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Abstract

Introduction: Infection with SARS-CoV-2 leads to coronavirus disease 2019 (COVID-19), which
can result in acute respiratory distress syndrome and multiple organ failure. However, its
comprehensive influence on pathological immune responses in the respiratory epithelium and
peripheral immune cells is not yet fully understood.

Methods: In this study, we integrated multiple public scRNA-seq datasets of nasopharyngeal swab
and peripheral blood results to investigate the gene regulatory networks (GRNs) of healthy
individuals and COVID-19 patients with mild/moderate and severe disease, respectively. Similar and
dissimilar regulons were identified within or between epithelial and immune cells during COVID-19
severity progression. The relative transcription factors (TFs) and their targets were used to construct
GRNs among different infection sites and conditions.

Results: Between respiratory epithelial and peripheral immune cells, different TFs tended to be used
to regulate the activity of a cell between healthy individuals and COVID-19 patients, although they
had some TFs in common. For example, XBP1, FOS, STAT1, and STAT2 were activated in both the
epithelial and immune cells of virus-infected
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individuals. In contrast, severe COVID-19 cases exhibited activation of CEBPD in peripheral
immune cells, while CEBPB was exclusively activated in respiratory epithelial cells. Moreover, in
patients with severe COVID-19, CEBPD upregulated S100A8 and SI00A9 in CD14 and CD16
monocytes, while ST00A9 genes were co-upregulated by different regulators (SPEDEF and ELF3) in
goblet and squamous cells. The cell-cell communication analysis suggested that epidermal growth
factor receptor signaling among epithelial cells contributes to mild/moderate disease, and chemokine
signaling among immune cells contributes to severe disease.

Conclusions: This study identified cell type- and condition-specific regulons in a wide range of cell
types from the initial infection site to the peripheral blood, and clarified the diverse mechanisms of
maladaptive responses to SARS-CoV-2 infection.

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a contagious
disease known as Coronavirus Disease 2019 (COVID-19), which spread quickly globally and
resulted in the COVID-19 pandemic. According to the World Health Organization (WHO), there had
been more than 619 million cases worldwide (including over 6.5 million deaths) by the beginning of
October 2022. Although the vast majority of infected individuals have asymptomatic, moderate, or
mild symptoms, a proportion of cases require hospitalization and intensive care, or even progress to
death (1-4). SARS-CoV-2 enters epithelial cells, assembles its structures and nucleocapsids, is
released, and subsequently stimulates immune cells (such as macrophages and dendritic cells) by
inducing inflammatory factors. Finally, its antigen is presented via histocompatibility complexes [
and II (MHC I and II) to activate humoral and cellular immunities that are mediated by B and T cells
to induce the production of cytokines and antibodies (5—10). The severity of inflammation can lead to
cytokine storms in some COVID-19 patients (11-14).

COVID-19 affects patients differently, and distinct features have been noted. For example,
immunological signatures are altered during severe infection, and levels of a wide range of pro-
inflammatory cytokines (such as SI00A8/A9, interleukin 1 beta, interleukin 6 (IL-6), IL-8, CXCL10,
and tumor necrosis factor alpha (TNFa)) are dramatically increased (15—18). Compared to severe
disease, the substantial expression of genes associated with interferon (IFN) responses (type I in
particular) has been observed in cells (such as epithelia) in mild or moderate COVID-19 disease (19—
21). Additionally, patients with severe COVID-19 show activation of neutrophils (22,23) and
lymphocyte exhaustion (24,25). Given the distinct antiviral immunity among cell types during the
progression of SARS-CoV-2 infection, various therapeutic strategies have been developed to
improve COVID-19 treatment (13,26). For example, targeting cytokine storms improves outcomes
and reduces mortality in elderly patients with COVID-19 (27). In this respect, Tocilizumab, an IL-6
pathway inhibitor, improved the clinical manifestations in 21 patients with severe and critical
COVID-19 (28).

Multiple studies have been conducted to date to investigate alterations associated with immune
responses, with the aim of providing deeper insights into the roles of the nasal, upper, and lower
airway tissues and peripheral blood (21,29-32). A large-scale single-cell transcriptome atlas of the
lungs and peripheral blood of COVID-19 patients has also been compiled (33). However, a detailed
analysis of the gene regulatory changes in both respiratory epithelial and peripheral immune cells
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during progression to severe COVID-19 is required to completely understand aberrant and protective
immune responses to SARS-CoV-2 infection.

Therefore, in this study, we integrated single-cell RNA sequencing data from nasopharyngeal swabs
and peripheral blood mononuclear cells (PBMCs) to capture the immune response at the site of
infection (epithelial cells) and of the peripheral immune system. We found that epithelial cells (e.g.,
squamous and goblet cells) and immune cells (e.g., CD14 and CD16 monocyte cells) exhibit
substantial phenotypic differences after SARS-CoV-2 infection. The transcription factor regulatory
network construction underlies heterogeneous immune responses during progression to severe
COVID-19 among cell types from different infection sites. Furthermore, we demonstrated the
important role of some inflammatory genes (such as SIO0A8 and S100A9) in the pathogenesis of
COVID-19 and found that regulators of these critical genes can be unique to cell types and
conditions. A cell-cell communication analysis suggested that epidermal growth factor receptor
(EGFR) signaling in epithelial cells may contribute to mild/moderate COVID-19. Collectively, our
work reveals and clarifies the mechanisms involved in maladaptive responses to SARS-CoV-2
infection and provides a rich resource for predicting, preventing, and treating SARS-CoV-2 infection
in respiratory epithelial cells and peripheral immune cells.

