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Abstract 

Introduction: Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which 
can result in acute respiratory distress syndrome and multiple organ failure. However, its 
comprehensive influence on pathological immune responses in the respiratory epithelium and 
peripheral immune cells is not yet fully understood.  

Methods: In this study, we integrated multiple public scRNA-seq datasets of nasopharyngeal swab 
and peripheral blood results to investigate the gene regulatory networks (GRNs) of healthy 
individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Similar and 
dissimilar regulons were identified within or between epithelial and immune cells during COVID-19 
severity progression. The relative transcription factors (TFs) and their targets were used to construct 
GRNs among different infection sites and conditions.  

Results: Between respiratory epithelial and peripheral immune cells, different TFs tended to be used 
to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they 
had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the 
epithelial and immune cells of virus-infected 
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 individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral 
immune cells, while CEBPB was exclusively activated in respiratory epithelial cells.  Moreover, in 
patients with severe COVID-19, CEBPD upregulated S100A8 and S100A9 in CD14 and CD16 
monocytes, while S100A9 genes were co-upregulated by different regulators (SPEDEF and ELF3) in 
goblet and squamous cells. The cell-cell communication analysis suggested that epidermal growth 
factor receptor signaling among epithelial cells contributes to mild/moderate disease, and chemokine 
signaling among immune cells contributes to severe disease.  

Conclusions: This study identified cell type- and condition-specific regulons in a wide range of cell 
types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of 
maladaptive responses to SARS-CoV-2 infection. 

 

1 Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a contagious 
disease known as Coronavirus Disease 2019 (COVID-19), which spread quickly globally and 
resulted in the COVID-19 pandemic. According to the World Health Organization (WHO), there had 
been more than 619 million cases worldwide (including over 6.5 million deaths) by the beginning of 
October 2022. Although the vast majority of infected individuals have asymptomatic, moderate, or 
mild symptoms, a proportion of cases require hospitalization and intensive care, or even progress to 
death (1–4). SARS-CoV-2 enters epithelial cells, assembles its structures and nucleocapsids, is 
released, and subsequently stimulates immune cells (such as macrophages and dendritic cells) by 
inducing inflammatory factors. Finally, its antigen is presented via histocompatibility complexes I 
and II (MHC I and II) to activate humoral and cellular immunities that are mediated by B and T cells 
to induce the production of cytokines and antibodies (5–10). The severity of inflammation can lead to 
cytokine storms in some COVID-19 patients (11–14). 

COVID-19 affects patients differently, and distinct features have been noted. For example, 
immunological signatures are altered during severe infection, and levels of a wide range of pro-
inflammatory cytokines (such as S100A8/A9, interleukin 1 beta, interleukin 6 (IL-6), IL-8, CXCL10, 
and tumor necrosis factor alpha (TNFα)) are dramatically increased (15–18). Compared to severe 
disease, the substantial expression of genes associated with interferon (IFN) responses (type I in 
particular) has been observed in cells (such as epithelia) in mild or moderate COVID-19 disease (19–
21). Additionally, patients with severe COVID-19 show activation of neutrophils (22,23) and 
lymphocyte exhaustion (24,25). Given the distinct antiviral immunity among cell types during the 
progression of SARS-CoV-2 infection, various therapeutic strategies have been developed to 
improve COVID-19 treatment (13,26). For example, targeting cytokine storms improves outcomes 
and reduces mortality in elderly patients with COVID-19 (27). In this respect, Tocilizumab, an IL-6 
pathway inhibitor, improved the clinical manifestations in 21 patients with severe and critical 
COVID-19 (28). 

Multiple studies have been conducted to date to investigate alterations associated with immune 
responses, with the aim of providing deeper insights into the roles of the nasal, upper, and lower 
airway tissues and peripheral blood (21,29–32). A large-scale single-cell transcriptome atlas of the 
lungs and peripheral blood of COVID-19 patients has also been compiled (33). However, a detailed 
analysis of the gene regulatory changes in both respiratory epithelial and peripheral immune cells 
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during progression to severe COVID-19 is required to completely understand aberrant and protective 
immune responses to SARS-CoV-2 infection.  

Therefore, in this study, we integrated single-cell RNA sequencing data from nasopharyngeal swabs 
and peripheral blood mononuclear cells (PBMCs) to capture the immune response at the site of 
infection (epithelial cells) and of the peripheral immune system. We found that epithelial cells (e.g., 
squamous and goblet cells) and immune cells (e.g., CD14 and CD16 monocyte cells) exhibit 
substantial phenotypic differences after SARS-CoV-2 infection. The transcription factor regulatory 
network construction underlies heterogeneous immune responses during progression to severe 
COVID-19 among cell types from different infection sites. Furthermore, we demonstrated the 
important role of some inflammatory genes (such as S100A8 and S100A9) in the pathogenesis of 
COVID-19 and found that regulators of these critical genes can be unique to cell types and 
conditions. A cell-cell communication analysis suggested that epidermal growth factor receptor 
(EGFR) signaling in epithelial cells may contribute to mild/moderate COVID-19. Collectively, our 
work reveals and clarifies the mechanisms involved in maladaptive responses to SARS-CoV-2 
infection and provides a rich resource for predicting, preventing, and treating SARS-CoV-2 infection 
in respiratory epithelial cells and peripheral immune cells. 

2 Materials and Methods 

2.1 Data collection 

Single-cell RNA sequencing (scRNA-seq) data from nasopharyngeal swabs and PBMCs were 
collected (21,31). The nasal scRNA-seq data are publicly available for exploration and download via 
the single-cell portal (https://singlecell.broadinstitute.org/single_cell/study/SCP1289/), and the 
PBMCs data are available for viewing and downloading from the COVID-19 Cell Atlas 
(https://www.covid19cellatlas.org/#wilk20) hosted by the Wellcome Sanger Institute.  

