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We evaluate approaches to vaccine distribution using an agent-based model

of human activity and COVID-19 transmission calibrated to detailed trends

in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough

infections in Florida, USA. We compare the incremental effectiveness for four

different distribution strategies at four different levels of vaccine availability,

reflecting different income settings’ historical COVID-19 vaccine distribution.

Our analysis indicates that the best strategy to reduce severe outcomes is to
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actively target high disease-risk individuals. This was true in every scenario,

although the advantage was greatest for the middle-income-country availabil-

ity assumptions, and relatively modest compared to a simple mass vaccination

approach for rapid, high levels of vaccine availability. Ring vaccination, while

generally the most effective strategy for reducing infections, ultimately proved

least effective at preventing deaths. We also consider using age group as a

practical, surrogate measure for actual disease-risk targeting; this approach

still outperforms both simple mass distribution and ring vaccination.

We also find that the magnitude of strategy effectiveness depends on when

assessment occurs (e.g., after delta vs. after omicron variants). However, these

differences in absolute benefit for the strategies do not change the ranking of

their performance at preventing severe outcomes across vaccine availability

assumptions.
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Introduction

During outbreak or pandemic situations, public health agencies respond with various interven-

tions to contain and mitigate spread of the pathogen. When available, vaccination can be a

useful strategy to reduce both transmission and infection severity. However, different deploy-

ment strategies for vaccination vary in effectiveness, and in ways that may depend on vaccine

performance and the natural history of the infection (1–3). During the COVID-19 pandemic in

the United States (USA), vaccination generally proceeded via passive, mass distribution, from

older to younger age groups, with priority access for e.g., health care workers and individuals

at high risk for severe outcomes (4). However, vaccines can also be used in more proactive

strategies, like ring vaccination for Ebola, where responders vaccinate contacts and contacts-of-

contacts of identified cases (5).

During outbreaks, vaccination-as-containment strategies are often reserved for pathogens

with a relatively long generation time, so that vaccination can be administered and achieve

efficacy prior to exposure (6, 7). Essentially, the vaccination effort needs to outpace the spread

of the pathogen. For pathogens that spread very quickly or frequently cause infections without a

known exposure, vaccination strategies aim to vaccinate the most people, often preferring those

with higher risk for severe outcomes (8,9). In general, “passive” interventions—where officials

issue guidance, and make resources publicly available—will tend to be less resource-intensive

than “active” interventions that require seeking out intervention targets. Choice of strategy

may also depend on vaccine performance: containment requires efficacy against transmission,

whereas targeting high-risk individuals requires a vaccine that provides good protection against

severe outcomes if infection occurs.

SARS-like (e.g., SARS-CoV-1, MERS) outbreaks have been controllable in the past with

a range of active measures (10, 11). In some settings, SARS-CoV-2 responses have included

substantial, effective contact tracing programs while infection prevalence was relatively low

(12, 13). Plausibly, active vaccination approaches would be beneficial as well. In this study,

we evaluated various vaccination strategies using a detailed agent-based simulation model of
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human activity and SARS-CoV-2 transmission. With reference to a counterfactual simulation

where vaccines are distributed passively (i.e., via a proportional-allocation mass campaign),

we evaluated the effectiveness of active strategies, including quarantining, ring vaccination,

age-prioritized vaccination, and true risk-prioritized vaccination. Many locales have prioritized

vaccination by age, as a proxy for knowing actual, individual-specific risk of hospitalization (or

death) given infection. As our simulated risk-prioritization strategy has this information, we

consider it to be an upper bound on the performance of this kind of strategy.

We further evaluated whether strategy ranking is sensitive to vaccine availability by con-

sidering four levels of availability, including three chosen to represent low-, middle- or high-

income countries world-wide (hereafter LIC, MIC, and HIC respectively). We also evaluated

strategies based on data specifically for the USA, which had particularly fast early uptake of the

vaccine, followed by slower-than-HIC uptake during the second half of 2021 (14).