2 Materials and Methods

2.1 Data collection

Single-cell RNA sequencing (scRNA-seq) data from nasopharyngeal swabs and PBMCs were
collected (21,31). The nasal scRNA-seq data are publicly available for exploration and download via
the single-cell portal (https://singlecell.broadinstitute.org/single cell/study/SCP1289/), and the
PBMC:s data are available for viewing and downloading from the COVID-19 Cell Atlas
(https://www.covid19cellatlas.org/#wilk20) hosted by the Wellcome Sanger Institute.

Biological samples of nasopharyngeal swabs were collected from the University of Mississippi
Medical Center between April and September 2020, and eligible participants for blood samples were
recruited into the Stanford University ICU Biobank study between March 2020 and April 2020. With
respect to the nasal epithelial data, eight individuals were removed from our study based on the
following criteria: (1) healthy individuals with a recent history of COVID-19 and (2) individuals who
needed intensive care units but without a recent history of COVID-19. In addition, because of the
small numbers of cells collected from mast cells (6 cells), plasmacytoid DCs (11 cells), and
enteroendocrine cells (1), these cell types were excluded from our analyses. A total of 15 healthy
participants and 35 patients diagnosed with COVID-19 were ultimately studied. According to the
COVID-19 severity stratification of the World Health Organization (WHO) guidelines, these 35
patients were further divided into two groups: those with mild/moderate disease (14 patients) and
those with severe disease (21 patients). WHO scoring system for healthy, mild/moderate, and severe
cells were represented by Control. WHO 0, COVID19 WHO 1-5, and COVID19 WHO 6-8. With
respect to the PBMC scRNA-seq data, six healthy and seven severely ill individuals were studied.
Processed count matrices with embeddings were used only for the PBMCs. The cell types in studied
scRNA-seq data were annotated using the original papers.

2.2 Single-cell RNA sequencing data processing
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The Seurat package (version 4.0.4) (34) implemented in R (version 4.1.0) was used to explore the
single-cell transcriptome data. The count matrices were normalized using Seurat NormalizeData.
Specifically, the log-normalized method was used to normalize the total feature expressions per cell,
multiply them by a scaling factor (10,000 by default), and further log-transform the results. Highly
variable genes were then identified using the FindVariableFeatures function (3,000 top variable
features were set). The percentage of mitochondrial genes was regressed out using the ScaleData
function. The scaled data were passed to run a principal component analysis (PCA) dimensionality
reduction algorithm. The FindNeighbors and FindClusters functions were then employed to cluster
the cells, and a graph-based clustering algorithm that calculates the k-nearest neighbors and
constructs a shared nearest neighbor graph, was applied to identify cell clusters. Nonlinear
dimensionality reduction (RunUMAP function) and Uniform Manifold Approximation and
Projection (UMAP) were then conducted to visualize the clustering results in two dimensions. To
identify differentially expressed genes (DEGs) when comparing any two given groups, the
FindMarkers function in Seurat was applied with the following configurations: test.use = “wilcox” (a
Wilcoxon Rank Sum test), min.pct = 0.25, logfc.threshold = 0.25, and only.pos = FALSE. An
additional adjusted P-value threshold of < 0.05 was used for filtering DEGs.

2.3 Gene regulatory network analysis and visualization

To explore the regulatory landscape across cell types between healthy and COVID-19 patients, the
SCENIC (single-cell regulatory Network Inference and Clustering, version 1.2.4) (35) tool was used.
SCENIC is a set of tools that can infer transcription factors (TFs) and construct gene regulatory
networks (GRNs) from scRNA-seq data. The required human RcisTarget database was downloaded
from https://resources.aertslab.org/cistarget/. GENIE3 and RcisTarget in SCENIC were used to
identify potential direct binding targets (called regulons) based on co-expression modules and a TF
motif analysis. Here, the regulon represented one TF and its targets. Utilizing the AUCell algorithm,
the activity of regulons in each individual cell were analyzed and evaluated by calculating the area
under the recovery curve (AUC) score. To identify specific regulators of cell type-specifics and
conditions (healthy, mild/moderate, and severe COVID-19), we calculated the average regulon
activity by cell type in each condition and merged them to create an AUC score heatmap via the
pheatmap package in R. The AUC score matrix of all regulons in each cell was submitted to the
Seurat object to project the AUC (as well as TF expression) onto UMAP plots. In addition, in terms
of each condition, the targets of the identified TFs in each cell type were filtered using the
corresponding DEGs. Finally, GRNs for each cell type and condition, which comprised the observed
TFs and their differentially expressed target genes, were constructed and displayed using Cytoscape
software (version 3.9.1) (36).

2.4 Function and pathway enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of gene sets of interest were performed using the clusterProfiler (version 4.0.5) (37) package
in R. The GO enrichment analysis was conducted based on biological processes, and GO annotation
data were provided by AnnotationHub. KEGG annotation data are available in the KEGG database

(https://www.genome.jp/kegg/). An adjusted P-value < 0.05 was considered significantly enriched.
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2.5 Cell-cell communication analysis

The CellChat (version 1.5.0) (38) package in R was used to infer and analyze the cell-cell
communication (CCC) among cell types. “Secreted Signaling” was set to explore intercellular
communication networks, and the communication probability was then computed to infer the cellular
communication network. To calculate the aggregated CCC network, the number of links was counted
or the communication probability summarized. Collectively, based on gene expressions and prior
knowledge of the interactions, all significant communications (ligand-receptor interactions)
associated with signaling pathways from one cell type to other cell types were determined.

