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Abstract 50 

Background: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT 51 

viral load) is a key driver of transmission of infection. Current evidence suggests that 52 

mechanisms constraining URT viral load are different from those controlling lower 53 

respiratory tract viral load and disease severity. Understanding such mechanisms may help 54 

to develop treatments and vaccine strategies to reduce transmission. Combining 55 

mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed 56 

to identify mechanisms controlling URT viral load. 57 

Methods: COVID-19 patients were recruited in Spain during the first wave of the 58 

pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter 59 

transcriptome analysis of nasal epithelium were performed and gene expression analysed in 60 

relation to paired URT viral load samples collected within 15 days of symptom onset. 61 

Proportions of major immune cells in blood were estimated from transcriptional data using 62 

computational differential estimation. Weighted correlation network analysis (adjusted for 63 

cell proportions) and fixed transcriptional repertoire analysis were used to identify 64 

associations with URT viral load, quantified as standard deviations (z-scores) from an 65 

expected trajectory over time.  66 

Results: Eighty-two subjects (50% female, median age 54 years (range 3-73)) with COVID-67 

19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome 68 

samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were 69 

the only blood cell type significantly correlated with URT viral load z-scores (r = -0.62, P = 70 

0.010). Twenty-four blood gene expression modules were significantly correlated with URT 71 

viral load z-score, the most significant being a module of genes connected around IFNA14 72 

(Interferon Alpha-14) expression (r = -0.60, P = 1e-10). In fixed repertoire analysis, 73 

prostanoid-related gene expression was significantly associated with higher viral load. In 74 
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nasal epithelium, only GNLY (granulysin) gene expression showed significant negative 75 

correlation with viral load.  76 

Conclusions: Correlations between the transcriptional host response and inter-individual 77 

variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly 78 

favouring or constraining viral load. Existing evidence corroborates many of these 79 

mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon 80 

alpha-14. Inhibition of prostanoid production, and administration of interferon alpha-14 may 81 

be attractive transmission-blocking interventions. 82 

 83 

Keywords 84 

COVID-19, SARS-CoV-2, upper respiratory tract, viral load, mathematical modelling, 85 

transcriptome, gene network analysis 86 

 87 

Background 88 

The advent of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leading to 89 

the coronavirus disease 2019 (COVID-19) has placed an enormous burden on affected 90 

individuals, healthcare systems, and economies worldwide. SARS-CoV-2 is highly 91 

transmissible and causes a wide range of severity from asymptomatic infection to severe 92 

disease and death. The amount of SARS-CoV-2 detected in the upper respiratory tract of 93 

infected individuals (URT viral load) is a key driver of transmission of infection (1). High 94 

URT viral loads can increase household and non-household transmissions by up to nearly 95 

60% and 40%, respectively (2). Interestingly, URT viral load does not necessarily correlate 96 

with severity of illness, nor is it determined by established risk factors for poor outcome 97 

such as age and sex (3, 4). This suggests that the host immune mechanisms involved in 98 

constraining the virus in the URT are different from those determining the severity of 99 
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illness, although such mechanisms have not been fully elucidated. In contrast, high and 100 

persistent SARS-CoV-2 shedding in the lower respiratory tract (LRT) is associated with 101 

severe disease (5), indicating differences in the mechanisms underlying control and 102 

pathogenesis of SARS-CoV-2 in the URT and LRT. Understanding the mechanisms 103 

controlling the viral load in the URT could illuminate new strategies to prevent transmission 104 

from infected individuals and might also enable control of the localised infection before it 105 

progresses to the LRT, triggering more serious illness.  106 

URT viral load is highly dynamic. It changes over the course of illness due to dynamic 107 

interactions with the host immune response; it peaks around the time of symptom onset and 108 

then gradually decreases to a low level over the following 10 days (6, 7). Moreover, the 109 

kinetics of viral load vary between individuals, presumably determined by variation in 110 

immune responses (3). The host response constraining viral load includes both an immediate 111 

innate component and a later adaptive response (3, 8, 9). With limited in vivo data, 112 

researchers have attempted to mathematically model and explain the viral-host interaction 113 

and host immune responses to better understand the dynamics of SARS-CoV-2 viral load. 114 

We have recently developed a within-host model that has been successful in interpreting 115 

URT viral load kinetics in a wide range of data including 2172 serial measurements from 116 

605 subjects, collected from 17 different studies (3).  117 

Despite the dynamic interaction between the virus and host immune system during SARS-118 

CoV-2 infection and the diversity in such interaction observed between individuals, the 119 

immune response involves conserved elements which can be reflected in host transcriptomes 120 

(10). While gene expression is a dynamic process, and a single transcriptomic experiment 121 

usually captures only a “snapshot” in time, using robust transcriptional analyses we can 122 

pinpoint key biological mechanisms underlying the immune response. The host 123 

transcriptomic response in human infection is often studied in peripheral blood leukocytes. 124 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.09.23287028doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287028
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

This is because peripheral blood leukocytes mount cell-intrinsic responses to pathogens but 125 

also mount transcriptional responses to signals arising from the organs through which they 126 

circulate. Evaluating the host transcriptome in the context of the dynamics of host-pathogen 127 

interaction can be a powerful approach to elucidate mechanisms responsible for control of 128 

pathogen load (11).   129 

Here we sought to combine mathematical modelling of URT SARS-CoV-2 viral load 130 

dynamics in individual subjects with the analysis of peripheral blood and nasal epithelium 131 

transcriptomes to identify mechanisms associated with the control of viral load. The 132 

mechanistic correlates of URT viral load identified herein may be important to develop new 133 

therapeutic and vaccine strategies to block transmission of SARS-CoV-2.  134 

 135 

Results  136 

Participants 137 

We performed transcriptome analyses for 82 COVID-19 patients (50% female, median age 138 

54 years (range 3-73 years)) recruited during the “first wave” of COVID-19 in Spain, before 139 

vaccination and natural infection became determinants of the immune response to SARS-140 

