the model’s ability to detect positive samples. 264

F1 score is used to measure the accuracy of a test, which is also calculated using true 265

positive results. This metric, often defined as the harmonic mean of precision and recall, 266

is primarily used to compare between two classifiers, especially in a binary classification 267

system. Occasionally F1 score is better than accuracy, as it considers both false positives 268

and false negatives in case these two values are very different. It is measured using: 269

F1 =
2

recall−1 + precision−1
= 2

precision · recall
precision+ recall

(12)

270

Kappa score 271

Kappa score, or cohen’s kappa score is used to measure the inter-rater reliability for 272

categorical items. Reliability refers to the ability of reproducibility of the model, which 273

can also be interpreted as the precision of the classifier. Hence, in short, kappa score 274

measures the precision of two raters rating the same thing, and is defined as: 275

κ ≡ po − pe
1− pe

= 1− 1− po
1− pe

(13)

where po is the observed agreement among raters, pe is the hypothetical probability of 276

agreement. It is ranged from 0 to 1, where 0 means there is no agreement amongst 277

raters, and 1 means there is complete agreement. A Kappa score of 0.6 to 0.8 is 278

considered good and a score of higher than 0.8 is considered very good. For this work, 279

we hypothesise that raters are represented by classes (normal and abnormal). 280
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Results 281

To justify our system, all scores for each of the models are also calculated by following 3 282

methods: raw data, only augmentation (no pre-processing) and the proposed system 283

(augmentation + pre-processing). Fig 4 show the Receiver Operating Characteristics 284

(ROC curves) of 5 trained models including: ResNet152, InceptionResNetV2, RegNet, 285

ConVNext and Vision Transformer. In each graph, yellow, blue and red line indicate 286

that models are trained with raw data, with augmentation and our proposed system, 287

respectively. ResNet152 (AUC=96.47, (95% confidence interval (CI), 0.953-0.975) and 288

ConVNext (AUC=96.13, 95% confidence interval (CI), 0.948-0.973) gives the best 289

performance considering ROC curve as they are closer to 1 compared to other classifiers. 290

These statistics were obtained using the settings shown in Table ??, using the proposed 291

settings InceptionResNetV2 achieved an average AUC of 95.2, RegNet achieved 96.04 292

(95% confidence interval (CI), 0.947-0.972) and Vision Transformer achieved 95.2 (95% 293

confidence interval (CI), 0.937-0.967). 294

Fig 4. Comparison of deep learning models AUC score of ResNet152, Vision
Transformer, InceptionResNetV2, RegNet and ConVNext.

More detailed performances of each models are shown in Table 3. We compute and 295

present for each models the evaluation scores including AUC Score, F1 Score, Kappa 296

Score, Accuracy (Test accuracy). The best performance of testing accuracy for deep 297

learning is ResNet152 with 89.17%, followed by ConVNext. We observe that ResNet152 298

has the most highest scores amongst all the classifiers (6/6 metrics), with the highest F1 299

score and Kappa score of 89.09% and 75.61%, respectively. Note that in our dataset, 300

the fundus images contain many diseases including age-related macular degeneration, 301

diabetic retinopathy, epiretinal membrane or retinal vein occlusion. There are more 302

than one disease in a single image, this makes it hard to appropriate predict abnormal 303

ones from the whole dataset. Nonetheless, our approach still achieves practicable results 304

for this task. 305

Table 3. AUC score of ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext.

Methods Models AUC Score F1 Score Kappa Score Accuracy

Raw data

ResNet152 93.98 84.83 66.62 84.71
Vision Transformer 85.0 74.59 42.08 76.88
InceptionResNetV2 84.0 86.85 69.96 86.62
RegNet 93.96 86.73 70.30 86.84
ConVNext 94.44 87.04 71.10 87.05

With
data augmentation

ResNet152 94.9 83.78 63.05 84.71
Vision Transformer 85.31 77.39 50.03 77.28
InceptionResNetV2 94.85 76.73 69.25 86.41
RegNet 95.57 87.20 71.43 87.26
ConVNext 96.07 88.71 77.45 89.06

Proposed system

ResNet152 96.47 89.09 75.61 89.17
Vision Transformer 94.50 87.10 71.35 87.26
InceptionResNetV2 95.20 88.10 73.50 88.11
RegNet 96.04 88.40 73.98 88.54
ConVNext 96.13 88.27 74.98 89.08

To verify the interpretability of deep learning models, we show the heatmaps 306

generated from the models after training in Fig 5, located in each column (from left to 307

right: input image after resizing, ResNet152, Vision Tranformer, RegNet, 308
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InceptionResNetV2 and ConVNext). Each row is the image with the corresponding 309

heatmaps from each model, where the first 3 rows is eyes with diseases, and the second 310

row is a normal eye. The heatmap contains the original image covered by a blue, yellow 311

and red region, where red regions indicate the focal point where our models focus on 312

when they are giving predictions. In general, the heatmaps show that all models identify 313

exactly the abnormal regions in the images that are classified as abnormal (the 314

abnormal regions are assumed based on the normal eyes, where there exist the same 315

disease-like points/patches within the eyes). Furthermore, the results have been handed 316

over to two ophthalmologists, and we received the comment that ResNet152 focused 317

points are similar to their focused points, specifically the rear regions of the eyes, where 318

it could determine the status of the corresponding image. Even though these are not 319

fully sufficient to determine high interpretability, the doctors informed that it is 320

appropriate to position these AI tools as decision support system. 321

Fig 5. Model heatmaps. Heatmaps generated from each deep learning models. the
first row images are abnormal eyes, the second row images are normal eyes.

Discussion 322

After these AI techniques yield sufficient and acceptable results, those methods are 323

capable of helping the doctors in their assessment of the patients, which speeds up the 324

treatment process. Furthermore, the deep learning system could be enhanced as a 325

medical instrument with no need for human interference for diagnosis, which helps 326

reduce the labor cost as well as time taken for the medical system. 327

Nonetheless, there are still some limitations for this task since the dataset in the 328

medical field is insufficient and restricted. Medical images are costly in terms of 329

availability and labels, this is due to the fact that hospitals are enclosed from providing 330

resources of patient’s data, not only personal information but also documents obtained 331

from medical equipment. In fact, these types of images are also subjected to privacy 332

and security that are related to patients’ confidentiality. Moreover, the labeling 333

processes are trouble-some and time-consuming for doctors. As a result, labels for 334

medical images are deficient to utilize supervised or semi-supervised learning, where 335

labels are needed to train the models. 336

The task of disease classification in medical images could be further studied, as 337

labelling of data is costly, especially medical images, while they need doctors’ 338

interference for labelling. Therefore, some of more recent techniques for deep learning 339

are considered, which don’t need much or no data at all. For example, semi-supervised 340

learning or self-supervised learning. The techniques do not require a huge amount of 341

labelled data to learn the feature representations of medical images, reducing the 342

intervention of doctors, but still achieve an excellent performance in medical imaging. 343

Conclusion 344

We show that the combination of state-of-the-art deep learning models and UFIs, 345

relatively few studies compared to Conventional Fundus Images, achieve competitive 346

performance for the detection of disease on retinal images. Along with the development 347

of Convolution neural networks and attention module, these deep learning algorithms 348

could extract features and demonstrate important regions of the medical image that 349

contain signs of lesion and haemorrhage. This paper exploits the performance of 350

supervised learning models such as ResNet or Transformer on UFI dataset, in order to 351
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retrieve the best understanding of how well an AI system will generalise with this modal 352

of medical images. We plan to further investigate novel self-supervised learning methods 353

in order to tackle the deficiency of labeled medical images. 354
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