2.6 'Whole blood bulk transcriptomic data analysis

Pre-processed whole-blood bulk transcriptomic data are publicly available for download at
GEO (accession number GSE157103) (39). Transcript counts were normalized using the transcript
per million (TPM) method. Samples were selected from a total of 126 samples according to the
following criteria: (i) select COVID-19 infection samples and (ii) samples were removed if the
sequential organ failure assessment (SOFA) scores were unknown. A final total of 56 samples were
used in this study. The selected samples were then grouped based on the SOFA score and the
Pearson’s correlations calculated between the TPM and SOFA scores.

3 Results

3.1 Single-cell characterization of nasopharyngeal swabs and PBMCs

To better understand and compare the host response to SARS-CoV-2 infection at the initial infection
site and peripheral immune cells, we obtained single-cell RNA sequencing (scRNA-seq) data from
nasopharyngeal swabs (21) and peripheral blood mononuclear cells (PBMCs) (31) under three
different conditions: healthy individuals and COVID-19 infection patients with mild/moderate and
severe disease. Metadata, such as cell type annotation and embedding of PBMC data, were mainly
obtained from original studies. As mentioned in the Materials and Methods section, certain cells
associated with nasal scRNA-seq data were removed in this study based on the criteria described
therein. Data from nasopharyngeal swabs and PBMC were then processed using the same protocols,
including those relating to data normalization, dimensionality reduction, and cell clustering, and the
results were visualized on the UMAP plot. A total of 26,894 cells from the nasal mucosa and 44,721
cells from PBMCs were studied, comprising 15 and 13 cell types, respectively (Figure 1A, Figure S1,
and Table S1). Of the cell types, SARS-CoV-2 induced CD14 monocyte expansion and NK cell loss,
while the B and T cell abundances were similar between healthy and COVID-19 patients. In addition,
ciliated and goblet cells from nasal epithelial cells and dendritic cells (DCs) from PBMCs exhibited
the highest number of expressed genes.

3.2 Similarity and dissimilarity of regulons and pathways were identified in respiratory
epithelial and peripheral immune cell types associated with COVID-19

To investigate the gene regulatory network (GRN) changes underlying COVID-19 manifestations,
we conducted single-cell regulatory network inference and clustering (SCENIC) analyses (35).
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Regulons, including transcription factors (TFs) and their direct target genes, were detected in each
cell type. We then calculated the average area under the recovery curve (AUC) scores per cell type to
estimate regulon activities. Using a SCENIC analysis, we identified potential TFs in terms of the cell
type and three condition (healthy individuals and COVID-19 infections with mild/moderate and
severe disease). By comparing nasopharyngeal swabs and PBMCs, we found that there were notable
differences between the many identified regulons among conditions or infection sites (i.e., nasal or
peripheral blood), while some were found to be shared, and XBP1, FOS, STATI1, and STAT2 were
activated in both the epithelial and peripheral immune cells of virus-infected individuals (Figure 1B).
In addition, when comparing the detected regulons across cell types, we found that some cell types
were distinguished by different regulon combinations among the three conditions, but some were not
(Figure S2A). Specifically, epithelial cells, such as ciliated cells and mitotic basal cells, unexpectedly
shared common TFs, whereas distinct TFs were identified in other epithelia, such as basal cells,
squamous cells, and goblet cells. For example, RFX2 and RFX3 showed high activity in ciliated cells
regardless of disease severity, while XBP1, NR2F6, SPDEF, and ELF3 were preferentially activated
in goblet cells in patients with severe COVID-19, and KLF5 and STAT2 were coactivated in patients
with mild/moderate COVID-19. Furthermore, NR2F6, SPDEF, and ELF3 were found to be activated
in squamous cells in patients with severe COVID-19, and this activity was also shared with goblet
cells.

It is of note that we mainly focused on epithelial cells from nasal sScRNA-seq data because we only
obtained a very small number of immune cells, but we then used PBMC data to analyze immune
cells. The PBMC data showed that most regulons were unique to cell types or patient condition
(healthy and severe). For example, CEBPD and FOS were highly activated in both CD14 and CD16
monocyte cells in severe COVID-19 disease, whereas BACH1 exhibited particularly high activation
in CD16 monocyte cells (Figure S3A).

For each cell type, we further analyzed the differentially expressed genes (DEGs) between COVID-
19 patients and healthy individuals, and we then performed GO (biological process) and KEGG
enrichment analyses using these DEGs (Figure 1C-D, Figure S2B and S3B, Table S2-S7). In the case
of nasal epithelial cells, many genes were upregulated in the ciliated cells of patients with mild,
moderate, and severe COVID-19, and they showed enrichment in some functions and pathways, such
as COVID-19, oxidative phosphorylation, protein targeting, and viral gene expression (Table S5-S6).
Surprisingly, we found that squamous cells showed the highest number of downregulated genes (200
genes) during mild/moderate COVID-19, and goblet cells displayed the highest number of
upregulated genes (1,033 genes) during severe COVID-19 (Figure 1C). The 200 deregulated genes
were associated with regulating translation, the cellular amide metabolic process, and RNA splicing,
while the 1,033 upregulated genes were associated with the ATP metabolic process, interleukin-1-
mediated signaling pathway, Wnt signaling pathway, planar cell polarity pathway, response to
decreased oxygen levels, and the viral life cycle (Figure 1C and Figure S2B). Likewise, we found
that compared to the number of upregulated genes, a larger number of genes tended to be
downregulated in most cell types from PBMCs, and the highest differences between healthy and
severe COVID-19 patients were noted in CD14 monocyte cells (Figure 1C). During severe COVID-
19, upregulated genes in both CD14 and CD16 monocyte cells were associated with type I interferon
signaling, response to the virus, positive regulation of cytokine production, and toll-like receptor
(TLR) signaling pathways (Figure 1D). TLRs have been reported to play an important role in
responses to certain infections, and their changes may lead to cytokine storms (14,40). We also found
that I-kappaB kinase/NF-kB signaling was enriched. A recent study suggested that NF-xB might be
associated with a poor pro-inflammatory cytokine production mechanism in the monocytes of
patients severe COVID-19 (32). Other findings based on the GO and KEGG analyses among cell
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types are given in Table S7. These results may provide an important reference for understanding the
mechanisms of cytokine storms in different cell types.