CoV-2. Whole blood RNA sequencing (RNA-Seq) and nasal epithelium nCounter 141 

NanoString gene expression assay data were generated (see Methods) for 68 and 24 142 

subjects, respectively, with 10 subjects being included in both analyses. Clinical 143 

characteristics of all subjects are provided in Supplementary Table 1.  144 

The whole blood transcriptome profiles were used to construct gene co-expression networks 145 

and detect clusters of interconnected genes (see below). For gene module discovery, to 146 

optimise the generalisability of modules, we included all 68 COVID-19 subjects with RNA-147 

Seq data (regardless of whether they had co-infections), and an additional 18 uninfected 148 

healthy control subjects and 9 subjects with non-COVID-19 infections (4 bacterial and 5 149 
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viral) (Supplementary Table 1), all sequenced in the same batch. However, of the COVID-150 

19 cases who were free from suspected or proven bacterial co-infections, only 16 had URT 151 

viral load measurement and RNA samples collected on the same day and within 15 days of 152 

symptom onset (a time window during which the replicating virus can be isolated (12)). 153 

Only these 16 subjects were included in analyses correlating URT viral load with the whole 154 

blood transcriptome (Table 1, Figure 1A). Subjects were mostly female (57.1%), with ages 155 

ranging from 3 to 78 years (median = 55 years) (Figures 1B and 1C). The disease severity 156 

was mild (n = 3; 19%), moderate (n = 7; 44%), and severe (n = 6; 37%).  157 

 158 

Table 1. Samples used to correlate URT viral load and whole blood transcriptome 159 
 160 

Days of 
illness1 

Age range 
(year) 

Sex Severity 
Average 
Ct value2 

Calculated viral load 
(log10 (viral load/ml)) 

Viral load 
z-score 

3 11-15 Female Mild 27.72 5.49 -0.32 

4 51-55 Male Moderate 37.08 2.52 -2.89 

5 66-70 Male Severe 31.53 4.34 -0.99 

8 71-75 Female Severe 35.87 5.60 0.80 

8 41-45 Male Moderate 27.41 2.91 -1.71 

9 51-55 Male Severe 35.43 3.04 -1.39 

9* 51-55 Male Moderate 32.36 3.83 -0.65 

9 36-40 Female Mild 33.1 3.98 -0.51 

10 1-5 Female Mild 21.03 3.23 -1.00 

10 51-55 Female Severe 34.39 7.45 2.94 

11 71-75 Female Moderate 29.97 4.77 0.64 

11 56-60 Male Severe 33.24 3.73 -0.33 

12 41-45 Female Moderate 36.64 2.90 -0.91 

13* 51-55 Male Severe 28.62 7.93 4 

13 71-75 Male Moderate 19.57 5.54 1.76 

15 71-75 Female Moderate 37.17 2.48 -0.69 
1 How many days after symptom onset the viral load was measured. 161 
2 Cycle threshold value 162 
* These two samples are from the same subject  163 

 164 

We also performed a nCounter NanoString gene expression analysis on nasal epithelium 165 

samples from 24 COVID-19 patients, including 17 with URT viral load measurement within 166 

15 days from symptom onset (Table 2). The subjects’ ages ranged from 16 to 80 years 167 

(median = 47 years), and most had mild disease (n = 9; 53%) or severe disease (n = 6; 168 
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35.3%). 169 

 170 

Table 2. Subjects used to correlate URT viral load with nasal epithelium NanoString profiles 171 
 172 

Days of 
illness 

Age range 
(year) 

Sex Severity 
Average 
Ct value 

Calculated viral load 
(log10 (viral load/ml)) 

Viral load 
z-score 

0 26-30 Female Mild 27.53 5.94 -0.74 

3 16-20 Female Mild 27.72 5.74 -0.32 

4 76-80 Female Severe 25.36 6.46 0.56 

5 66-70 Male Severe 31.53 4.57 -0.99 

6 41-45 Male Mild 38.16 2.39 -2.8 

7 46-50 Male Mild 29.9 5.01 -0.17 

8 71-75 Female Severe 27.41 5.85 0.8 

8 31-35 Female Mild 28.93 5.33 0.33 

8 31-35 Male Mild 35.06 3.41 -1.45 

9 51-55 Male Severe 35.43 3.26 -1.39 

9 36-40 Male Mild 36.67 2.45 -2.14 

10 71-75 Male Severe 28.86 5.32 0.72 

10 46-50 Female Mild 28.78 5.48 0.87 

11 26-30 Female Mild 36.92 2.54 -1.65 

12 26-30 Male Moderate 27.97 5.61 1.4 

12 61-65 Male Severe 32.49 4.29 0.18 

13 66-70 Female Moderate 25.3 6.36 2.3 
 173 

 174 

Conversion of viral load measurements to z-scores using viral load regression model 175 

We recently developed a regression model fitted to viral load measurements within the first 176 

15�days of symptoms across 16 datasets, capturing the viral load variation during the 177 

course of infection between different individuals (3). Here, to determine whether individual 178 

subjects in the current study had higher or lower than average viral load measurements 179 

relative to their duration of illness, we used the previously published regression model to 180 

calculate a z-score for each data point representing the deviation of the data point from the 181 

mean viral load trajectory i.e. the regression line (Tables 1 and 2, Figures 1D and 1E; see 182 

Methods). Viral load z-scores calculated from the data were not associated with the severity 183 

of illness (Figure 1F). In our previous large-scale analysis of COVID-19 subjects (3), we 184 

showed that age and sex did not significantly influence URT viral load dynamics and that 185 
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URT viral load dynamics did not affect the severity of illness. Therefore, in the present 186 

study, we did not adjust the viral load z-scores for these variables. 187 

 188 

Exploring molecular correlates of SARS-CoV-2 viral load using whole blood 189 

transcriptomics 190 

We aimed to identify groups of genes for which expression correlated with viral load z-191 

score, providing insights into the mechanisms controlling viral load. We first performed a 192 

gene signature-based deconvolution (13), as in our previous studies (11, 14). Interestingly, 193 

the computed proportion estimate of natural killer (NK) cell population was negatively 194 

correlated with viral load z-score (r = -0.62 and P = 0.010, Supplementary Figure 1). 195 