Biological samples of nasopharyngeal swabs were collected from the University of Mississippi 
Medical Center between April and September 2020, and eligible participants for blood samples were 
recruited into the Stanford University ICU Biobank study between March 2020 and April 2020. With 
respect to the nasal epithelial data, eight individuals were removed from our study based on the 
following criteria: (1) healthy individuals with a recent history of COVID-19 and (2) individuals who 
needed intensive care units but without a recent history of COVID-19. In addition, because of the 
small numbers of cells collected from mast cells (6 cells), plasmacytoid DCs (11 cells), and 
enteroendocrine cells (1), these cell types were excluded from our analyses. A total of 15 healthy 
participants and 35 patients diagnosed with COVID-19 were ultimately studied. According to the 
COVID-19 severity stratification of the World Health Organization (WHO) guidelines, these 35 
patients were further divided into two groups: those with mild/moderate disease (14 patients) and 
those with severe disease (21 patients). WHO scoring system for healthy, mild/moderate, and severe 
cells were represented by Control_WHO_0, COVID19_WHO_1–5, and COVID19_WHO_6–8. With 
respect to the PBMC scRNA-seq data, six healthy and seven severely ill individuals were studied. 
Processed count matrices with embeddings were used only for the PBMCs. The cell types in studied 
scRNA-seq data were annotated using the original papers.  

 

2.2 Single-cell RNA sequencing data processing 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.23287043doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287043


 

 

The Seurat package (version 4.0.4) (34) implemented in R (version 4.1.0) was used to explore the 
single-cell transcriptome data. The count matrices were normalized using Seurat NormalizeData. 
Specifically, the log-normalized method was used to normalize the total feature expressions per cell, 
multiply them by a scaling factor (10,000 by default), and further log-transform the results. Highly 
variable genes were then identified using the FindVariableFeatures function (3,000 top variable 
features were set). The percentage of mitochondrial genes was regressed out using the ScaleData 
function. The scaled data were passed to run a principal component analysis (PCA) dimensionality 
reduction algorithm. The FindNeighbors and FindClusters functions were then employed to cluster 
the cells, and a graph-based clustering algorithm that calculates the k-nearest neighbors and 
constructs a shared nearest neighbor graph, was applied to identify cell clusters. Nonlinear 
dimensionality reduction (RunUMAP function) and Uniform Manifold Approximation and 
Projection (UMAP) were then conducted to visualize the clustering results in two dimensions. To 
identify differentially expressed genes (DEGs) when comparing any two given groups, the 
FindMarkers function in Seurat was applied with the following configurations: test.use = “wilcox” (a 
Wilcoxon Rank Sum test), min.pct = 0.25, logfc.threshold = 0.25, and only.pos = FALSE. An 
additional adjusted P-value threshold of ≤ 0.05 was used for filtering DEGs. 

 

2.3 Gene regulatory network analysis and visualization 

To explore the regulatory landscape across cell types between healthy and COVID-19 patients, the 
SCENIC (single-cell regulatory Network Inference and Clustering, version 1.2.4) (35) tool was used. 
SCENIC is a set of tools that can infer transcription factors (TFs) and construct gene regulatory 
networks (GRNs) from scRNA-seq data. The required human RcisTarget database was downloaded 
from https://resources.aertslab.org/cistarget/. GENIE3 and RcisTarget in SCENIC were used to 
identify potential direct binding targets (called regulons) based on co-expression modules and a TF 
motif analysis. Here, the regulon represented one TF and its targets. Utilizing the AUCell algorithm, 
the activity of regulons in each individual cell were analyzed and evaluated by calculating the area 
under the recovery curve (AUC) score. To identify specific regulators of cell type-specifics and 
conditions (healthy, mild/moderate, and severe COVID-19), we calculated the average regulon 
activity by cell type in each condition and merged them to create an AUC score heatmap via the 
pheatmap package in R. The AUC score matrix of all regulons in each cell was submitted to the 
Seurat object to project the AUC (as well as TF expression) onto UMAP plots. In addition, in terms 
of each condition, the targets of the identified TFs in each cell type were filtered using the 
corresponding DEGs. Finally, GRNs for each cell type and condition, which comprised the observed 
TFs and their differentially expressed target genes, were constructed and displayed using Cytoscape 
software (version 3.9.1) (36). 

 

2.4 Function and pathway enrichment analysis 

 Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses of gene sets of interest were performed using the clusterProfiler (version 4.0.5) (37) package 
in R. The GO enrichment analysis was conducted based on biological processes, and GO annotation 
data were provided by AnnotationHub. KEGG annotation data are available in the KEGG database 
(https://www.genome.jp/kegg/). An adjusted P-value ≤ 0.05 was considered significantly enriched. 
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2.5 Cell-cell communication analysis 

 The CellChat (version 1.5.0) (38) package in R was used to infer and analyze the cell-cell 
communication (CCC) among cell types. “Secreted Signaling” was set to explore intercellular 
communication networks, and the communication probability was then computed to infer the cellular 
communication network. To calculate the aggregated CCC network, the number of links was counted 
or the communication probability summarized. Collectively, based on gene expressions and prior 
knowledge of the interactions, all significant communications (ligand-receptor interactions) 
associated with signaling pathways from one cell type to other cell types were determined. 

 

2.6 Whole blood bulk transcriptomic data analysis 

 Pre-processed whole-blood bulk transcriptomic data are publicly available for download at 
GEO (accession number GSE157103) (39). Transcript counts were normalized using the transcript 
per million (TPM) method. Samples were selected from a total of 126 samples according to the 
following criteria: (i) select COVID-19 infection samples and (ii) samples were removed if the 
sequential organ failure assessment (SOFA) scores were unknown. A final total of 56 samples were 
used in this study. The selected samples were then grouped based on the SOFA score and the 
Pearson’s correlations calculated between the TPM and SOFA scores.  

3 Results 

3.1 Single-cell characterization of nasopharyngeal swabs and PBMCs 

To better understand and compare the host response to SARS-CoV-2 infection at the initial infection 
site and peripheral immune cells, we obtained single-cell RNA sequencing (scRNA-seq) data from 
nasopharyngeal swabs (21) and peripheral blood mononuclear cells (PBMCs) (31) under three 
different conditions: healthy individuals and COVID-19 infection patients with mild/moderate and 
severe disease. Metadata, such as cell type annotation and embedding of PBMC data, were mainly 
obtained from original studies. As mentioned in the Materials and Methods section, certain cells 
associated with nasal scRNA-seq data were removed in this study based on the criteria described 
therein. Data from nasopharyngeal swabs and PBMC were then processed using the same protocols, 
including those relating to data normalization, dimensionality reduction, and cell clustering, and the 
results were visualized on the UMAP plot. A total of 26,894 cells from the nasal mucosa and 44,721 
cells from PBMCs were studied, comprising 15 and 13 cell types, respectively (Figure 1A, Figure S1, 
and Table S1). Of the cell types, SARS-CoV-2 induced CD14 monocyte expansion and NK cell loss, 
while the B and T cell abundances were similar between healthy and COVID-19 patients. In addition, 
ciliated and goblet cells from nasal epithelial cells and dendritic cells (DCs) from PBMCs exhibited 
the highest number of expressed genes.  