By integrating respiratory epithelial and peripheral immune cells, the SCENIC analysis identified
similar and dissimilar TFs between the conditions. Furthermore, different combinations of these TFs
were common or unique to certain cell types under different conditions. These distinct cell type- or
condition-specific TFs profoundly contribute to transcriptional regulation among cell types during
disease progression. The studies on DEGs indicated different response mechanisms to SARS-CoV-2
occur at different infection sites (based on nasal and peripheral blood data). Specifically, DEGs of
certain cell types were enriched in pathways such as the regulation of cytokine production, response
to decreased oxygen levels, and viral response.

3.3 The construction of a gene regulatory network from nasopharyngeal swabs and PBMCs
evidences immune responses to SARS-CoV-2 infection in different cell types

With our identified cell type- and condition-specific regulons, further studies on TFs and their direct
targets were conducted with the aim of exploring the detailed mechanisms of immune responses at
different infection sites. Our findings suggested that goblet and squamous cells among epithelial
cells, as well as CD14 and CD16 monocyte cells among immune cells, exhibited considerable
differences in not only DEGs but also regulons. We constructed and visualized GRNss (i.e., regulons)
per cell type using the Cytoscape tool (36). The target genes of each TF were further filtered using
the corresponding DEGs in relation to cell types and conditions. We hoped to construct GRNs for all
cell types and conditions; however, some cases failed because there were no remaining target genes
of certain TFs after DEG filtering (i.e., the targets were not differentially expressed and thus the
regulons were removed), or all of the regulons of these cell types or conditions showed very low
activation. As a result, the GRNs of goblet, squamous, CD14, and CD16 monocyte cells, were
constructed (Figure 2). In goblet cells, STAT2 and KLF5 were highly activated and upregulated in
many genes with mild/moderate COVID-19, such as ISGs (PARP14 and IF144L), whereas ELF3,
SBP1, NR2F6, and SPDEF were preferentially activated in severe COVID-19 to regulate the
expression of their targets (Figure 2A). We found that related TFs were expressed, and regulons
showed high AUC scores in the corresponding cell types (Figure 2B and Figure S4). Furthermore,
their target genes, including cytokines, interferon-stimulated genes (ISGs), and S100/Calbindin
genes, were significantly upregulated in severe COVID-19 patients (Figure 2C). For squamous cells,
there were no activated regulons in SPEDEF and ELF3 in mild/moderate COVID-19, but they were
activated in severe COVID-19 (Figure 2A). In summary, SPEDEF and ELF3 were shared between
goblet and squamous cells in severe COVID-19, and S100A9 was co-upregulated. The regulators of
S100A8 were not identified, although they were significantly upregulated in the two cell types.
However, MAFF and GRHL1 downregulated SI00A8 and S100A09, respectively, in healthy
squamous cells (Figure S5). In addition, ELF3 upregulated the expression of SI00A11 in goblet cells
(Figure 2). Similarly, for CD14 and CD16 monocyte cells in severe COVID-19, CEBPD and FOS
were particularly activated in the two cell types, and CEBPD upregulated SI00A8 and S100A9
(Figure 2). We also identified the substantial expression of SELL (an ISGs) in most CD14 monocyte
cells in severe COVID-19. BACH1 was uniquely regulated in CD16 monocytes. Unexpectedly,
HLA-DRA, a major histocompatibility complex II (MHC-II) molecule, was considerably
downregulated in CD14 monocyte cells, but upregulated in CD16 monocyte cells. MHC I molecules
are considered to contribute to the SARS-CoV infection response (40). A recent study demonstrated
that epithelial cells with SARS-CoV-2 RNA+ express only MHC-I and poorly express MHC-II
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family genes (21). However, a previous study discovered that the MHC class II transactivators,
CIITA and CD74, can defend against many viruses, such as SARS-like coronaviruses; therefore,
upregulation of MHC-II family genes may block the entry of viruses (41).

We also constructed GRNs in other respiratory epithelial and peripheral immune cells, such as
ciliated, B, T, and NK cells (Figure S5 and S6). Notably, although certain TFs were shared among
cell types and conditions, their target genes and regulations differed considerably. For example,
RFX2 and RFX3 were activated in ciliated cells under all three conditions, but the majority of targets
were downregulated in mild/moderate COVID-19 patients compared to healthy cells (Figure S5).
Furthermore, RFX3 upregulated most of its target genes in patients with severe COVID-19. For the
NK cells, many ISGs were upregulated by STAT]1 in severe COVID-19, such as EIF2AK2, PARP14,
ISG15, PSMB9Y, MX1, SP110, DDX60, SAMDOL, ADAR, IF144L, IFIT3, EPSTI1, SAMDO (Figure
S6). In patients with severe disease, we also found that TCF4 was activated in B cells, whereas
RUNX3, IKZF1, and EOMES were activated in CDS cells (Figure S6).