Methods

We extended an agent-based model framework to support evaluating the COVID-19 epidemic

and response efforts (Fig 1), previously used in (15) and derived from (1). For a detailed de-

scription of the model, see S1 Additional Methods. The model represents SARS-CoV-2 natural

history with empirically-based mechanisms in a stochastic, discrete-time transmission simula-

tion of people moving between places (Fig 2). For this analysis, we consider a population of

375K people with demographics representative of Florida (and spatial structure corresponding

to Marion County, Florida) as a practical sub-population with both urban and rural areas. We

sample the 162K households in the model from state-wide microcensus data, with features in-

cluding household size, ages in years, and employment or student status, and validate the model

against state-wide data (Fig 3). The presence of comorbidities relevant to COVID-19 is known

in aggregate but not at the household level, and thus is sampled independently. Locations in the

model (aside from residences) are based on their actual addresses in Marion County, including

46 long-term care facilities, 33.8K workplaces, 118 schools, and 6 hospitals.
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People in the model engage in various interactions that may result in transmission and which

are moderated by individual behavior thresholds (Fig 2). Some interactions always occur, like

those within households, hospitals, and long-term care facilities. We model two population-

wide non-pharmaceutical interventions (NPIs): “lockdown”, where only essential workplaces

are open, and reduced activity in schools. These have specific periods and levels; see Section 5.3

in S1 Additional Methods. These NPIs apply in both the validation and scenario analysis simu-

lations.

We also model personal protective behaviors (PPBs) which potentially moderate social in-

teractions and patronage of businesses. PPBs are represented as individuals choosing not to visit

social contacts and patronize high-transmission-hazard businesses if the societal risk perception

exceeds an individual’s risk tolerance. Risk tolerance is static and is defined at the household

scale, whereas societal risk perception varies by day but is the same for all households. See

Section 5.4 in S1 Additional Methods for more details.

We represent the natural history of infection with exposed and infectious states, followed

by a recovered state with and strain-specific immune memory (Fig 1a). Individuals vary in the

efficacy of their immune responses to infection. Exposure and infection outcomes in the model

are affected by age and immune history (see Section 1 in S1 Additional Methods for more

details), and infection outcome is additionally affected by the presence of comorbidities.

The simulation advances in daily increments, with a series of transmission opportunities

among individuals when they are co-located during their daily activity pattern (Fig 2). Age-

and spatially-structured interaction patterns can emerge because activities vary by age and day

of week, e.g., children attend specific schools, where they interact with other children from the

model’s catchment area associated with that school, and individuals have specific businesses

that they randomly patronize. For social interactions, households are more likely to be con-

nected to other households with similar risk tolerance thresholds, thus infection risk-groups can

emerge.
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(a) Disease States

(b) Marion County, FL (Satellite Image) (c) Marion County, FL (Model Households)

Figure 1: Model disease states and spatial structure. (a) Progression of the disease states
in the model: susceptible (S) individuals may become exposed (E) to the virus, then progress
to being infectious (initially asymptomatic [IA], possibly progressing to mild [IM ], severe [IS]
or critical [IC]), and finally recovering (R) or dying (D). Recovered individuals have strain-
specific immunity that changes over time. (b) Satellite image of Marion County, FL, the region
used for the model’s spatial structure. (c) Locations of the 115K model households (orange
dots). Roads are shown for reference but are not modeled.
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Figure 2: Individual interactions and behaviors in the model. Interactions occur when
people in the model are in the same location at the same time, and may occur in households,
workplaces, schools, hospitals, and long-term care facilities (not shown). Households have
an inherent risk tolerance (indicated by color), and probabilistically have inter-household con-
nections homophilously based on that tolerance. The population overall has a time-varying
perception of risk of COVID-19 infection that may be different from the actual risk. (a) When
the societal perception of risk is lower than a household’s risk tolerance, household members
engage in all their normal activities, including socializing with specific other households and
patronizing specific high-transmission-risk workplaces like restaurants and bars. (b) When the
societal perception of risk exceeds a given household’s risk tolerance, the household will cease
high-risk activities (indicated with greyed arrows), while maintaining more essential activities
like going to work, school, and patronizing low risk workplaces (e.g., grocery stores). (c, d)
Employees and patrons interact in some workplace types, with interactions between employees
more likely to result in transmission. (d) When perceived risk is high, risk-intolerant (blue) em-
ployees of high-transmission-hazard workplaces still go to work, while risk-intolerant patrons
cease their patronage.
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Figure 3: (See next page for caption.)
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Figure 3: Time-varying model inputs and indicators of model performance. Panels (a-d)
show model inputs, and (e-i) compare model outputs to observed data. In (e-i), points and
cross-hairs indicate observed values, solid lines median trends, and faded lines sample trajec-
tories. Horizontal gridline values are plotted above October 2020. (a) Seasonal forcing has
a 6-month period, peaking in January and July each year. (b) Detection and reporting prob-
abilities by disease outcome. (c) Simulated first, second and third vaccine doses distributed
statewide in Florida, used to calibrate the model (but not for evaluating strategies). (d) Soci-
etal risk perception, which drives personal protective behaviors in the model, is fitted so that
cumulative reported cases in the model match empirical case data for FL (black dots in panel
e). For approximately the month of April 2020, non-essential businesses were closed in the
state, and thus are closed during this period in the model (gray “lockdown” shaded region). Not
shown: schools in the model close during the summers and during spring 2020, and are 50%
and 80% open during the 2020-2021 and 2021-2022 school years, respectively. (e–i) Simulated
data closely track empirical data for incidence of reported cases (e), daily hospital admissions
(f), excess deaths (g), seroprevalence (h), and the fraction of infections that occurred in vacci-
nees (i). Results in (e—g) are scaled to show values per 10,000 individuals, and VOC waves
are labeled as alpha (α), delta (δ) and omicron (o). For empirical seroprevalance data in (h),
horizontal bars indicate the dates covered by each data point and vertical lines indicate the 95%
CI).