 

 

3.2 Similarity and dissimilarity of regulons and pathways were identified in respiratory 

epithelial and peripheral immune cell types associated with COVID-19 

To investigate the gene regulatory network (GRN) changes underlying COVID-19 manifestations, 
we conducted single-cell regulatory network inference and clustering (SCENIC) analyses (35). 
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Regulons, including transcription factors (TFs) and their direct target genes, were detected in each 
cell type. We then calculated the average area under the recovery curve (AUC) scores per cell type to 
estimate regulon activities. Using a SCENIC analysis, we identified potential TFs in terms of the cell 
type and three condition (healthy individuals and COVID-19 infections with mild/moderate and 
severe disease). By comparing nasopharyngeal swabs and PBMCs, we found that there were notable 
differences between the many identified regulons among conditions or infection sites (i.e., nasal or 
peripheral blood), while some were found to be shared, and XBP1, FOS, STAT1, and STAT2 were 
activated in both the epithelial and peripheral immune cells of virus-infected individuals (Figure 1B). 
In addition, when comparing the detected regulons across cell types, we found that some cell types 
were distinguished by different regulon combinations among the three conditions, but some were not 
(Figure S2A). Specifically, epithelial cells, such as ciliated cells and mitotic basal cells, unexpectedly 
shared common TFs, whereas distinct TFs were identified in other epithelia, such as basal cells, 
squamous cells, and goblet cells. For example, RFX2 and RFX3 showed high activity in ciliated cells 
regardless of disease severity, while XBP1, NR2F6, SPDEF, and ELF3 were preferentially activated 
in goblet cells in patients with severe COVID-19, and KLF5 and STAT2 were coactivated in patients 
with mild/moderate COVID-19. Furthermore, NR2F6, SPDEF, and ELF3 were found to be activated 
in squamous cells in patients with severe COVID-19, and this activity was also shared with goblet 
cells. 

It is of note that we mainly focused on epithelial cells from nasal scRNA-seq data because we only 
obtained a very small number of immune cells, but we then used PBMC data to analyze immune 
cells. The PBMC data showed that most regulons were unique to cell types or patient condition 
(healthy and severe). For example, CEBPD and FOS were highly activated in both CD14 and CD16 
monocyte cells in severe COVID-19 disease, whereas BACH1 exhibited particularly high activation 
in CD16 monocyte cells (Figure S3A).  

For each cell type, we further analyzed the differentially expressed genes (DEGs) between COVID-
19 patients and healthy individuals, and we then performed GO (biological process) and KEGG 
enrichment analyses using these DEGs (Figure 1C-D, Figure S2B and S3B, Table S2-S7). In the case 
of nasal epithelial cells, many genes were upregulated in the ciliated cells of patients with mild, 
moderate, and severe COVID-19, and they showed enrichment in some functions and pathways, such 
as COVID-19, oxidative phosphorylation, protein targeting, and viral gene expression (Table S5-S6). 
Surprisingly, we found that squamous cells showed the highest number of downregulated genes (200 
genes) during mild/moderate COVID-19, and goblet cells displayed the highest number of 
upregulated genes (1,033 genes) during severe COVID-19 (Figure 1C). The 200 deregulated genes 
were associated with regulating translation, the cellular amide metabolic process, and RNA splicing, 
while the 1,033 upregulated genes were associated with the ATP metabolic process, interleukin-1-
mediated signaling pathway, Wnt signaling pathway, planar cell polarity pathway, response to 
decreased oxygen levels, and the viral life cycle (Figure 1C and Figure S2B). Likewise, we found 
that compared to the number of upregulated genes, a larger number of genes tended to be 
downregulated in most cell types from PBMCs, and the highest differences between healthy and 
severe COVID-19 patients were noted in CD14 monocyte cells (Figure 1C). During severe COVID-
19, upregulated genes in both CD14 and CD16 monocyte cells were associated with type I interferon 
signaling, response to the virus, positive regulation of cytokine production, and toll-like receptor 
(TLR) signaling pathways (Figure 1D). TLRs have been reported to play an important role in 
responses to certain infections, and their changes may lead to cytokine storms (14,40). We also found 
that I-kappaB kinase/NF-κB signaling was enriched. A recent study suggested that NF-κB might be 
associated with a poor pro-inflammatory cytokine production mechanism in the monocytes of 
patients severe COVID-19 (32). Other findings based on the GO and KEGG analyses among cell 
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types are given in Table S7. These results may provide an important reference for understanding the 
mechanisms of cytokine storms in different cell types. 

By integrating respiratory epithelial and peripheral immune cells, the SCENIC analysis identified 
similar and dissimilar TFs between the conditions. Furthermore, different combinations of these TFs 
were common or unique to certain cell types under different conditions. These distinct cell type- or 
condition-specific TFs profoundly contribute to transcriptional regulation among cell types during 
disease progression. The studies on DEGs indicated different response mechanisms to SARS-CoV-2 
occur at different infection sites (based on nasal and peripheral blood data). Specifically, DEGs of 
certain cell types were enriched in pathways such as the regulation of cytokine production, response 
to decreased oxygen levels, and viral response. 