By integrating different cell types from nasal or peripheral blood during progression to severe
COVID-19, our findings demonstrated the existence of diverse GRNSs. Intriguingly, we found that
S100A8 and S100A9 were considerably upregulated by different TFs in a wide range of respiratory
epithelial and peripheral immune cells in patients with severe COVID-19 (Figure S4), which suggests
that their upregulation tends to be independent of certain cell types and virus-infection sites but that
different regulators can be used among cell types. Specifically, the systemic upregulation of ST00A8
and S100A9 mainly occurred in goblet, squamous, B, CD14/CD16 monocytes, granulocytes, PB, and
DC. However, their regulators can differ in terms of cell type at different infection sites. SI00A8 and
S100A9 have been reported to be markers of severe COVID-19 (18) and contribute to the recruitment
of immune cells and cytokine storms in megakaryocytes and monocytes (21,33,42).

3.4 Robust DEGs were identified in T cells

To identify genes robustly expressed during the immune response against SARS-CoV-2 infection, we
further observed the overlap of DEGs in T cells from nasal and PBMC scRNA-seq data. Compared
to one type of T cell in the nasal data, three types of T cells were annotated in PBMC data: CD4,
CD8, and gd T cells. We extracted corresponding DEGs when comparing healthy individules and
severe patients to identify overlapping DEGs by comparing one T cell type from nasal data to three T
cell types from PBMC data, and then visualized their expressions in the two datasets (Figure 3). The
majority of overlapping genes were robustly downregulated in patients with severe disease, but only
one overlapping gene, prothymosin alpha (PTMA), was consistently upregulated. Interestingly,
PTMA, the proprotein of thymosin alpha-1 (Tal), has been reported to show increased expression in
CD8 T memory cells in severe disease and slightly reduced activation of T cells in vitro (43), and the
authors indicated that lymphopenia in COVID-19 patients could be relieved by Tal treatment.
Among the overlapping downregulated genes, genetic defects in TCM6/8 may lead to lower intrinsic
immunity to human B-papillomaviruses (-HPVs) in epidermodysplasia verruciformis patients (44).
SUN2 (Sadl and UNC84 domain containing 2) is associated with mitosis, it maintains a repressive
chromatin state, and inhibits HIV-1 infection via association with Lamin A/C (45,46). Previous
studies have also shown that quercetin and resveratrol, inhibitors of thioredoxin-interacting protein
(TXNIP), could be considered as potential therapies for COVID-19 (47,48). However, we found that
TXNIP showed robust downregulation in severe patients, which suggests that its inhibitors may
provide a reduced performance in severe patient treatment to a certain degree.
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3.5 Alterations in enriched pathways and cell-cell communications between mild/moderate
and severe COVID-19 were identified

As nasal epithelial cells mute the antiviral response in severe COVID-19 compared to mild/moderate
patients, and this early failure may underlie and predict severe COVID-19 (21), we analyzed and
compared epithelial cells between mild/moderate and severe COVID-19 patients. There was a greater
upregulation in squamous and goblet cells in patients with severe disease than in those with
mild/moderate (Figure 4A). Upregulated genes in squamous cells were associated with pathways
such as viral entry into the host cell, epidermis development, protein localization, and apoptotic
signaling, while genes in goblet cells were related to protein targeting, response to hypoxia, and viral
gene expression (Figure 4A). Although only a few downregulated genes were identified in squamous
(19 genes) and goblet (50 genes) cells, they were still enriched in certain pathways. For example,
CD74, TNFAIP3, and S100A4 in squamous cells were associated with I-kappaB kinase/NF-kappaB
signaling and interleukin-6 production, while MX1, IFIT1, SP100, and XAF1 in goblet cells were
associated with the type I interferon signaling pathway (Figure S7).

To investigate the ligand-receptor (L—R) interactions among epithelial cells, we performed a cell-cell
communication (CCC) analysis using CellChat (38). Compared to patients with mild/moderate
COVID-19, our CCC analysis suggested that epidermal growth factor receptor (EGFR) signaling
from ciliated cells to other cell types was lost in patients with severe COVID-19 (Figure 4B-C).
EGFR (also known as ErbB1) belongs to a family of receptor tyrosine kinases (ErbB), and ErbB
contains four receptors: ErbB1, ErbB2, ErbB3, and ErbB4 (49). In this study, three of the receptors
(not ErbB3) were identified in mild/moderate patients. The ligand of these receptors is betacellulin
(BTC), and a previous study indicated that it might be useful in preventing an excessive fibrotic
response to viral infections (such as SARS-CoV) by inhibiting EGFR signaling (50). Similarly, we
observed an absence of EGFR signaling in healthy cells (Figure S8A), and we therefore consider that
EGFR inhibitors could be used as a potential treatment for mild/moderate COVID-19. In contrast, L—
R interactions associated with the midkine (MDK) signaling pathway were observed in ciliated,
secretory, and other cells in healthy, mild/moderate, and severe COVID-19 patients (Figure 4B-C and
Figure S8A).