There was insufficient evidence to conclude a significant linear relationship between other 196 

leukocyte populations (B-cells, monocytes, neutrophils, CD4+ T-cells, and CD8+ T-cells) 197 

and viral load z-score. Gene expression counts were then adjusted for leukocyte mixture to 198 

remove the confounding effect of differences in blood leukocyte proportions between 199 

individuals. To make best use of the relatively small sample size of the selected 16 samples, 200 

we performed dimensionality reduction using weighted correlation network analysis 201 

(WGCNA) (15). First, we clustered the RNA-Seq profiles (n = 96) and removed an outlier 202 

(Supplementary Figure 2). Then, a gene co-expression network was constructed, and 203 

modules (clusters of highly co-expressed genes) were detected using the remaining 95 204 

whole blood RNA-Seq profiles. Next, we correlated the first principal component of each 205 

module (module eigengene) to viral load z-scores in the group of 16 samples with paired 206 

data, reasoning that inducible mechanisms which restrict viral load would be enriched 207 

amongst the most strongly correlated modules. Twenty-four modules were significantly 208 

correlated with viral load (P < 0.01; Figure 2, Table 3, and Supplementary Table 2). To 209 

aid interpretation, we represented each module by its hub gene (gene with the highest 210 
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connectivity within the module). Fourteen modules were positively correlated with viral 211 

load z-score and 10 were negatively correlated (Figure 2A). IFNA14 (Interferon Alpha-14) 212 

and AIPL1 (Aryl Hydrocarbon Receptor Interacting Protein Like 1) modules showed the 213 

strongest negative correlation with viral load (r = -0.60 with P = 1e-10 and r = -0.60 with P 214 

= 2e-10, respectively). The largest positive correlation was observed for the AC011455.2 215 

module (r = 0.60, P = 2e-10). 216 

 217 

Table 3:  Modules significantly correlated with viral load z-score. Each module is represented by its hub gene. 218 
Complete lists of module genes and their information are provided in Supplementary Table 2. 219 
 220 

Module Gene count1 Genes with highest contribution to the module2 

IFNA14 45 IFNA14, ADAD1, IL22, LIN28A, TMEM270 

AIPL1 43 AIPL1, CFAP100, KCNK3, MOGAT2, OR5D3P, SLC13A2, SPEM1 

AC011455.2 41 AC011455.2, FRMD1, TTC6, KCNK18, KIF12, SNAI2 

C7orf33 36 C7orf33, DGKB, GK2, GHRH, PDZD9, SEPTIN14, SMIM40, TTLL2 

IFNL3 50 IFNL3, STRA8 

GALNT17 37 GALNT17, GCSAML-AS1, IP6K3, NPY, OR6B2, SIM2, SSU72P2, SSX4 

CRYAA 57 
CRYAA*, AC104581.2*, ACSM4*, FABP6*, GBX2*, PASD1*, PCDHA12*, 
PDYN*, SSMEM1* 

ANGPTL7 43 ANGPTL7, CALML3, GFY, HNRNPCL2, SLC6A1, TPTE, UGT1A3 

TUBB1 349 
TUBB1, NRGN, SELP, MPIG6B, SPARC, GP9, PTGS1, GP6, CTTN, 
ABLIM3, ARHGAP6, CMTM5, GP1BB, TSPAN9, ITGB5, GUCY1B1, 
TREML1, PGRMC1, MYLK, ITGB3, ITGA2B, PTCRA 

NAGA 638 NAGA, RASSF4, ZNF385A 

NQO1 89 
ABCG5*, AC003688.1*, AL121899.2*, CCL26*, DRD1*, SERPINB13*, 
SP5* 

CHRNA4 51 
CHRNA4, CPN2, EPYC, GGTLC2, HDGFL1, MARCOL, MUC21, OR1D2, 
OR4F15, RNASE11, SCEL, SLC35F4, XAGE2 

TRIM51 32 TRIM51, AL583836.1, EPHA5, KRTAP10-7, LUZP2, TCF23 

CHRDL2 31 CHRDL2, EGFLAM, OR51L1, PPFIA2, SKOR2, SLCO1B1, TM4SF4 

TMPRSS7 48 AC097636.1, APOF, BPIFB2, FOXR1, MMP10, MMP12, FLG 

C1QL4 42 
C1QL4, DNMT3L, KRTAP10-8, OR14J1, OVOL3, PMIS2, PPP1R14D, 
TFAP2D, UBTFL1, H2AC18* 

CYP2A7 87 
CYP2A7, DCX, NGB, NR0B1, SLC17A6, SPHKAP, SPRR2D, CEACAM18, 
OOSP4A 

AKR1C4 37 AKR1C4, RGS21, CCDC63, DSG1, GLRA1, IL20, TMEM174 

AL049839.2 38 
AL049839.2, CCDC190, FAM236C, FAM236D, VSNL1, MAGEB1, NRAP, 
RHCG 

ADRA1D 54 
ADRA1D, DIO3, EPHA6, H2BC1, IL31, PDE6C, SPATA31D4, TCEAL5, 
UNCX 

ACADL 172 

ACADL, AC008770.4, ADCY8, APOA4, ASZ1, BTBD16, CASQ2, CCK, 
CNTN1, COMP, CYP3A7, CYP4A11, DAZ1, DCAF12L1, DSG4, DUX4, 
DYDC2, FOXG1, FOXR2, FSHR, GRIA1, GRIA2, GRM6, IFNA13, KIF2B, 
KLK3, KRTAP2-2, MISP, NPY2R, NRK, NTF3, NTSR2, NXPH1, NXPH2, 
OR13J1, OR14A2, OR14C36, OR1C1, OR51G2, OR5L1, OR5W2, OR7A10, 
OR7E24, OTX2, PAX1, PAX7, PHOX2B, PRAMEF7, PRDM9, PRM3, PSG7, 
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RPTN, SCYGR2, SERPINA5, SLC19A3, SLC2A7, ST8SIA3, SULT2A1, 
TBPL2, TRIML1, TSPY10, TSPY2, TSPY3, TSPY8, UGT1A4, ZIC1, 
ZSCAN5C 