 

3.3 The construction of a gene regulatory network from nasopharyngeal swabs and PBMCs 

evidences immune responses to SARS-CoV-2 infection in different cell types  

With our identified cell type- and condition-specific regulons, further studies on TFs and their direct 
targets were conducted with the aim of exploring the detailed mechanisms of immune responses at 
different infection sites. Our findings suggested that goblet and squamous cells among epithelial 
cells, as well as CD14 and CD16 monocyte cells among immune cells, exhibited considerable 
differences in not only DEGs but also regulons. We constructed and visualized GRNs (i.e., regulons) 
per cell type using the Cytoscape tool (36). The target genes of each TF were further filtered using 
the corresponding DEGs in relation to cell types and conditions. We hoped to construct GRNs for all 
cell types and conditions; however, some cases failed because there were no remaining target genes 
of certain TFs after DEG filtering (i.e., the targets were not differentially expressed and thus the 
regulons were removed), or all of the regulons of these cell types or conditions showed very low 
activation. As a result, the GRNs of goblet, squamous, CD14, and CD16 monocyte cells, were 
constructed (Figure 2). In goblet cells, STAT2 and KLF5 were highly activated and upregulated in 
many genes with mild/moderate COVID-19, such as ISGs (PARP14 and IFI44L), whereas ELF3, 
SBP1, NR2F6, and SPDEF were preferentially activated in severe COVID-19 to regulate the 
expression of their targets (Figure 2A). We found that related TFs were expressed, and regulons 
showed high AUC scores in the corresponding cell types (Figure 2B and Figure S4). Furthermore, 
their target genes, including cytokines, interferon-stimulated genes (ISGs), and S100/Calbindin 
genes, were significantly upregulated in severe COVID-19 patients (Figure 2C). For squamous cells, 
there were no activated regulons in SPEDEF and ELF3 in mild/moderate COVID-19, but they were 
activated in severe COVID-19 (Figure 2A). In summary, SPEDEF and ELF3 were shared between 
goblet and squamous cells in severe COVID-19, and S100A9 was co-upregulated. The regulators of 
S100A8 were not identified, although they were significantly upregulated in the two cell types. 
However, MAFF and GRHL1 downregulated S100A8 and S100A9, respectively, in healthy 
squamous cells (Figure S5). In addition, ELF3 upregulated the expression of S100A11 in goblet cells 
(Figure 2). Similarly, for CD14 and CD16 monocyte cells in severe COVID-19, CEBPD and FOS 
were particularly activated in the two cell types, and CEBPD upregulated S100A8 and S100A9 
(Figure 2). We also identified the substantial expression of SELL (an ISGs) in most CD14 monocyte 
cells in severe COVID-19. BACH1 was uniquely regulated in CD16 monocytes. Unexpectedly, 
HLA-DRA, a major histocompatibility complex II (MHC-II) molecule, was considerably 
downregulated in CD14 monocyte cells, but upregulated in CD16 monocyte cells. MHC I molecules 
are considered to contribute to the SARS-CoV infection response (40). A recent study demonstrated 
that epithelial cells with SARS-CoV-2 RNA+ express only MHC-I and poorly express MHC-II 
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family genes (21). However, a previous study discovered that the MHC class II transactivators, 
CIITA and CD74, can defend against many viruses, such as SARS-like coronaviruses; therefore, 
upregulation of MHC-II family genes may block the entry of viruses (41). 

We also constructed GRNs in other respiratory epithelial and peripheral immune cells, such as 
ciliated, B, T, and NK cells (Figure S5 and S6). Notably, although certain TFs were shared among 
cell types and conditions, their target genes and regulations differed considerably. For example, 
RFX2 and RFX3 were activated in ciliated cells under all three conditions, but the majority of targets 
were downregulated in mild/moderate COVID-19 patients compared to healthy cells (Figure S5). 
Furthermore, RFX3 upregulated most of its target genes in patients with severe COVID-19. For the 
NK cells, many ISGs were upregulated by STAT1 in severe COVID-19, such as EIF2AK2, PARP14, 
ISG15, PSMB9, MX1, SP110, DDX60, SAMD9L, ADAR, IFI44L, IFIT3, EPSTI1, SAMD9 (Figure 
S6). In patients with severe disease, we also found that TCF4 was activated in B cells, whereas 
RUNX3, IKZF1, and EOMES were activated in CD8 cells (Figure S6). 

By integrating different cell types from nasal or peripheral blood during progression to severe 
COVID-19, our findings demonstrated the existence of diverse GRNs. Intriguingly, we found that 
S100A8 and S100A9 were considerably upregulated by different TFs in a wide range of respiratory 
epithelial and peripheral immune cells in patients with severe COVID-19 (Figure S4), which suggests 
that their upregulation tends to be independent of certain cell types and virus-infection sites but that 
different regulators can be used among cell types. Specifically, the systemic upregulation of S100A8 
and S100A9 mainly occurred in goblet, squamous, B, CD14/CD16 monocytes, granulocytes, PB, and 
DC. However, their regulators can differ in terms of cell type at different infection sites. S100A8 and 
S100A9 have been reported to be markers of severe COVID-19 (18) and contribute to the recruitment 
of immune cells and cytokine storms in megakaryocytes and monocytes (21,33,42). 

 

3.4 Robust DEGs were identified in T cells 

To identify genes robustly expressed during the immune response against SARS-CoV-2 infection, we 
further observed the overlap of DEGs in T cells from nasal and PBMC scRNA-seq data. Compared 
to one type of T cell in the nasal data, three types of T cells were annotated in PBMC data: CD4, 
CD8, and gd T cells. We extracted corresponding DEGs when comparing healthy individules and 
severe patients to identify overlapping DEGs by comparing one T cell type from nasal data to three T 
cell types from PBMC data, and then visualized their expressions in the two datasets (Figure 3). The 
majority of overlapping genes were robustly downregulated in patients with severe disease, but only 
one overlapping gene, prothymosin alpha (PTMA), was consistently upregulated. Interestingly, 
PTMA, the proprotein of thymosin alpha-1 (Tα1), has been reported to show increased expression in 
CD8 T memory cells in severe disease and slightly reduced activation of T cells in vitro (43), and the 
authors indicated that lymphopenia in COVID-19 patients could be relieved by Tα1 treatment. 
Among the overlapping downregulated genes, genetic defects in TCM6/8 may lead to lower intrinsic 
immunity to human β-papillomaviruses (β-HPVs) in epidermodysplasia verruciformis patients (44). 
SUN2 (Sad1 and UNC84 domain containing 2) is associated with mitosis, it maintains a repressive 
chromatin state, and inhibits HIV-1 infection via association with Lamin A/C (45,46). Previous 
studies have also shown that quercetin and resveratrol, inhibitors of thioredoxin-interacting protein 
(TXNIP), could be considered as potential therapies for COVID-19 (47,48). However, we found that 
TXNIP showed robust downregulation in severe patients, which suggests that its inhibitors may 
provide a reduced performance in severe patient treatment to a certain degree. 
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3.5 Alterations in enriched pathways and cell-cell communications between mild/moderate 