Scenarios

We define model scenarios by three factors: (1) vaccine supply level (four levels), (2) vacci-

nation distribution strategy (four strategies), and (3) quarantine policy (two alternatives). S2

Additional Results also covers a fourth dimension: whether eligibility to receive vaccine is con-

ditional on not having a known prior infection, but the main text results only consider uncondi-

tional eligibility. The four supply levels represent LICs, MICs, HICs, and the USA (Fig 4). We

express supply levels as available doses per 10K eligible people, and derive them from UNICEF

estimates of vaccine deliveries (14) and WorldPop program estimates of population sizes (16).

Doses administered on a given day are the lesser of doses available and number of eligible vac-

cinees under the vaccination strategy. Available doses that are not consumed are rolled over to

the next day. As the age- and risk-based strategies never run out of eligible vaccinees, doses

administered for those strategies match doses delivered as specified by UNICEF. The supply is

distributed according to a vaccination strategy, either a passive mass vaccination “standard” pro-

gram (i.e., completely random distribution) that we use as a baseline reference, or one of three
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active strategies, called “ring” (vaccinating some primary contacts of contact-traced cases, and

some secondary contacts of contacts), “risk” (prioritized distribution by disease-risk deciles),

or “age” (prioritized distribution by age-group deciles).

Both quarantine and ring vaccination in the model rely on contact tracing. The contact

tracing is intentionally imperfect: a majority (but not all) of reported cases are traced, and

the number of contacts that are identified is dependent on the setting for that contact, e.g., all

household members are identified, but a Poisson-distributed number of inter-household contacts

will be identified. This process is repeated again for all of the identified contacts of the index

case, thus both contacts and contacts-of-contacts may be identified; see S1 Additional Methods,

Section 5.2 for details. We make simplifying assumptions that contact tracing capacity is un-

limited, and that it can be completed the same day an index infection is detected, which could

be days or weeks after infection occurred if e.g. detection occurs upon hospitalization or death.

Real-world contact tracing will vary substantially between settings in capacity, speed, and thor-

oughness, but our assumptions offer a plausible upper bound on the effectiveness of quarantine

and ring vaccination strategies.