ZMIZ2 711 N/A3 

NR3C2 208 N/A3 

AL132671.2 97 
AL132671.2, C2orf72, CCDC166, FGF23, MBL2, MUC3A, MYOG, SPINK6, 
STRA6 

1 The number of genes involved in each module. 221 
2 Genes with the absolute value of module membership (the correlation between the module eigengene and 222 
gene expression values) > 0.9. Genes with negative module membership are marked with an asterisk. 223 
3 No genes had module membership higher than 0.9 or lower than -0.9 224 

 225 

We selected the top 6 significant modules for further analysis: IFNA14, AIPL1, 226 

AC011455.2, C7orf33 (Chromosome 7 Open Reading Frame 33), IFNL3 (Interferon 227 

Lambda 3), and GALNT17 (Polypeptide N-Acetylgalactosaminyltransferase 17). 228 

AC011455.2, C7orf33, and GALNT17 modules were positively correlated with viral load z-229 

score and positioned very close to each other in the hierarchical clustering (Figure 2B). 230 

Therefore, we merged their gene sets to form a metamodule 231 

(AC011455.2/C7orf33/GALNT17; total gene count = 114) for further data analysis, 232 

assuming that the higher gene count would increase power to detect biologically relevant 233 

changes. We used Qiagen’s Ingenuity Pathway Analysis (IPA) for biological understanding 234 

of the modules (16). Correlation coefficients between module genes and viral load z-score 235 

were used to infer the activity pattern (activation or inhibition) of the biological processes 236 

involved such as enriched pathways and upstream regulators. 237 

Figure 3A illustrates top enriched canonical pathways for the IFNA14, AIPL1, 238 

AC011455.2/C7orf33/GALNT17, and IFNL3 modules (details provided in Supplementary 239 

Table 3). Of these, 3 pathways showed an enrichment P-value of below 0.001 including 240 

‘pathogen induced cytokine storm signalling’ (P = 5e-4) and ‘IL-22 (Interleukin-22) 241 

signalling’ (P = 8e-4) enriched in the IFNA14 module, and ‘melatonin degradation’ (P = 2e-242 

4) enriched in the IFNL3 module. The pathogen induced cytokine storm signalling pathway 243 

encompasses the highest number of genes from the tested module (IFNA14, IL22, CCL4 (C-244 
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C Motif Chemokine Ligand 4), CD70, and COL4A4 (Collagen Type IV Alpha 4 Chain) 245 

from the IFNA14 module) compared to the other enriched pathways identified. IFNA14 and 246 

IL22, two main members of the IFNA14 module (module membership = 0.98 and P = 5e-64 247 

for both genes), are key components of the pathway. Interestingly in our dataset both genes 248 

were negatively correlated with viral load z-score (r = -0.59 and P = 3e-10 for both genes), 249 

whereas CCL4, CD70, and COL4A4 were positively correlated with viral load z-score. The 250 

IL-22 signalling pathway involves two genes, IL22 and IL22RA2 (Interleukin 22 Receptor 251 

Subunit Alpha 2), with a high contribution to the IFNA14 module (module membership = 252 

0.98 and 0.75 with P = 5e-64 and 1e-18, respectively) both negatively correlated with viral 253 

load z-score (r = -0.59 and -0.63 with P = 3e-10 and 7e-12, respectively). The superpathway 254 

of melatonin degradation includes three genes (CYP2F1 (Cytochrome P450 Family 2 255 

Subfamily F Member 1), IL4I1 (Interleukin 4-induced gene-1), and UGT1A1 (UDP 256 

Glucuronosyltransferase Family 1 Member A1) from the IFNL3 module. However, this 257 

pathway is likely to be of less importance here as the three genes each show relatively weak 258 

individual correlations with viral load z-score (Supplementary Table 2). 259 

STING1 (Stimulator of Interferon Response CGAMP Interactor 1), RBP3 (Retinol Binding 260 

Protein 3), and RORC (RAR Related Orphan Receptor C) were predicted to be the most 261 

significant upstream regulators of IFNA14 module genes (P = 6e-5, 3e-4, and 4e-4, 262 

respectively) (Figures 3B and 3C). They interact with IL22, IL22RA2, CCL4, CD70, and 263 

FEZ1 (Fasciculation and Elongation Protein Zeta 1), members of the IFNA14 module which 264 

are mapped to the pathogen induced cytokine storm signalling and IL-22 signalling 265 

pathways (Supplementary Tables 4 and 5). None of the identified pathways and regulators 266 

showed reliable evidence of activation (absolute value of IPA activation z-score > 2) and 267 

therefore we were not able to infer an overall directionality (activation or inhibition) with 268 

respect to viral load. 269 
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We also applied the BloodGen3Module tool (17) to identify gene modules associated with 270 

viral load. Unlike WGCNA which detects modules from the analysed gene expression 271 

dataset, BloodGen3Module uses fixed functionally pre-annotated modules characterising 272 

different biological responses of distinct blood cell types. We used RNA-Seq data without 273 

adjustment for leukocyte-mixture and evaluated differential expression of these modules 274 

between samples with positive and negative viral load z-scores (n = 5 and n = 11, 275 

respectively). We identified an aggregate of five modules showing high ‘module response’ 276 

and higher module expression in subjects with positive viral load z-score (aggregate module 277 

A34; Figure 4A and Supplementary Tables 6). A module response is defined as the 278 

percentage of genes for a given module showing significant differential expression between 279 

the groups. From the module aggregate, the Prostanoids module showed the highest module 280 

response (97%). Interestingly, we observed a significant overlap between the A34 aggregate 281 

module and TUBB1 (Tubulin Beta 1 Class VI) module which was found to be significantly 282 

positively correlated with viral load z-score by WGCNA (r = 0.39 with P = 9e-05; Figure 283 

2). Seventy genes including TUBB1 were common between the A34 and TUBB1 modules 284 

(Figure 4B and Supplementary Tables 6) while A34 did not overlap with any other 285 