and severe COVID-19 were identified 

As nasal epithelial cells mute the antiviral response in severe COVID-19 compared to mild/moderate 
patients, and this early failure may underlie and predict severe COVID-19 (21), we analyzed and 
compared epithelial cells between mild/moderate and severe COVID-19 patients. There was a greater 
upregulation in squamous and goblet cells in patients with severe disease than in those with 
mild/moderate (Figure 4A). Upregulated genes in squamous cells were associated with pathways 
such as viral entry into the host cell, epidermis development, protein localization, and apoptotic 
signaling, while genes in goblet cells were related to protein targeting, response to hypoxia, and viral 
gene expression (Figure 4A). Although only a few downregulated genes were identified in squamous 
(19 genes) and goblet (50 genes) cells, they were still enriched in certain pathways. For example, 
CD74, TNFAIP3, and S100A4 in squamous cells were associated with I-kappaB kinase/NF-kappaB 
signaling and interleukin-6 production, while MX1, IFIT1, SP100, and XAF1 in goblet cells were 
associated with the type I interferon signaling pathway (Figure S7). 

To investigate the ligand-receptor (L–R) interactions among epithelial cells, we performed a cell-cell 
communication (CCC) analysis using CellChat (38). Compared to patients with mild/moderate 
COVID-19, our CCC analysis suggested that epidermal growth factor receptor (EGFR) signaling 
from ciliated cells to other cell types was lost in patients with severe COVID-19 (Figure 4B-C). 
EGFR (also known as ErbB1) belongs to a family of receptor tyrosine kinases (ErbB), and ErbB 
contains four receptors: ErbB1, ErbB2, ErbB3, and ErbB4 (49). In this study, three of the receptors 
(not ErbB3) were identified in mild/moderate patients. The ligand of these receptors is betacellulin 
(BTC), and a previous study indicated that it might be useful in preventing an excessive fibrotic 
response to viral infections (such as SARS-CoV) by inhibiting EGFR signaling (50).  Similarly, we 
observed an absence of EGFR signaling in healthy cells (Figure S8A), and we therefore consider that 
EGFR inhibitors could be used as a potential treatment for mild/moderate COVID-19. In contrast, L–
R interactions associated with the midkine (MDK) signaling pathway were observed in ciliated, 
secretory, and other cells in healthy, mild/moderate, and severe COVID-19 patients (Figure 4B-C and 
Figure S8A). 

 

3.6 Whole blood bulk transcriptomic data analysis showed genes correlated with the 

sequential organ failure assessment score 

To test whether our identified genes could contribute to immune responses during the progression of 
COVID-19 severity, we downloaded public whole blood bulk transcriptomic data of COVID-19 
patients for validation (39) and analyzed alterations in gene expression levels in terms of the 
sequential organ failure assessment (SOFA) score. The transcripts per million (TPM) method was 
used to normalize the transcript counts. We then calculated and ranked the Pearson correlations 
between every single gene TPM value and the SOFA scores in COVID-19 patients (Table S9). We 
found that 26 genes were highly positively correlated with SOFA scores (Pearson’s r > 0.50) (Figure 
5A), indicating that gene expression levels increased with the severity of clinical organ failure in 
critically ill patients. Intriguingly, among the top 26 correlated genes, two were from the S100 gene 
family: S100A8 and S100A12. According to our scRNA-seq data findings in this study, these two 
genes were differentially expressed in patients with severe COVID-19 (Figure 2C). We further 
calculated the gene average TPM value for each SOFA score, including several S100 and other 
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genes, as shown in Figure 5A (Figure 5B). The S100A8/A12 expression increased with an increasing 
SOFA severity score. The expression of S100A9 showed a certain correlation with the SOFA score (r 

= 0.22), but S100A11 was negatively correlated. Notably, we found that matrix metalloproteinase 
family members (MMPs), MMP8 and MMP27, were highly correlated. It has been reported that 
MMPs contribute to the COVID-19 severity (51–53). Taken together, our findings indicate the 
critical roles of S100 family members and other genes (e.g., MMPs) in the progression of COVID-
19. 

 

4 Discussion 

SARS-CoV-2 infection causes immune response alterations during the progression of COVID-19 
severity, such as the enhanced expression of pro-inflammatory cytokines (i.e., cytokine storm) and 
considerably different expressions of genes associated with ISGs, MHC I, and II families (11–
13,21,24,41,54). However, the GRN changes in terms of a wide range of cell types and COVID-19 
severity (healthy, mild/moderate, and severe) require further description. In this study, therefore, we 
conducted a SCENIC analysis to capture similar and dissimilar regulons, and we then finely 
constructed GRN landscape for both healthy individuals and COVID-19 patients across a wide range 
of cell types by integrating scRNA-seq data relating to the site of infection (respiratory epithelial 
cells) and peripheral blood (peripheral immune system). Further analyses of the target genes of 
regulators and cell-cell communication revealed detailed intracellular and extracellular immune 
responses. Lastly, the comparison of findings using different data sources and the validation of 
certain key findings using bulk RNA-seq data provided greater robustness to our results. 