A vaccination strategy can be thought of as a way to assign individuals to a queue to receive

available vaccine doses. In the (passive) standard program, individuals are assigned at random

to the queue. In the ring vaccination strategy, individuals are prioritized for vaccination if they

are a contact-traced primary or secondary contact of an identified case. In the risk-based vacci-

nation strategy, the position in the queue to receive vaccine is based on risk of severe disease,

calculated using comorbid status and age, and quantized by decile. A cruder but more practi-

cal strategy that has often been used for COVID-19 is to assign risk based on age alone. We

consider all combinations of vaccine supply and vaccination strategy factors with and without

quarantine of identified cases, primary contacts, and secondary contacts. In S2 Additional Re-

sults, we also report the dynamics of a no-vaccine scenario, but do not use those for reference

comparison in the main text results, as COVID-19 policy challenges have generally focused on

how to use the doses available, and not whether to use them.
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Figure 4: Cumulative vaccine doses administered per 10k over time, by supply level and
distribution strategy. For each combination of the four supply levels LIC, MIC, HIC and USA
(columns) and quarantine policy (dashed lines), we considered four vaccination strategies: ring
vaccination (i.e., infection-risk prioritization) (orange), risk prioritization (blue), age prioritiza-
tion (green), and a standard mass vaccination (black). For LIC and MIC levels, all strategies use
all available doses. For HIC and USA levels, the strategies sometimes differ in doses delivered
due to shortages of individuals eligible for revaccination; only risk- and age-based strategies
always use all available doses.

In all cases, we assume a three-dose vaccine regimen, with an mRNA-vaccine-like efficacy

profile. This approximation is a simplifying assumption to reduce the complexity of the model

and translation of empirical vaccine dose data into a model input. While many countries ini-

tially used nominally single dose vaccines, those products are generally lower efficacy (17) and

many were ultimately deployed with additional booster doses, making their efficacy and dose

requirements more like the mRNA products (see, e.g., (18)).

See S1 Additional Methods for details on determining the dose availability and distribution

time series, and S2 Additional Results for simulated distribution stratified by dose ordinality

and vaccinee age group.

To compare scenarios, we simulate N = 1000 replicates for each scenario, with random

number generator seeds matched across scenarios. This ensures identical pre-vaccination-era

histories when comparing across different scenarios. We compare matched replicates by calcu-

lating cumulative outcomes (infections and deaths) by incidence, incidence averted (compared

to the reference program), and relative incidence averted (i.e., effectiveness) to date, then com-

pute quantiles on these values. In S2 Additional Results, we provide similar measures for
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additional scenarios.

Vaccine Efficacies and Dosing

Rather than simulate any particular SARS-CoV-2 vaccine product, we use published efficacy

data (17) for different SARS-CoV-2 mRNA vaccines to approximate a generalized mRNA vac-

cine. We represent effects of vaccination using the efficacy parameters in Table S5 in S1 Ad-

ditional Methods, namely VES (efficacy against infection), VEP (efficacy against disease given

infection), VEH (efficacy against hospitalization given disease), and VEI (efficacy against on-

ward transmission given infection).

Note that the typical parameter reported from clinical trials is the unconditioned efficacy

against disease, VESP , which is related to VES and VEP by Equation 1.

VESP = 1− (1− VES)(1− VEP ) (1)

Each vaccination strategy determines how people become eligible for a first dose. On each

day during a vaccination campaign vaccinees will be randomly drawn from the pool of all

eligible people for each dose in the vaccination series. Vaccinees become eligible for second

doses 21 days after the first dose, and eligible for third doses after a further 240 days (based

on the median lag between second and third dose administration in Florida). Vaccinations on a

given day continue until either no more doses are available, or no one is eligible.

Results

Model Calibration

We calibrated the model through an iterative process of algorithmic fitting and manual parame-

ters adjustment. See Section 5.6 in S1 Additional Methods for details.

For a Florida-like population, we obtain reasonable matches to a range of metrics: observed

values are mostly fluctuating about the central model trajectory and within the range suggested
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by the replicate trajectories (Fig 3). We use age- and dose-stratified vaccination data specific to

Florida, USA for model calibration.

Scenario Analysis

We used a detailed agent-based model to compare across different scenarios, considering effects

of vaccine supply levels, vaccination strategies, and quarantine policy. Epidemic curves show-

ing simulated outcomes over time illustrate gross features such as waves due to variants that

emerge at specific time-points—alpha (α), delta (δ) and then omicron (o)—and also more sub-

tle effects that arise from heterogeneities such as age-structuring with respect to comorbidities,

employment-based interactions, and risk of death.