WGCNA module correlated with viral load z-score. Among the A34 modules, the 286 

Prostanoids module showed the highest overlap with the TUBB1 module (from 36 genes 287 

involved in the Prostanoids module, 30 were also included in the TUBB1 module). 288 

 289 

Exploring molecular correlates of SARS-CoV-2 viral load using NanoString assay of 290 

nasal epithelium 291 

We analysed RNA isolated from nasal epithelium samples of 24 COVID-19 patients using a 292 

NanoString panel of 579 genes involved in core pathways and processes of human immune 293 

responses (Supplementary Table 7). Seventeen subjects also had paired URT viral load 294 
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measurement within 15 days from symptom onset and had no evidence of bacterial co-295 

infection. Using WGCNA we identified seven gene co-expression networks which we refer 296 

to as “pseudo-modules” since they were detected using a relatively low number of genes 297 

included in the NanoString panel (Supplementary Table 8). Only one pseudo-module was 298 

correlated with viral load z-score at significance threshold of 0.05 (PTK2 (Protein Tyrosine 299 

Kinase 2) module; P = 0.016). Additionally, correlation analysis between individual gene 300 

expression and viral load z-score detected significant correlation (absolute correlation 301 

coefficient > 0.5 and P < 0.05; Figure 5) in 12 individual genes, 11 of which were 302 

positively correlated and one (GNLY (Granulysin)) was negatively correlated.  303 

 304 

Discussion 305 

Understanding mechanisms controlling SARS-CoV-2 viral load in the URT can provide 306 

valuable leads towards treatment and vaccine strategies aimed at reducing viral 307 

transmission. Such strategies have recently been highlighted as potential “game changers” 308 

as societies adapt to living with COVID-19 (18). Current evidence suggests that the 309 

mechanisms controlling URT viral load may be different from those controlling LRT viral 310 

load and disease severity (3-5). However, our current knowledge concerning control of URT 311 

viral load is far from complete. To unravel the biological complexity underlying the control 312 

of SARS-CoV-2 viral load, we sought to identify correlates of the variation in viral load 313 

which occurs in naturally infected individuals. Of note, we used samples from the first wave 314 

of infection in Europe, prior to vaccination, infection-induced immunity, and circulation of 315 

important variants of SARS-CoV-2. To account for the dynamic nature of URT viral load, 316 

which rapidly increases to a peak just before symptom onset and then declines more slowly, 317 

we quantified viral loads by their standardised deviation (z-scores) from a previously-318 

derived average trajectory (3). We correlated viral load z-scores with paired peripheral 319 
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blood and nasal epithelium transcriptomes. 320 

After excluding individuals with proven or suspected bacterial co-infection and URT SARS-321 

CoV-2 viral load samples taken more than 15 days after symptom onset, relatively small 322 

numbers of subjects for blood and nasal transcriptome analysis (n = 16 and n = 17, 323 

respectively) remained. This prompted the use of gene modules rather than individual genes 324 

for our primary analysis. This would reduce the complexity of large gene networks into 325 

relevant modules and increase the statistical power to detect those correlating with viral 326 

load. An individual module compromises genes that are more densely connected than 327 

expected by chance and often involved in the same biological functions (19). We applied 328 

two different methods to detect gene clusters, WGCNA and BloodGen3Module. The first 329 

identifies modules directly from the gene expression data and the later uses pre-annotated 330 

modules.  331 

The peripheral blood module most significantly associated with URT viral load, had 332 

IFNA14 as its hub gene. IFNA14 encodes the type I interferon, interferon α14. Interferons 333 

are glycoprotein cytokines made and released by host lymphocytes and considered to be key 334 

effectors in antiviral responses. However, their pattern of expression and function during 335 

SARS-CoV-2 infection is controversial. While some studies suggest protective effects of 336 

interferons in severe COVID-19 (20-22), others indicate poor clinical outcomes in those 337 

with increased production of interferons (23-26). There is limited data available on the 338 

correlation between SARS-CoV-2 viral load and interferon expression. Sposito et al. 339 

evaluated nasopharyngeal swabs of COVID-19 patients and showed that the expression of 340 

type I and III interferons was significantly associated with viral load in patients under 70 341 

years old (26). However, those aged over 70 years showed no association and/or showed a 342 

significantly lower correlation coefficient. This evaluation did not include IFNA14. Also, it 343 

appears that their viral load measurements were not adjusted for the time between sample 344 
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collection and symptom onset. IFNA14 has been shown to activate a potent antiviral 345 

response via binding to IFNAR1 and IFNAR2 (Interferon Alpha and Beta Receptor 346 

Subunits 1 and 2) receptors (27, 28). This triggers the activation of JAK/STAT (Janus 347 

Kinase/Signal Transducer and Activator of Transcription) signalling complexes which 348 

subsequently induces the expression of ISGs (interferon-stimulated genes) that inhibit virus 349 

infection (29). The strong negative correlation between the IFNA14 module as well as 350 

IFNA14 as an individual gene and viral load in our data suggests that IFNA14 signalling 351 

could play a key role in controlling SARS-CoV-2 viral load, i.e. increased expression of 352 

IFNA14 restricts viral replication. Schuhenn et al. recently showed that IFNA14 is one of 353 

the most potent interferon alpha subtypes inhibiting SARS-CoV-2 replication and can cause 354 

a significant reduction of SARS-CoV-2 viral titre by up to 105-fold (30). Furthermore, 355 

unpublished data suggest that, compared to IFNA2 (Interferon Alpha-2), which was used to 356 

treat COVID-19 patients in an uncontrolled exploratory study in China (31), IFNA14 is 357 

more efficient at preventing the infection while less detrimental to the immune system (32). 358 