We identified cell type- and condition-specific activated regulons (including TFs and their targets) in 
a wide range of cell types, and we demonstrated that some cells, such as goblet, squamous, and 
monocyte cells, display a strong response against SARS-CoV-2 infection. For example, compared to 
activated STAT2 and KLF5 in mild/moderate goblet cells, SPDEF, ELF3, XBP1, and NR2F6 were 
found to be activated in patients with severe COVID-19. Similarly, SPDEF and ELF3 were found to 
be activated in squamous cells, and CEBPD and FOS were shared between CD14 and CD14 
monocytes in severe COVID-19. We then constructed and compared GRNs. Most importantly, by 
integrating nasopharyngeal swab and PBMCs data, we discovered the regulation of S100A8 and 
S100A9 expression, which could help to clarify maladaptive responses to SARS-CoV-2 infection in a 
large range of cell types. Specifically, we found that SPEDEF and ELF3 co-upregulated S100A9 in 
goblet and squamous cells in severe patients, whereas CEBPD upregulated S100A8 and S100A9 in 
monocyte cells. In contrast, S100A8 and S100A9 were downregulated by MAFF and GRHL1 in 
healthy squamous cells. We also observed that during severe COVID-19, S100A8 and S100A9 were 
considerably upregulated in multiple other cell types, such as B cells, granulocytes, PB, and DC. The 
expression level of S100A8 was further found to have a high positive correlation with the SOFA 
score (Figure 5). A previous study reported the same regulation in T, B, NK, and DC cells (33).  
However, compared to healthy individuals, we did not observe upregulation of S100A8 and S100A9 
in CD4, CD8, and gd T cells in severe patients. In addition, we identified regulators of many 
cytokines, ISGs, or MHC II family genes in severe patients, such as gene regulations of goblet 
(CLCL17, EIF2AK2, UBE2L6), monocyte (HLA-DRA, SELL, TRIM25, UBE2L6), CD8 T 
(SAMD9), NK (EIF2AK2, SAMD9, DDX60, PARP14, MX1, PARP9, ADAR, TXNIP, ISG15, 
IFIT3, EPSTI1, SP110, SAMD9L, IFI44L, TAP1), granulocyte (RSAD2, MX1, IFI44, EPSTI1, 
EIF2AK2, IFIT3, IFI44L, ISG15), and DC cells (MX1, RSAD2, IFI44L, IFI44, ISG15, IFIT3) 
(Figure 2, Figure S5, and S6). Notably, although ciliated cells play critical roles in viral entry, we did 
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not detect distinct regulators in infected patients. Regulators RFX2 and RFX3 were shared between 
healthy individuals and COVID-19 patients, but the two regulators showed different target genes or 
target expression levels in the two sample types (Figure S5). Further CCC analysis demonstrated that 
compared to severe patients, EGFR signaling has an important role when ciliated cells interact with 
other cells in mild/moderate patients.  

We also used PBMC data to investigate cell-cell interactions among immune cells. The chemokine 
(C-C motif) signaling pathway was found to be unique to severe patients compared to healthy 
individuals (Figure S8B-C). This pathway mainly contributes to pathways from CD8 T and NK cells 
to CD14 monocytes via the CCL5 and CCR1 ligand-receptor pairs. A recent study demonstrated that 
CCL5 contributes to the recruitment of inflammatory cells (mainly T cells and macrophages), and 
blockading CCR5 signaling using leronlimab (a monoclonal antibody) was conducted to treat 
COVID-19-associated cytokine storms (55). 

In summary, this study integrated healthy individuals and COVID-19 patient data from two 
independent sources (nasopharyngeal swabs and PBMCs scRNA-seq data), compared the findings of 
each dataset, and validated certain key findings using bulk RNA-seq data. By separately analyzing 
the data from each study, we revealed the GRN landscape and identified similar and dissimilar 
regulons and pathways under different conditions (i.e., healthy individuals and COVID-19 patients). 
Regulators of certain key genes (e.g., S100A8/A9) were found to differ among cell types and with 
disease severity. However, when comparing and combining the two independent studies, we found 
that virus-infected individuals had certain common and/or unique features at different infection sites. 
For example, (i) certain activated regulators (such as XBP1, FOS, STAT1, and STAT2) were shared 
in both respiratory epithelial and peripheral blood; (ii) certain genes (e.g., PTMA) were differentially 
expressed in T cells from independent studies; (iii) although S100A8/A9 were found to be 
upregulated in both respiratory epithelial and peripheral blood, their relative regulators differed (e.g.,  
SPEDEF and ELF3 were found in goblet and squamous cells and CEBPD was seen in monocyte 
cells, which showed that regulators of a gene were specific to the infection site, cell type, and 
condition. Collectively, the results using our approach provide clues to comprehensively 
understanding the diverse disease mechanisms of SARS-CoV-2 infection. These findings can be used 
as a rich resource for predicting, preventing, and treating COVID-19 in a wide range of cell types, 
which may help control severe symptoms. 

This study has several limitations. The numbers of epithelial cell types were not equal: some were 
obtained in large quantities and others in small quantities. It is acknowledged that a small number of 
cells may influence transcriptional landscapes. In the case of PBMC data, we lacked those associated 
with mild and moderate COVID-19. Technical issues, such as those encountered with scRNA-seq 
techniques, have led to certain limitations that may be difficult to overcome. Nonetheless, by 
integrating additional information and data from independent sources where available, some of these 
limitations may be resolved. Therefore, further studies using large-scale data and finer-grained 
descriptions of COVID-19 severity categories would help to fully understand GRNs, their gradual 
shift, and dynamics in terms of COVID-19 severity progression. Future characterizing the specific 
role of some genes (e.g., S100 family members) in the immune response to SARS-CoV-2 infection, 
particularly in relation to disease severity, is needed in vitro and vivo experiments. 
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Figure legends 

Figure 1. Characterization of nasopharyngeal swabs and PBMCs data 

(A) Cell types in nasopharyngeal swabs and PBMCs data and their percentage proportion in patients 
with different COVID-19 severity. Middle: cell type visualization on UMAP plots. Right: cell 
proportion associated with disease severity (mild/moderate and severe) and healthy cells. (B) 
Heatmap of the area under the curve (AUC) scores of regulons estimated per cell type by SCENIC. 
Detected regulons are represented by their corresponding transcription factors in the right-hand 
columns. Columns represent AUC scores of cell types. For each condition, the column order is the 
same as the label order in (A). Asterisks behind the TFs represent commonly identified TFs between 
nasopharyngeal swabs and PBMCs. (C) Number of differentially expressed genes (DEGs) when 
comparing COVID-19 (mild/moderate, severe) and healthy cells. Yellow and light-blue colors 
represent upregulated and downregulated genes, respectively. The corresponding gene numbers are 
shown at the top and bottom of each bar. In the upper panel, bars without dots indicate identified 
DEGs by comparing mild/moderate disease to healthy cells, while bar with dots indicate DEGs when 
comparing severe disease and healthy cells. (D) GO (biological process) enrichment analysis to 
compare upregulated genes found in diseased and healthy cells. 
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Figure 2. Gene regulatory networks of specific cell types 

(A) The gene regulatory networks (GRNs) of specific cell types from COVID-19 patients were 
constructed using Cytoscape software. In the network, the red, yellow, and light blue colors represent 
transcription factors, upregulated, and downregulated genes, respectively. (B) UMAP plot 
visualization of TF expression (left) and AUC score (right) of each regulon for nasopharyngeal swabs 
and PBMCs data. (C) The dot plots represent target gene expressions of detected TFs in (B). The 
target genes include specific cytokines, interferon-stimulated genes (ISGs), and inflammatory genes 
(S100A8, S100A9). 