The simulations begin with the approximate start of the pandemic in most countries (early

2020); as we focus on the performance of vaccination campaigns, however, we show results

only for the vaccination era in the model, December 2021 to March 2022. All scenarios give

identical outcomes prior to the start of interventions. Fig 5 shows cumulative infections and

deaths per 10K people during the vaccination era for four supply levels. Results for severe and

critical disease have the same trends as those for deaths and are not shown. Fig 6 shows the

same data in terms of overall cumulative effectiveness, computed relative to the performance

of the standard (mass vaccination) program without quarantining. Effectiveness values of 0.1

(-0.1) indicate 10% fewer (more) adverse outcomes relative to the adverse outcomes under the

standard vaccine program. The former figure indicates how the strategies perform in absolute

terms, while the latter shows how much better (or worse) the more complicated strategies are

than vaccinating people randomly.

In absolute terms (Fig 5), the most important factor is vaccine supply, with increasing supply

leading to lower absolute infections and deaths. The trends in relative terms are more complex:

in lower supply settings, there are generally more remaining outcomes to be averted compared to

the baseline, so large relative gains can be made with more sophisticated strategies. Essentially,

each dose if used appropriately can have a proportionally larger effect, because there is more
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to be prevented. However, there are fewer doses available to make those gains, so the absolute

impact is modest. This leads to clearer separation in relative performance, compared to the

absolute perspective, and critically makes it easier to see strategy impact differences between

cumulative infections and deaths.

For infections, all of the scenarios begin similarly, but incidence diverges rapidly in 2021.

In high supply settings, overall coverage is sufficient to blunt infections during delta wave.

Immunological resistance to omicron infection, to the extent that it existed, tended to come

from delta infections in LIC and MIC settings, and from vaccination in HIC and USA settings

(top and middle rows of Fig S7 in S2 Additional Results, respectively). Despite the significant

discrepancies in vaccine supply and epidemic curves, the mean risk of infection given exposure

was similar across all vaccine supply levels (bottom row of Fig S7 in S2 Additional Results) for

the duration of the simulation. Because the model retains the complete infection and vaccination

history for each person, it is possible to characterize the strain-specific extent and source of

immunity throughout the simulated pandemic.

Quarantining of contact-traced individuals tends to dampen infections in the delta wave

and earlier. Quarantine targets individuals most likely to be exposed (e.g., workers), however,

who tend to differ from those most likely to suffer severe symptoms (e.g., seniors). When the

omicron wave arrives, quarantining is not able to keep up with the increased transmissibility.

Quarantine scenarios at that point have an immunity deficit compared to their no-quarantine

counterparts, leading to a larger omicron wave.

However, the corresponding trends in deaths do not necessarily track with infections, as il-

lustrated by comparing the top and bottom rows within Fig 5 and Fig 6. In general, the programs

that somehow prioritize disease-risk (i.e., fully-risk-aware and age-based strategies) generally

prevent fewer overall infections than even random distribution of the vaccine. Yet, they are

also the most effective at preventing severe disease outcomes including death. Quarantining

provided a consistent, if modest reduction in incidence of death—on the order of 10 to 15%—

across supply levels and most vaccine programs, with the exception of ring vaccination in HIC

14
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and USA simulations, where quarantine had negative cumulative effectiveness after omicron.

Apparent performance of a strategy depends on the timing of the assessment. We specifi-

cally considered comparison during periods of low transmission after epidemic waves as likely

points of policy assessment. Fig 7 highlights trends in the simulation results, measured after

each VOC wave. Generally, quarantining increases effectiveness regardless of vaccine supply,

vaccination strategy, or VOC. Against infections, ring vaccination outperforms other vaccina-

tion strategies, though the effect is sometimes small and depends on both vaccine supply and

assessment timing. Against deaths, a consistent vaccination strategy ranking (from best to worst

performance) emerges regardless of vaccine supply or VOC: risk-based, age-based, standard,

and ring vaccination. The discrepancy between most and least effective distribution strategy

tends to increase with vaccine supply. Finally, for both infections and deaths, with and with-

out quarantine and across all supply levels, the cumulative effectiveness of ring vaccination

decreased as a result of the omicron wave. This is likely due to both the VOC spreading more

rapidly (via increased infectiousness and decreased latent period), and decreased efficiency of

the distribution strategy, as a smaller and smaller fraction of those traced would be as-yet un-

vaccinated and thus eligible for vaccination.