Not only is IFNA14 important as an individual gene, but it also represents a network of 359 

highly connected genes in our data, the IFNA14 module, which showed a high enrichment 360 

of two canonical pathways ‘pathogen induced cytokine storm signalling’ and ‘IL-22 361 

signalling’. Although SARS-CoV-2 can trigger a ‘cytokine storm’ (33, 34), the changes in 362 

expression of genes in this pathway were not consistently associated with activation or 363 

inhibition of the pathway, agreeing with previous findings that ability to control of URT 364 

viral load is dissociated from severity of illness (3, 4). IL-22 is a cytokine released by 365 

several immune cells such as Th22 (T helper cells type 22) and plays an important role at 366 

mucosal barriers, orchestrating the interaction between the epithelial cell layer and local 367 

immune system in response to infections (35). IL-22 stimulates the IL-22 receptor complex 368 

on epithelial cells resulting in downstream activation of JAK-STAT signalling pathway 369 
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which induces multiple antiviral responses and therefore can be protective during SARS-370 

CoV-2 infection (35-37). Elevated levels of IL-22 in the plasma have been implicated as a 371 

hallmark of severe COVID-19 (24). Taken together there is compelling evidence that the 372 

genes in the IFNA14 module act to reduce URT viral load, and add to the evidence that 373 

interferon α14 should be considered as a candidate treatment to reduce viral load in the URT 374 

and decrease transmissibility of SARS-CoV-2.  375 

The AIPL1 module was the second top module negatively corelated with viral load z-score. 376 

Unlike IFNA14, AIPL1 is not known to be involved with the pathogenesis of COVID-19, 377 

and the enriched pathways for this module contained relatively few genes. Nevertheless, 378 

enrichment of the ‘α-tocopherol degradation’ pathway suggests a potential role of α-379 

tocopherol (also known as Vitamin E) in the control of viral load. α-tocopherol is an 380 

antioxidant which may enhance the function of innate and adaptive immune cells, for 381 

example increasing NK cell activity and the phagocytic capacity of leukocytes, which could 382 

bolster the immune response to reduce pathogen load as observed in influenza (38, 39). 383 

Emerging evidence suggests that water soluble derivatives of α-tocopherol have a potent 384 

antiviral response especially when they are used synergistically with remdesivir to inhibit 385 

SARS-CoV-2 RNA-dependent RNA polymerase (40). 386 

We also identified modules positively correlated with viral load, possibly indicating that 387 

these modules are induced in response to increasing amounts of virus or that expression of 388 

these genes favour an increase in viral replication. The most significant of these modules 389 

was the IFNL3 module. The hub gene, IFNL3, encodes a type III interferon which is a 390 

cytokine activated in response to mucosal viral infections and signals through the 391 

heterodimeric IFNLR (Interferon Lambda Receptor) that is expressed distinctly in the URT 392 

epithelial cells. This stimulates the activation of several transcription factors which 393 

upregulate ISGs. Type III interferon signalling pathway is considered slower and induces a 394 
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weaker ISG response than type 1 interferons (41, 42). The most significant upstream 395 

regulator of the IFNL3 module is TLR9 (Toll Like Receptor 9), which may be stimulated by 396 

unmethylated CpG (Cytosine-phosphate-Guanine) sequences during SARS-CoV-2 infection 397 

(43) and result in the observed upregulation of IFNL3 module genes.  398 

Using BloodGen3Module, we identified a cluster of blood pre-annotated transcriptional 399 

modules (A34) positively correlated with viral load. This was particularly interesting as 400 

these modules showed a significant overlap with the TUBB1 module found to be 401 

significantly positively correlated with viral load by WGCNA. From the A34 modules, the 402 

Prostanoids module showed the highest module response and overlap with the TUBB1 403 

module. Prostanoids are a subclass of eicosanoids and regulate the inflammatory response 404 

(44). The observed association between the prostanoids module expression and viral load z-405 

score suggests that high levels of prostanoids may supress processes which constrain viral 406 

load and therefore promote high viral load levels. This is supported by a recent study 407 

showing that abrogation of eicosanoid signalling reduces viral load and rescues mice from 408 

fatal SARS-CoV-2 infection (45). 409 

In addition to peripheral blood samples, we studied samples taken from the primary 410 

infection site, the nasal epithelium. Both blood and nasal transcriptomes can reflect the host 411 

immune response to the infection. In a respiratory infection, epithelial cells are directly 412 

infected, and peripheral blood leukocytes also respond to signals arising from the site of 413 

infection (46). However, the difference in the transcriptomic analysis approach we used for 414 

each dataset (RNAseq for peripheral blood and NanoString assay for nasal samples) made it 415 

difficult to compare the results directly. The NanoString assay analysed a relatively small 416 

number of genes (579 genes involved in immune response) and therefore the data did not 417 

yield reliable module level results. However, individual genes correlated with URT viral 418 

load z-score were identified that may be of interest. GNLY was the only negatively 419 
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correlated gene representing a likely role in the control of viral load. It is produced by a 420 

variety of killer cells such as cytotoxic T lymphocytes and NK cells, and it has both 421 

cytolytic and proinflammatory activity (47). Indeed, the expression of GNLY in lymphocytes 422 

has been reported to be associated with recovery in COVID-19 suggesting it may play a 423 

major role in clearance of infected cells and termination of infection (48). In agreement with 424 

the correlation between GNLY and viral load, we also showed that cell proportion estimates 425 

of NK cells in peripheral blood were negatively correlated with viral load z-score, 426 

highlighting the importance of this cell population in constraining the virus. For example, 427 

Witkowski et al. showed COVID-19 patients with normal NK cell numbers demonstrated a 428 

more rapid decline of viral load compared to those with low NK cell numbers (49). 429 

Our study was limited by the relatively small sample size which may have reduced the 430 

statistical power and resulted in missed opportunities to capture some biological signals. 431 

Additionally, we cannot establish from this data whether the molecular mechanisms 432 

identified are cause or consequence of the viral load, although there are plausible 433 

mechanisms which suggest causal roles in some cases.  434 

 435 

Conclusions 436 

To our knowledge, this is the most comprehensive study focusing on identifying molecular 437 

correlates of the SARS-CoV-2 viral load control in the URT. We identified numerous 438 

molecular processes which may contribute to the control of URT viral load. These candidate 439 

mechanisms can be the focus of further functional studies and may lead to new strategies to 440 

prevent COVID-19 and reduce SARS-CoV-2 transmission. 441 

 442 

Methods 443 

Study design and participants 444 
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We studied 82 COVID-19 patients recruited through the GEN-COVID study 445 