3.6 Whole blood bulk transcriptomic data analysis showed genes correlated with the
sequential organ failure assessment score

To test whether our identified genes could contribute to immune responses during the progression of
COVID-19 severity, we downloaded public whole blood bulk transcriptomic data of COVID-19
patients for validation (39) and analyzed alterations in gene expression levels in terms of the
sequential organ failure assessment (SOFA) score. The transcripts per million (TPM) method was
used to normalize the transcript counts. We then calculated and ranked the Pearson correlations
between every single gene TPM value and the SOFA scores in COVID-19 patients (Table S9). We
found that 26 genes were highly positively correlated with SOFA scores (Pearson’s r > 0.50) (Figure
5A), indicating that gene expression levels increased with the severity of clinical organ failure in
critically ill patients. Intriguingly, among the top 26 correlated genes, two were from the S100 gene
family: S100A8 and SI00A12. According to our scRNA-seq data findings in this study, these two
genes were differentially expressed in patients with severe COVID-19 (Figure 2C). We further
calculated the gene average TPM value for each SOFA score, including several S100 and other
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genes, as shown in Figure SA (Figure 5B). The S100A8/A12 expression increased with an increasing
SOFA severity score. The expression of SI00A9 showed a certain correlation with the SOFA score (r
= (.22), but SI0O0A11 was negatively correlated. Notably, we found that matrix metalloproteinase
family members (MMPs), MMP8 and MMP27, were highly correlated. It has been reported that
MMPs contribute to the COVID-19 severity (51-53). Taken together, our findings indicate the
critical roles of S100 family members and other genes (e.g., MMPs) in the progression of COVID-
19.

4 Discussion

SARS-CoV-2 infection causes immune response alterations during the progression of COVID-19
severity, such as the enhanced expression of pro-inflammatory cytokines (i.e., cytokine storm) and
considerably different expressions of genes associated with ISGs, MHC I, and II families (11—
13,21,24,41,54). However, the GRN changes in terms of a wide range of cell types and COVID-19
severity (healthy, mild/moderate, and severe) require further description. In this study, therefore, we
conducted a SCENIC analysis to capture similar and dissimilar regulons, and we then finely
constructed GRN landscape for both healthy individuals and COVID-19 patients across a wide range
of cell types by integrating scRNA-seq data relating to the site of infection (respiratory epithelial
cells) and peripheral blood (peripheral immune system). Further analyses of the target genes of
regulators and cell-cell communication revealed detailed intracellular and extracellular immune
responses. Lastly, the comparison of findings using different data sources and the validation of
certain key findings using bulk RNA-seq data provided greater robustness to our results.

We identified cell type- and condition-specific activated regulons (including TFs and their targets) in
a wide range of cell types, and we demonstrated that some cells, such as goblet, squamous, and
monocyte cells, display a strong response against SARS-CoV-2 infection. For example, compared to
activated STAT2 and KLF5 in mild/moderate goblet cells, SPDEF, ELF3, XBP1, and NR2F6 were
found to be activated in patients with severe COVID-19. Similarly, SPDEF and ELF3 were found to
be activated in squamous cells, and CEBPD and FOS were shared between CD14 and CD14
monocytes in severe COVID-19. We then constructed and compared GRNs. Most importantly, by
integrating nasopharyngeal swab and PBMCs data, we discovered the regulation of SI00A8 and
S100A9 expression, which could help to clarify maladaptive responses to SARS-CoV-2 infection in a
large range of cell types. Specifically, we found that SPEDEF and ELF3 co-upregulated S100A9 in
goblet and squamous cells in severe patients, whereas CEBPD upregulated SI00A8 and S100A9 in
monocyte cells. In contrast, SIO0A8 and S100A9 were downregulated by MAFF and GRHL1 in
healthy squamous cells. We also observed that during severe COVID-19, SI00A8 and S100A9 were
considerably upregulated in multiple other cell types, such as B cells, granulocytes, PB, and DC. The
expression level of SI00A8 was further found to have a high positive correlation with the SOFA
score (Figure 5). A previous study reported the same regulation in T, B, NK, and DC cells (33).
However, compared to healthy individuals, we did not observe upregulation of SIO0A8 and S100A9
in CD4, CD8, and gd T cells in severe patients. In addition, we identified regulators of many
cytokines, ISGs, or MHC II family genes in severe patients, such as gene regulations of goblet
(CLCL17, EIF2AK2, UBE2L6), monocyte (HLA-DRA, SELL, TRIM25, UBE2L6), CD8 T
(SAMD?9), NK (EIF2AK2, SAMD9, DDX60, PARP14, MX1, PARP9, ADAR, TXNIP, ISG15,
IFIT3, EPSTI1, SP110, SAMDOL, IF144L, TAP1), granulocyte (RSAD2, MX1, IF144, EPSTI1,
EIF2AK2, IFIT3, IF144L, ISG15), and DC cells (MX1, RSAD2, IF144L, IF144, ISG15, IFIT3)
(Figure 2, Figure S5, and S6). Notably, although ciliated cells play critical roles in viral entry, we did
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not detect distinct regulators in infected patients. Regulators RFX2 and RFX3 were shared between
healthy individuals and COVID-19 patients, but the two regulators showed different target genes or
target expression levels in the two sample types (Figure S5). Further CCC analysis demonstrated that
compared to severe patients, EGFR signaling has an important role when ciliated cells interact with
other cells in mild/moderate patients.

We also used PBMC data to investigate cell-cell interactions among immune cells. The chemokine
(C-C motif) signaling pathway was found to be unique to severe patients compared to healthy
individuals (Figure S§B-C). This pathway mainly contributes to pathways from CD8 T and NK cells
to CD14 monocytes via the CCL5 and CCR1 ligand-receptor pairs. A recent study demonstrated that
CCLS5 contributes to the recruitment of inflammatory cells (mainly T cells and macrophages), and
blockading CCRS5 signaling using leronlimab (a monoclonal antibody) was conducted to treat
COVID-19-associated cytokine storms (55).