 

Figure 3. Overlap of DEGs in nasal and PBMC T cells when comparing healthy and severe 

COVID-19 cases  

Violin plots represent expressions of overlapping DEGs in (A) nasopharyngeal swabs and (B) PBMC 
data. The asterisk following each gene indicates a significant difference between healthy and severe 
COVID-19 cases. Significance: * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

Figure 4. Comparisons between mild/moderate and severe COVID-19 from nasopharyngeal 

swabs  

(A) Number of identified DEGs when comparing severe and mild/moderate COVID-19. Yellow and 
light-blue colors represent upregulated and downregulated genes, respectively. The right panel 
indicate the results of GO enrichment analysis using DEGs based on biological process. Cell-cell 
communication (CCC) in (B) mild/moderate and (C) severe COVID-19. The left-hand networks of 
(B) and (C) represent cell interaction numbers among cell types. Cell types are represented by circles 
with different colors. Circle size indicates the number of cells of a cell type, while the edge width 
corresponds to the numbers of ligand-receptor (L–R) interactions. The Bubble plots (right-hand side 
of B and C) show all the significant L–R pairs associated with signaling pathways from a given cell 
type to another one. The dark blue to red colors relate to the communication probability (from 
minimum to maximum). 

 

Figure 5. Relationships between gene expressions and SOFA scores in COVID-19 samples 

(A) Pearson correlations between gene expression and sequential organ failure assessment (SOFA) 
score. Top 26 genes with over 0.5 correlations are shown. Transcripts per million (TPM) were used 
for RNA-seq normalization. (B) Average TPM values of selected genes for each SOFA score. The 
selected genes include some S100 family members and some genes from the top 26 gene list in (A). 
For each bar plot, the Pearson’s “r” between the TPM values and SOFA scores of all related samples 
is shown. 

 

Supplementary material 
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Supplementary Figure S1. Characterization of (A) nasopharyngeal swabs and (B) PBMCs 

UMAP plots showing cell types associated with condition (healthy, mild/moderate, and severe). The 
pie plots indicate the total number of cells used in the study, and the bar plots show the number of 
genes in each cell type. The lower and upper hinges of the box represent the first and third quartiles 
(25th and 75th percentiles), the median is marked within the box, and the dots represent outliers. 
Upper whisker = 75th percentile + 1.5* interquartile range (IQR). Lower whisker = 25th percentile – 
1.5*IQR. 

Supplementary Figure S2. Characterization of nasopharyngeal swabs data 

(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC. 
Detected regulons are represented by their corresponding transcription factors in the right-hand 
columns. (B) GO (biological process) enrichment analysis using downregulated genes to compare 
mild/moderate to healthy cells. (C) GO enrichment analysis using downregulated genes to compare 
severe to healthy cells. 

Supplementary Figure S3. Characterization of PBMC data 

(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC. 
Detected regulons are represented by their corresponding transcription factors in the right-hand 
columns. (B) GO enrichment analysis using downregulated genes to compare severe to healthy cells. 

Supplementary Figure S4. Expressions of selected genes for nasopharyngeal swabs (A) and 

PBMC (B) data 

The violin plot shows gene expressions across cell types and conditions (healthy, mild/moderate, and 
severe COVID-19). Significant expression levels of S100A8/A9 when comparing healthy and severe 
COVID-19 patients are shown as follows: * P < 0.05, ** P < 0.01, *** P < 0.001. 

Supplementary Figure S5. Gene regulatory networks of cell types from nasopharyngeal swabs  

(A) Each panel shows the GRNs in healthy, mild/moderate, and severe COVID-19 from top to 
bottom, respectively. The slash symbol represents no observed regulons or DEGs. (B). GRNs of 
healthy squamous cells. In the network, the red, yellow, and light-blue colors represent TF, 
upregulated, and downregulated genes, respectively.  

Supplementary Figure S6. Gene regulatory networks of cell types from PBMCs 

Each panel represents the GRNs in healthy and severe COVID-19 groups from top to bottom, 
respectively. The slashed symbol represents no observed regulons or DEGs. In the network, the red, 
yellow, and light-blue colors represent TF, upregulated, and downregulated genes, respectively. 

Supplementary Figure S7. GO analysis of downregulated genes in squamous and goblet cells 

The GO enrichment analysis is based on the biological processes and identified downregulated genes 
when comparing severe and mild/moderate COVID-19 patients. 

Supplementary Figure S8. CCC analysis using nasopharyngeal swab and PBMC data 
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(A) CCC analysis of healthy cells from nasopharyngeal swabs. (B) and (C) represent CCC analysis of 
healthy and severe COVID-19 cells from PBMCs, respectively. Only significant L–R interactions 
associated with signaling pathways are shown in bubble plots.  

 

Supplementary Table S1. Numbers of cell types in nasopharyngeal swabs and PBMC  

Supplementary Table S2. DEGs of nasal epithelia comparing mild and moderate COVID-19 to 

healthy control across cell types. 

Supplementary Table S3. DEGs of nasal epithelia comparing severe COVID-19 to healthy 

control across cell types. 

Supplementary Table S4. DEGs of PBMCs comparing severe COVID-19 to healthy control 

across cell types. 

Supplementary Table S5. GO and KEGG enrichment analyses using DEGs corresponding to 

Table S2. 

Supplementary Table S6. GO and KEGG enrichment analyses using DEGs corresponding to 

Table S3. 

Supplementary Table S7. GO and KEGG enrichment analyses using DEGs corresponding to 

Table S4. 

Supplementary Table S8. DEGs of nasal epithelia comparing severe to mild/moderate COVID-

19 across cell types. 