(www.gencovid.eu), a multi-center and prospective cohort designed to evaluate the effect of 446 

genetic factors on SARS-CoV-2 infection. Subjects were recruited at Hospital Clínico 447 

Universitario de Santiago de Compostela (Galicia, Spain) between March 2020 and May 448 

2020, during the first wave of infections in Spain, before significant levels of infection- and 449 

vaccine-induced immunity in the community. COVID-19 was defined according to the 450 

Spanish national guidelines 451 

(https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/document452 

os.htm). The severity of the disease was defined as mild, moderate, and severe based on 453 

WHO scoring for COVID-19 patients and as described previously (50, 51). We also 454 

included 18 uninfected controls, and 9 subjects with non-COVID-19 infections recruited 455 

through the PERFORM Consortium. 456 

 457 

Sample collection 458 

Blood samples and nasal epithelium specimens were collected at the same time at hospital 459 

for moderate and severe COVID-19 subjects and at home for subjects with mild disease. 460 

Whole blood was collected into PAXgene blood RNA tubes (PreAnalytiX) and nasal 461 

epithelium samples were collected in Oragene CP-190 kit (DNA Genotek). Samples were 462 

processed as described previously (51, 52).  463 

One COVID-19 subject contributed two paired sets of samples (viral load and blood RNA-464 

Seq; Table 1) collected 3 days apart. We included both as they showed a noticeable 465 

difference in viral load z-score and hence were informative.  466 

 467 

RNA isolation 468 

Total RNA was isolated from blood and nasal epithelium samples using PAXgene blood 469 
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miRNA extraction and RNeasy microkit, respectively, according to the manufacturer’s 470 

protocols (Qiagen). RNA amount and integrity were assessed using TapeStation 4200 471 

(Agilent). RNA quality was checked based on DV200 metric to ensure that sufficient 472 

percentage (over 50%) of RNA fragments were greater than 200 nucleotides in length and 473 

also to estimate the optimal sample input for the nCounter NanoString analysis.  474 

 475 

Viral load measurements 476 

Viral load quantification: Nasopharyngeal samples were collected in Universal Transport 477 

Medium (UTM) tubes and assessed for the presence and viral load of SARS-CoV-2. We 478 

detected viral particles using a multiplex real-time PCR with the Allplex™SARS-CoV-2 479 

Assay (Seegene). Viral load values (viral copies per ml) were computed from the Ct values 480 

as described previously (3).  481 

Calculation of viral load z-scores: A regression model of the average trajectory of viral 482 

load over time and quantification of variation between individuals, using data from 16 483 

datasets, was reported previously (3). Viral load values from the present study were 484 

compared to the regression line to assess whether a particular viral load measurement, 485 

sampled a certain number of days after symptom onset, was higher or lower than average.  486 

A ‘z-score’ was calculated for each data point by calculating its deviation from the mean 487 

trajectory and dividing by the standard deviation of the variation in viral load around the 488 

mean trajectory (Fig. 1D). 489 

 490 

RNA sequencing 491 

Paired-end sequencing was performed at The Wellcome Centre for Human Genetics in 492 

Oxford, UK as described previously (51). Sequencing was carried out using Novaseq6000 493 

platform providing 150 bp paired end reads. 494 
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 495 

RNA-Seq upstream analyses: Adapter trimming and quality control of sequencing reads 496 

were performed with Trimmomatic version 0.36 and FastQC version 0.11.7, respectively 497 

(53, 54). The reads were then mapped against hg38 reference genome using STAR version 498 

2.7.1a (55). RSEM version 1.3.1 was used for transcript quantification (56). Next, we 499 

performed a gene signature-based deconvolution using CellCODE as in our previous work 500 

and adjusted gene expression for leukocyte (B cells, monocytes, neutrophils, NK cells, 501 

CD4+ T cells, and CD8+ T cells) mixture (11, 13, 14). 502 

 503 

NanoString experiment 504 

NanoString nCounter assay 505 

We analysed immunological gene expression profiles of nasal epithelium using 506 

the SPRINT nCounter system (NanoString Technologies) with the Human Immunology V2 507 

Panel (579 genes covering the core pathways and processes of the immune response, and 15 508 

internal reference genes for data normalization). The detail of the assay is described 509 

previously (52). 510 

 511 

Differential gene expression analysis 512 

The gene expression counts adjusted for leukocyte mixture were correlated with viral load z-513 

scores using edgeR (57). 514 

 515 

Weighted correlation network analysis 516 

Gene counts were normalised using variance stabilizing transformation (VST) function of 517 

DESeq2 R package (58) and adjusted for leukocyte mixture using removeBatchEffect 518 

function of limma R package (59). We used WGCNA version 1.71 R package for weighted 519 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.09.23287028doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287028
http://creativecommons.org/licenses/by-nc/4.0/


23 

 

correlation network analysis (15). 520 

 521 

Module repertoire analysis 522 

We applied BloodGen3Module version 1.4.0 R package (17) to the normalised gene 523 

expression counts unadjusted for cell-mixture from 16 samples with paired viral load, 524 

collected in the absence of bacterial co-infection. The package encompasses 382 525 

functionally annotated blood transcriptional modules which have been grouped into 38 526 

“aggregates” (A1-A38). The differential expression of the modules was compared between 527 

two groups with positive and negative viral load z-scores (n = 5 and n = 11, respectively) 528 

using t-test with fold change and p-value cut-off of 0.5 and 0.05, respectively. For each 529 

module, we computed ‘module response’ as the percentage of genes for the module showing 530 

significant differential expression between the two groups.  531 

 532 

Further statistical analysis 533 

The normality of distributions was assessed using the Shapiro-Wilk normality test. Pearson 534 

correlation was used to analyse the degree of association between two continuous 535 

variables. An independent-samples t-test and one-way ANOVA with Tukey’s post hoc test 536 

were used to compare continuous variables between two and multiple groups, respectively. 537 