In summary, this study integrated healthy individuals and COVID-19 patient data from two
independent sources (nasopharyngeal swabs and PBMCs scRNA-seq data), compared the findings of
each dataset, and validated certain key findings using bulk RNA-seq data. By separately analyzing
the data from each study, we revealed the GRN landscape and identified similar and dissimilar
regulons and pathways under different conditions (i.e., healthy individuals and COVID-19 patients).
Regulators of certain key genes (e.g., SIO0A8/A9) were found to differ among cell types and with
disease severity. However, when comparing and combining the two independent studies, we found
that virus-infected individuals had certain common and/or unique features at different infection sites.
For example, (i) certain activated regulators (such as XBP1, FOS, STAT1, and STAT2) were shared
in both respiratory epithelial and peripheral blood; (ii) certain genes (e.g., PTMA) were differentially
expressed in T cells from independent studies; (ii1) although S100A8/A9 were found to be
upregulated in both respiratory epithelial and peripheral blood, their relative regulators differed (e.g.,
SPEDEF and ELF3 were found in goblet and squamous cells and CEBPD was seen in monocyte
cells, which showed that regulators of a gene were specific to the infection site, cell type, and
condition. Collectively, the results using our approach provide clues to comprehensively
understanding the diverse disease mechanisms of SARS-CoV-2 infection. These findings can be used
as a rich resource for predicting, preventing, and treating COVID-19 in a wide range of cell types,
which may help control severe symptoms.

This study has several limitations. The numbers of epithelial cell types were not equal: some were
obtained in large quantities and others in small quantities. It is acknowledged that a small number of
cells may influence transcriptional landscapes. In the case of PBMC data, we lacked those associated
with mild and moderate COVID-19. Technical issues, such as those encountered with scRNA-seq
techniques, have led to certain limitations that may be difficult to overcome. Nonetheless, by
integrating additional information and data from independent sources where available, some of these
limitations may be resolved. Therefore, further studies using large-scale data and finer-grained
descriptions of COVID-19 severity categories would help to fully understand GRNSs, their gradual
shift, and dynamics in terms of COVID-19 severity progression. Future characterizing the specific
role of some genes (e.g., S100 family members) in the immune response to SARS-CoV-2 infection,
particularly in relation to disease severity, is needed in vitro and vivo experiments.
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Figure legends
Figure 1. Characterization of nasopharyngeal swabs and PBMCs data

(A) Cell types in nasopharyngeal swabs and PBMCs data and their percentage proportion in patients
with different COVID-19 severity. Middle: cell type visualization on UMAP plots. Right: cell
proportion associated with disease severity (mild/moderate and severe) and healthy cells. (B)
Heatmap of the area under the curve (AUC) scores of regulons estimated per cell type by SCENIC.
Detected regulons are represented by their corresponding transcription factors in the right-hand
columns. Columns represent AUC scores of cell types. For each condition, the column order is the
same as the label order in (A). Asterisks behind the TFs represent commonly identified TFs between
nasopharyngeal swabs and PBMCs. (C) Number of differentially expressed genes (DEGs) when
comparing COVID-19 (mild/moderate, severe) and healthy cells. Yellow and light-blue colors
represent upregulated and downregulated genes, respectively. The corresponding gene numbers are
shown at the top and bottom of each bar. In the upper panel, bars without dots indicate identified
DEGs by comparing mild/moderate disease to healthy cells, while bar with dots indicate DEGs when
comparing severe disease and healthy cells. (D) GO (biological process) enrichment analysis to
compare upregulated genes found in diseased and healthy cells.
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Figure 2. Gene regulatory networks of specific cell types

(A) The gene regulatory networks (GRNs) of specific cell types from COVID-19 patients were
constructed using Cytoscape software. In the network, the red, yellow, and light blue colors represent
transcription factors, upregulated, and downregulated genes, respectively. (B) UMAP plot
visualization of TF expression (left) and AUC score (right) of each regulon for nasopharyngeal swabs
and PBMC:s data. (C) The dot plots represent target gene expressions of detected TFs in (B). The
target genes include specific cytokines, interferon-stimulated genes (ISGs), and inflammatory genes
(S100A8, S100A9).

Figure 3. Overlap of DEGs in nasal and PBMC T cells when comparing healthy and severe
COVID-19 cases

Violin plots represent expressions of overlapping DEGs in (A) nasopharyngeal swabs and (B) PBMC
data. The asterisk following each gene indicates a significant difference between healthy and severe
COVID-19 cases. Significance: * P <0.05, ** P <0.01, *** P <0.001.

Figure 4. Comparisons between mild/moderate and severe COVID-19 from nasopharyngeal
swabs

(A) Number of identified DEGs when comparing severe and mild/moderate COVID-19. Yellow and
light-blue colors represent upregulated and downregulated genes, respectively. The right panel
indicate the results of GO enrichment analysis using DEGs based on biological process. Cell-cell
communication (CCC) in (B) mild/moderate and (C) severe COVID-19. The left-hand networks of
(B) and (C) represent cell interaction numbers among cell types. Cell types are represented by circles
with different colors. Circle size indicates the number of cells of a cell type, while the edge width
corresponds to the numbers of ligand-receptor (L—R) interactions. The Bubble plots (right-hand side
of B and C) show all the significant L-R pairs associated with signaling pathways from a given cell
type to another one. The dark blue to red colors relate to the communication probability (from
minimum to maximum).