Conditional vaccination, where vaccines are only given to individuals with no known in-

fection history, provided modest additional benefits (compared to the main text, unconditional

vaccination results) against death for LIC and MIC supply levels, particularly for risk-based

vaccination (Figs S8 through S10 in S2 Additional Results).
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Figure 5: Cumulative incidence of infection and death per 10k people, by supply level and
distribution strategy. Columns represent vaccine supply scenarios. Rows represent infection
(top) and death (bottom) outcomes. Central lines represent median values with a 90% interquan-
tile range shown as the ribbon. For infections, the major effects are supply level (columns) and
the policy of quarantining (dashed lines) or not quarantining (solid lines), whereas the four
vaccination strategies perform similarly. For deaths, supply level and quarantine are again the
strongest factors. However, a strong effect of vaccination strategy also emerges: relative to
a standard vaccine roll-out (black), risk-based vaccination (blue) and age-based vaccination
(green) are more effective at preventing deaths, whereas ring vaccination (orange) is less effec-
tive. See the text for further explanation.
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Figure 6: Cumulative overall effectiveness against infection and death incidence, by sup-
ply level and strategy. Columns represent vaccine supply scenarios. Against infections (top
row), quarantining (dashed lines) significantly increases vaccination effectiveness. Central lines
represent median values with a 90% interquantile range shown as the ribbon. Choice of strategy
is less important in LIC and MIC scenarios, though in higher-income scenarios ring vaccination
(orange) performs best until the omicron wave. Similarly, against deaths (bottom row), quar-
antining increases vaccination effectiveness overall; however, vaccination strategies are ranked
more consistently. Risk- (blue) and age-based (green) strategies out-perform standard vaccina-
tion (black), while ring vaccination performs worst, especially in high-income settings during
the omicron wave.
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Figure 7: Cumulative effectiveness after variant waves. Columns depict vaccine supply sce-
narios and rows separate infection and death results. “Waves” are defined generally as the time
from when a VOC is introduced to when a new VOC is introduced (however the alpha period
starts at the beginning of the simulation and omicron period ends at the end of the simulation).
The non-quarantining, standard strategy is used as the baseline for all comparisons.

Discussion

Using a spatially-explicit, stochastic agent-based model, we were able to calibrate transmission

parameters to reasonably match a wide-variety of outcomes (including reported cases, hospi-

talizations, deaths, seroprevalence, and breakthrough infections) for the COVID-19 pandemic

in the state of Florida from February 2020 to March 2022. Using that calibrated model and

population, we evaluated vaccination strategies that cover both the actual COVID-19 response

programs and several alternatives. We evaluated overall strategy performance, i.e., at the scale

of the entire population including non-vaccinees, in terms of infections and deaths. Strategies

were compared to a “null strategy” standard program, where doses are administered randomly
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among the entire eligible population. We found consistent benefit from risk-prioritization pro-

grams for severe disease outcomes (i.e., disease warranting in-patient medical care and up to and

including death), across supply levels, with and without additional quarantining NPIs. Strategy

performance against infections was more nuanced, with program ranking depending on both

socioeconomic setting and the timing of the assessment.

When only considering overall infections and not deaths, the risk-based programs tended to

rank lower in cumulative effectiveness than alternatives during the alpha and delta SARS-CoV-

2 waves, but the resulting increased immunity from those infections led to reduced omicron

transmission, minimizing the differences between strategies by the end of the omicron wave (see

Fig 6 and Fig S7 in S2 Additional Results). On the other hand, ring vaccination strategies, which

specifically target segments of the population where transmission is occurring, demonstrated the

reverse pattern, preventing infections due to earlier variants but losing ground against omicron.

Notably, while ring-vaccination generally prevented the most infections, it under-performed

even the standard program on severe outcomes, for all supply levels, unless supplemented with

quarantining (see Fig 7). We expect that real-world use of ring vaccination for COVID-19 would

be even less effective than our model’s predictions, particularly during peaks in transmission, as

we did not assume resource limitations when contact tracing, nor delays in vaccinating traced

individuals. Realistically, contact tracing capacity is specific to both locale and methodology,

and whether ring vaccination would be practicable during e.g. an omicron-like wave would

need to be evaluated given those specifics.