Supplementary Table S9. Ranked Pearson’s “r” between TPM values and SOFA scores using 

COVID-19 samples. 
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Figure 1. Characterization of nasopharyngeal swabs and PBMCs data
(A) Cell types in nasopharyngeal swabs and PBMCs data and their percentage proportion in patients with different COVID-19 severity. Middle: cell type visualization on UMAP plots. 
Right: cell proportion associated with disease severity (mild/moderate and severe) and healthy cells. (B) Heatmap of the area under the curve (AUC) scores of regulons estimated per cell 
type by SCENIC. Detected regulons are represented by their corresponding transcription factors in the right-hand columns. Columns represent AUC scores of cell types. For each 
condition, the column order is the same as the label order in (A). Asterisks behind the TFs represent commonly identified TFs between nasopharyngeal swabs and PBMCs. (C) Number of 
differentially expressed genes (DEGs) when comparing COVID-19 (mild/moderate, severe) and healthy cells. Yellow and light-blue colors represent upregulated and downregulated genes, 
respectively. The corresponding gene numbers are shown at the top and bottom of each bar. In the upper panel, bars without dots indicate identified DEGs by comparing mild/moderate 
disease to healthy cells, while bar with dots indicate DEGs when comparing severe disease and healthy cells. (D) GO (biological process) enrichment analysis to compare upregulated 
genes found in diseased and healthy cells.
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Figure 2. Gene regulatory networks of specific cell types
(A) The gene regulatory networks (GRNs) of specific cell types from COVID-19 patients were constructed 

using Cytoscape software. In the network, the red, yellow, and light blue colors represent transcription 

factors, upregulated, and downregulated genes, respectively. (B) UMAP plot visualization of TF expression 

(left) and AUC score (right) of each regulon for nasopharyngeal swabs and PBMCs data. (C) The dot plots 

represent target gene expressions of detected TFs in (B). The target genes include specific cytokines, 

interferon-stimulated genes (ISGs), and inflammatory genes (S100A8, S100A9).
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Figure 3. Overlap of DEGs in nasal and PBMC T cells when comparing healthy and severe 
COVID-19 cases 
Violin plots represent expressions of overlapping DEGs in (A) nasopharyngeal swabs and (B) 

PBMC data. The asterisk following each gene indicates a significant difference between healthy and 

severe COVID-19 cases. Significance: * P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure 4. Comparisons between mild/moderate and severe COVID-19 from nasopharyngeal swabs 
(A) Number of identified DEGs when comparing severe and mild/moderate COVID-19. Yellow and light-

blue colors represent upregulated and downregulated genes, respectively. The right panel indicate the results 

of GO enrichment analysis using DEGs based on biological process. Cell-cell communication (CCC) in (B) 

mild/moderate and (C) severe COVID-19. The left-hand networks of (B) and (C) represent cell interaction 

numbers among cell types. Cell types are represented by circles with different colors. Circle size indicates 

the number of cells of a cell type, while the edge width corresponds to the numbers of ligand-receptor (L–R) 

interactions. The Bubble plots (right-hand side of B and C) show all the significant L–R pairs associated 

with signaling pathways from a given cell type to another one. The dark blue to red colors relate to the 

communication probability (from minimum to maximum).
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Figure 5. Relationships between gene expressions and SOFA scores in COVID-19 samples
(A) Pearson correlations between gene expression and sequential organ failure assessment (SOFA) score. 

Top 26 genes with over 0.5 correlations are shown. Transcripts per million (TPM) were used for RNA-seq 

normalization. (B) Average TPM values of selected genes for each SOFA score. The selected genes 

include some S100 family members and some genes from the top 26 gene list in (A). For each bar plot, 

the Pearson’s “r” between the TPM values and SOFA scores of all related samples is shown.

r = 0.59 r = –0.10r = 0.22

r = 0.62 r = 0.60r = 0.60

r = 0.60 r = 0.58r = 0.58

r = 0.57 r = 0.55r = 0.56
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Supplementary Figure S1. Characterization of (A) nasopharyngeal swabs and (B) PBMCs
UMAP plots showing cell types associated with condition (healthy, mild/moderate, and severe). The pie 

plots indicate the total number of cells used in the study, and the bar plots show the number of genes in each 

cell type. The lower and upper hinges of the box represent the first and third quartiles (25th and 75th 

percentiles), the median is marked within the box, and the dots represent outliers. Upper whisker = 75th 

percentile + 1.5* interquartile range (IQR). Lower whisker = 25th percentile – 1.5*IQR.



Supplementary Figure S2. Characterization of nasopharyngeal swabs data
(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC. 

Detected regulons are represented by their corresponding transcription factors in the right-hand columns. 

(B) GO (biological process) enrichment analysis using downregulated genes to compare mild/moderate to 

healthy cells. (C) GO enrichment analysis using downregulated genes to compare severe to healthy cells.
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Supplementary Figure S3. Characterization of PBMC data
(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC. 

Detected regulons are represented by their corresponding transcription factors in the right-hand columns. 

(B) GO enrichment analysis using downregulated genes to compare severe to healthy cells.
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Supplementary Figure S4. Expressions of selected genes for nasopharyngeal swabs (A) and PBMC 
(B) data
The violin plot shows gene expressions across cell types and conditions (healthy, mild/moderate, and 

severe COVID-19). Significant expression levels of S100A8/A9 when comparing healthy and severe 

COVID-19 patients are shown as follows: * P < 0.05, ** P < 0.01, *** P < 0.001.
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Supplementary Figure S5. Gene regulatory networks of cell types from nasopharyngeal swabs 
(A) Each panel shows the GRNs in healthy, mild/moderate, and severe COVID-19 from top to 

bottom, respectively. The slash symbol represents no observed regulons or DEGs. (B). GRNs of 

healthy squamous cells. In the network, the red, yellow, and light-blue colors represent TF, 

upregulated, and downregulated genes, respectively. 
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Supplementary Figure S6. Gene regulatory networks of cell types from PBMCs
Each panel represents the GRNs in healthy and severe COVID-19 groups from top to bottom, respectively. 

The slashed symbol represents no observed regulons or DEGs. In the network, the red, yellow, and light-

blue colors represent TF, upregulated, and downregulated genes, respectively.
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Supplementary Figure S7. GO analysis of downregulated genes in squamous and goblet cells
The GO enrichment analysis is based on the biological processes and identified downregulated genes 

when comparing severe and mild/moderate COVID-19 patients.
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Supplementary Figure S8. CCC analysis using nasopharyngeal swab and PBMC data
(A) CCC analysis of healthy cells from nasopharyngeal swabs. (B) and (C) represent CCC analysis of 

healthy and severe COVID-19 cells from PBMCs, respectively. Only significant L–R interactions 

associated with signaling pathways are shown in bubble plots. 
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