Figure 5. Relationships between gene expressions and SOFA scores in COVID-19 samples

(A) Pearson correlations between gene expression and sequential organ failure assessment (SOFA)
score. Top 26 genes with over 0.5 correlations are shown. Transcripts per million (TPM) were used
for RNA-seq normalization. (B) Average TPM values of selected genes for each SOFA score. The
selected genes include some S100 family members and some genes from the top 26 gene list in (A).
For each bar plot, the Pearson’s “r”” between the TPM values and SOFA scores of all related samples
is shown.

Supplementary material
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Supplementary Figure S1. Characterization of (A) nasopharyngeal swabs and (B) PBMCs

UMAP plots showing cell types associated with condition (healthy, mild/moderate, and severe). The
pie plots indicate the total number of cells used in the study, and the bar plots show the number of
genes in each cell type. The lower and upper hinges of the box represent the first and third quartiles
(25" and 75™ percentiles), the median is marked within the box, and the dots represent outliers.
Upper whisker = 75" percentile + 1.5* interquartile range (IQR). Lower whisker = 25" percentile —
1.5*IQR.

Supplementary Figure S2. Characterization of nasopharyngeal swabs data

(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC.
Detected regulons are represented by their corresponding transcription factors in the right-hand
columns. (B) GO (biological process) enrichment analysis using downregulated genes to compare
mild/moderate to healthy cells. (C) GO enrichment analysis using downregulated genes to compare
severe to healthy cells.

Supplementary Figure S3. Characterization of PBMC data

(A) Heatmap of area under the curve (AUC) scores of regulons estimated per cell type by SCENIC.
Detected regulons are represented by their corresponding transcription factors in the right-hand
columns. (B) GO enrichment analysis using downregulated genes to compare severe to healthy cells.

Supplementary Figure S4. Expressions of selected genes for nasopharyngeal swabs (A) and
PBMC (B) data

The violin plot shows gene expressions across cell types and conditions (healthy, mild/moderate, and
severe COVID-19). Significant expression levels of ST00A8/A9 when comparing healthy and severe
COVID-19 patients are shown as follows: * P <0.05, ** P <0.01, *** P <0.001.

Supplementary Figure SS. Gene regulatory networks of cell types from nasopharyngeal swabs

(A) Each panel shows the GRNSs in healthy, mild/moderate, and severe COVID-19 from top to
bottom, respectively. The slash symbol represents no observed regulons or DEGs. (B). GRNs of
healthy squamous cells. In the network, the red, yellow, and light-blue colors represent TF,
upregulated, and downregulated genes, respectively.

Supplementary Figure S6. Gene regulatory networks of cell types from PBMCs

Each panel represents the GRNSs in healthy and severe COVID-19 groups from top to bottom,
respectively. The slashed symbol represents no observed regulons or DEGs. In the network, the red,
yellow, and light-blue colors represent TF, upregulated, and downregulated genes, respectively.

Supplementary Figure S7. GO analysis of downregulated genes in squamous and goblet cells

The GO enrichment analysis is based on the biological processes and identified downregulated genes
when comparing severe and mild/moderate COVID-19 patients.

Supplementary Figure S8. CCC analysis using nasopharyngeal swab and PBMC data
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(A) CCC analysis of healthy cells from nasopharyngeal swabs. (B) and (C) represent CCC analysis of
healthy and severe COVID-19 cells from PBMCs, respectively. Only significant L-R interactions
associated with signaling pathways are shown in bubble plots.

Supplementary Table S1. Numbers of cell types in nasopharyngeal swabs and PBMC

Supplementary Table S2. DEGs of nasal epithelia comparing mild and moderate COVID-19 to
healthy control across cell types.

Supplementary Table S3. DEGs of nasal epithelia comparing severe COVID-19 to healthy
control across cell types.

Supplementary Table S4. DEGs of PBMCs comparing severe COVID-19 to healthy control
across cell types.

Supplementary Table S5. GO and KEGG enrichment analyses using DEGs corresponding to
Table S2.

Supplementary Table S6. GO and KEGG enrichment analyses using DEGs corresponding to
Table S3.

Supplementary Table S7. GO and KEGG enrichment analyses using DEGs corresponding to
Table S4.

Supplementary Table S8. DEGs of nasal epithelia comparing severe to mild/moderate COVID-
19 across cell types.

Supplementary Table S9. Ranked Pearson’s “r” between TPM values and SOFA scores using
COVID-19 samples.
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(A) Cell types in nasopharyngeal swabs and PBMCs data and their percentage proportion in patients with different COVID-19 severity. Middle: cell type visualization on UMAP plots.
Right: cell proportion associated with disease severity (mild/moderate and severe) and healthy cells. (B) Heatmap of the area under the curve (AUC) scores of regulons estimated per cell
type by SCENIC. Detected regulons are represented by their corresponding transcription factors in the right-hand columns. Columns represent AUC scores of cell types. For each
condition, the column order is the same as the label order in (A). Asterisks behind the TFs represent commonly identified TFs between nasopharyngeal swabs and PBMCs. (C) Number of
differentially expressed genes (DEGs) when comparing COVID-19 (mild/moderate, severe) and healthy cells. Yellow and light-blue colors represent upregulated and downregulated genes,
respectively. The corresponding gene numbers are shown at the top and bottom of each bar. In the upper panel, bars without dots indicate identified DEGs by comparing mild/moderate
disease to healthy cells, while bar with dots indicate DEGs when comparing severe disease and healthy cells. (D) GO (biological process) enrichment analysis to compare upregulated

genes found in diseased and healthy cells.
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