Increasing vaccine supply from the LIC to MIC to HIC average levels provided increas-

ing benefit to all of the distribution strategies. Increasing vaccine supply from LIC to MIC

levels reduced cumulative deaths by approximately 32% regardless of quarantining or vaccina-

tion strategy, and further increasing supply to HIC levels approximately reduced deaths by an

additional 49%. However, these values assume an HIC-like population and infection-fatality

rate (19); the absolute number averted would change with more context-specific assumptions,

but the overall impact on relative changes is not obvious.
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Against cumulative infections, the impact was somewhat less dramatic, largely because of

the vaccine’s modest efficacy against infection and infectiousness. Increasing supply from LIC

to MIC levels reduced cumulative infections by only 9%, while increasing to HIC levels re-

duced infections by an additional 25%. HIC and USA scenarios had similar cumulative vaccine

coverage, and provided similar benefit for these relative reductions in infections and deaths.

For a given vaccine distribution strategy, adding quarantining as an NPI provided only mod-

est additional benefit at HIC and USA vaccine supply levels (<10% reduction in infections

and deaths). For lower supply levels, the impact was somewhat higher (approximately 10 to

15%). These are cumulative endpoints, measured after the omicron BA.1 wave. During the

delta wave, we generally observed a bigger impact for quarantine, but quarantine was less ef-

fective against the more transmissible omicron variant. At the population scale, some of the

infections that were avoided during delta were simply put off until omicron (see Fig 5 in S2

Additional Results). While the benefits of quarantine suggest a potentially attractive NPI strat-

egy, that decision would need to account for costs (which might be worse in settings with lesser

access to e.g., work-from-home alternatives) and transient threshold effects like running out of

ICU beds, which we do not consider in this analysis.

Our approach has limitations, particularly when considering extrapolation to LIC and MIC

settings. We fit model parameters to data from a particular HIC setting that (in comparison to

typical LIC and MIC settings) is likely older and differs in comorbidities, economic and school-

ing activity patterns, and access to healthcare, among other distinctions. Using a detailed agent-

based model makes it possible to evaluate equally detailed scenarios, but tailoring to specific

settings requires both a large, varied collection of high-resolution non-epidemiological empir-

ical data to construct the population (e.g., household structure, business distribution, schools

structure) as well as detailed epidemiological time series. Our quantitative results for incidence

of infections and deaths should not be interpreted as estimates for the LIC and MIC settings, as

we do not have the relevant empirical data to calibrate the model. The relative change, i.e., ef-

fectiveness, should be more reliable, as prediction errors will tend to have similar direction and
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magnitude across scenarios for a given setting, and the ordered ranking of approaches should

be most reliable.

Additionally, our model of risk perception and personal protective behaviors is essentially

accounting for model residuals. When comparing the trends in inferred perceived societal risk

to epidemic trends in our reference population, we see perceived risk slightly lagging incidence

dynamics, with gradually dampening reactions. This matches our intuitions about how popula-

tions actually reacted to pandemic waves, so we are comfortable with this approach and suspect

that attempts to compare to relevant empirical data (e.g., risk surveys, changes in mobility pat-

terns) would be consistent. However, we did not attempt to codify this trend into a generic,

reactive behavior model. Instead, we simply use the risk curves from the fitting stage for the

alternative strategy scenarios. Those scenarios result in different incidence, which in real popu-

lations would likely affect risk perception and thus behavior. To deal with this issue, we would

need to establish an explicit reaction model, ideally accounting for distinctions across income

settings when extrapolating beyond the reference population. How best to model reactive be-

haviors, and what data to inform them with, remains an important open question in infectious

disease modeling.

Overall, our model indicates that disease-risk prioritizing strategies consistently generated

greater public health benefit than mass or ring vaccination. This finding did not vary with

distribution setting, the addition of quarantining, or by timing of the measurement. The most

demanding scenario in terms of information on disease risk provided the best results, though

generally the less information-intensive age-prioritization appears to provide a sufficient surro-

gate for disease-risk. The actual best policy choice would incorporate other factors, for example

vaccine distribution cost and political feasibility, which while not incorporated in this analysis,

we would expect to favor simpler programs.
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