 538 

Figure Legends 539 

Figure 1. Overview of peripheral blood gene expression and viral load in subjects with 540 

COVID-19. A) PCA (principal component analysis) plot of peripheral blood gene 541 

expression determined by RNA-Seq. Samples with paired URT viral load measurement are 542 

coloured as blue. B) and C) PCA plots represent samples with paired RNA-Seq and viral 543 

load data coloured by age and sex, respectively. D) Calculation of viral load z-scores. In the 544 
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upper panel, the viral load data of the present study (black circles) are plotted against the 545 

time since symptom onset. The green line indicates a linear regression model fitted to the 546 

viral load data from 16 different datasets previously studied. The shaded green area 547 

represents the 95% confidence interval for the regression model. As shown in the lower 548 

panel, for each data point, a z-score is calculated as the distance of the data point from the 549 

mean trajectory (green line). E) PCA plot of samples with paired data coloured based on 550 

viral load z-score. F) Viral load z-score is compared between groups of different COVID-19 551 

severity. Red dots and whiskers represent mean and 1 standard deviation.  552 

Figure 2. Peripheral blood gene expression modules correlated with viral load z-score. A) 553 

For each module, the Pearson correlation with viral load z-score and corresponding p-value 554 

are displayed. The Pearson correlation scale is depicted on the right. B and C) Module 555 

network and relationship with viral load z-score. The hierarchical clustering dendrogram of 556 

the module eigengenes (B) was generated using all genes in the modules and shows the 557 

dissimilarity of eigengenes with the distance measure being one minus correlation. Modules 558 

coloured in red and blue are, respectively, positively and negatively correlated with viral 559 

load. The heatmap (C) represents module eigengene adjacency calculated as (1 + 560 

correlation)/2. 561 

Figure 3. Ingenuity pathway analyses of peripheral blood gene expression modules most 562 

strongly correlated with viral load. A) For each module, the top 5 significant pathways are 563 

illustrated in descending order of statistical significance as indicated by colour. For each 564 

pathway, the size of the corresponding circle represents the number of module genes that 565 

map to the pathway. The x-axis shows the ratio of the number of genes common between 566 

the corresponding module and pathway divided by the total number of genes that map to the 567 

same pathway. B) and C) For each module, the 5 most significant upstream (B) and master 568 

regulators (C) are illustrated in descending order of statistical significance as indicated by 569 
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colour. For each regulator, the size of the corresponding circle represents the number of 570 

module genes downstream to the regulator. The x-axis shows the ratio of the number of 571 

module genes downstream to the corresponding regulator divided by the total number of 572 

module genes. 573 

Figure 4. Pre-annotated blood gene expression modules associated with viral load. A) 574 

Module fingerprint grid plot. The differential expression of the modules is compared 575 

between two groups with positive and negative viral load z-score using t-test with fold 576 

change and p-value cut-off of 0.5 and 0.05, respectively. Each block corresponds to a 577 

module position. Each row represents a ‘module aggregate’ including modules with the 578 

same pattern of differential expression across reference datasets. Red and blue spots 579 

represent modules with increased and decreased abundance in the positive vs negative viral 580 

load z-score group, respectively. The gradient represents ‘module response’ which is the 581 

percentage of genes for a given module showing significant change in abundance between 582 

the two groups. Only modules with at least 15% response have been shown. B) Overlap of 583 

genes between A34 and TUBB1 module. 584 

Figure 5. Correlation between nasal epithelium transcriptome and viral load z-score. The 585 

volcano plot illustrates correlation coefficients and corresponding p-values. Each dot 586 

represents a gene included in the NanoString panel. Genes strongly correlated with viral 587 

load z-score (absolute correlation coefficient > 0.5 and P < 0.05) are coloured as red 588 

(positive correlation) and blue (negative correlation). 589 
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AIPL1: Aryl Hydrocarbon Receptor Interacting Protein Like 1 592 

C7orf33: Chromosome 7 Open Reading Frame 33 593 

CCL4: C-C Motif Chemokine Ligand 4 594 
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COL4A4: Collagen Type IV Alpha 4 Chain 595 

COVID-19: coronavirus disease 596 

CpG: Cytosine-phosphate-Guanine 597 

Ct value: cycle threshold value 598 

CYP2F1: Cytochrome P450 Family 2 Subfamily F Member 1 599 

FEZ1: Fasciculation and Elongation Protein Zeta 1 600 

GALNT17: Polypeptide N-Acetylgalactosaminyltransferase 17 601 

GNLY: Granulysin 602 

IFNA14: Interferon Alpha 14 603 

IFNA2: Interferon Alpha-2 604 

IFNAR1 and IFNAR2: Interferon Alpha and Beta Receptor Subunits 1 and 2 605 

IFNL3: Interferon Lambda 3 606 

IFNLR: Interferon Lambda Receptor 607 

IL-22: Interleukin-22 608 

IL22RA2: Interleukin 22 Receptor Subunit Alpha 2 609 

IL4I1: Interleukin 4-induced gene-1 610 

IPA: Ingenuity Pathway Analysis 611 

ISGs: interferon-stimulated genes 612 

JAK/STAT: Janus Kinase/Signal Transducer and Activator of Transcription 613 

LRT: lower respiratory tract  614 

NK cells: natural killer cells 615 

PCA: principal component analysis 616 

PTK2: Protein Tyrosine Kinase 2 617 

RBP3: Retinol Binding Protein 3 618 

RNA-Seq: RNA sequencing 619 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.09.23287028doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287028
http://creativecommons.org/licenses/by-nc/4.0/


27 

 

RORC: RAR Related Orphan Receptor C 620 

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2 621 

STING1: Stimulator of Interferon Response CGAMP Interactor 1 622 

Th22: T helper cells type 22 623 

TLR9: Toll Like Receptor 9 624 

TUBB1: Tubulin Beta 1 Class VI 625 

UGT1A1: UDP Glucuronosyltransferase Family 1 Member A1 626 

URT: upper respiratory tract 627 

VL: viral load  628 

WGCNA: weighted correlation network analysis 629 
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