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21  Abstract

22 Cervical vertebral maturation (CVM) is widely used to evaluate growth potential in the field of 

23 orthodontics. The aim of this study is to develop an artificial intelligence (AI) algorithm to 

24 automatically predict the CVM stages in terms of growth phases using the cone-beam computed 

25 tomographic (CBCT) images. A total of 30,016 slices obtained from 56 patients with the age 

26 range of 7-16 years were included in the dataset. After cropping the region of interest (ROI), a 

27 convolutional neural network (CNN) was built to classify the slices based on the presence of a 

28 good vision of vertebrae for classification of the growth stages. The output was used to train 

29 another model capable of categorizing the slices into phases of growth, which were defined as 

30 Phase I (prepubertal, CVM stages 1 and 2), phase II (circumpubertal, CVM stage 3), and phase 

31 III (postpubertal, CVM stages 4, 5, and 6).  After training the model, 88 unused images 

32 belonging to 3 phases were used to evaluate the performance of the model using multi-class 

33 classification metrics. The average classification accuracy of the first and second CNN-based 

34 deep learning models were 96.06% and 95.79%, respectively on the validation dataset. The 

35 multi-class classification metrics applied to the new testing dataset also showed an overall 

36 accuracy of 84% for predicting the growth phase. Moreover, phase I ranked the highest accuracy 

37 in terms of F1 score (87%), followed by phase II (83%), and phase III (80%) on new images. 

38 Our proposed models could automatically detect the C2-C4 vertebrae required for CVM staging 

39 and accurately classify slices into 3 growth phases without the need for annotating the shape and 

40 configuration of vertebrae. This will result in developing a fully automatic and less complex 

41 system with reasonable performance, comparable to expert practitioners. 
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43 Author Summary

44 The skeletal age of orthodontic patients is a critical factor in planning the proper orthodontic 

45 treatment. Thus, an accurate assessment of the growth stage can result in better treatment 

46 outcomes and reduced treatment time. Traditionally, 2-D cephalometric radiographs obtained 

47 during the orthodontic examination were used for estimating the skeletal age using the three 

48 cervical vertebrae. However, this method was subjective and prone to errors as different 

49 orthodontists could interpret the features differently. Moreover, 2-D images provide only limited 

50 information as they only capture two dimensions and involve superimpositions of neighbour 

51 structures. In the present study, machine learning models are applied to 3-D cephalometric 

52 images to predict the growth stage of patients by analyzing the shape and pattern of cervical 

53 vertebrae. This method has the potential to improve treatment outcomes and reduce the treatment 

54 time for orthodontic patients. Additionally, it can contribute to the development of more 

55 personalized treatment plans and advance our understanding of the growth and development of 

56 the craniofacial complex.

57
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62 Introduction

63 Understanding the growth and development process of children and adolescents is an 

64 important task in medicine and dentistry for the diagnosis or treatment [1, 2].  Bone age, which is 

65 routinely requested by pediatricians, endocrinologists and orthodontists, is more accurate in 

66 determining the maturation of an individual [3].  In the field of orthodontics, apart from selecting 

67 the appropriate appliance to produce the required change in the rate and direction of jaw growth, 

68 the treatment timing is critical [1, 4].

69 Traditionally, analyzing the pattern of ossification of the non-dominant wrist bones using 

70 plain wrist radiographs is a fairly predictable method for skeletal age assessment [2]. Hand-wrist 

71 radiographs have been the gold standard for determining skeletal age due to simplicity, minimum 

72 radiation exposure, and the availability of multiple ossification centers [5]. However, the 

73 methods are criticized for the time spent and experience required, inter- and intra-rater variability 

74 [6].

75 Evaluating cervical vertebral maturation (CVM) -as a method to determine skeletal age- can be 

76 performed on the lateral cephalometric radiographs using the changes in the size of vertebral 

77 bodies as well as shapes of lower and upper borders of C2, C3 and C4 vertebrae [7]. 

78 Cephalometry is widely used in orthodontics for the diagnosis, planning, growth and 

79 development evaluation and follow up of an orthodontic treatment or progress of a 

80 developmental disorder [8, 9]. Thus, in orthodontics, an obvious advantage of CVM evaluation is 

81 prevention of additional exposure to radiation by eliminating the need for a hand-wrist 

82 radiograph [4]. 
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83 Baccetti et al. introduced six stages using the morphological changes in the C2, C3 and C4 

84 vertebral bodies, which are commonly observable on a single lateral cephalogram, independent 

85 of patient gender [4]. According to this evidence, CVM stages 1 and 2 have been referred to as 

86 prepubertal, CVM stage 3 has been referred to as circumpubertal and CVM stages 4, 5, and 6 

87 have been defined as postpubertal [10].  

88 Several studies have stated that CVM is a reliable method of age assessment that can replace 

89 hand-wrist radiographs [5, 7]. It has been demonstrated that CVM stages are useful clinical tools 

90 to evaluate growth height and mandibular velocities according to the correlation between CVM, 

91 chronological age and hand-wrist maturation [11, 12]. However, others have reported that this 

92 technique is inherently subjective and influenced by the practitioner’s experience therefore, 

93 requires support by other biological indicators [13]. Moreover, some authors believe that due to 

94 the high-level of radiographic noise and intrinsic limitations of 2D lateral cephalograms that 

95 affect the magnification and image accuracy, the estimation of bone age using CVM may be 

96 difficult for practitioners lacking adequate knowledge and experience [4, 13]. 

97 Based on the limitations listed above and the fact that accurate image analysis plays a crucial 

98 role in achieving a successful orthodontic outcome, automatizing the task will provide time 

99 saving, efficiency, accuracy and repeatability in orthodontic treatment planning and assist 

100 clinicians in alleviating their enormous workload [4].

101 Machine learning (ML), uses algorithms to predict the unseen data based on the learnings 

102 obtained from intrinsic statistical patterns and structures in data [14, 15]. Deep learning (DL) 

103 refers to network architectures with more than one hidden layer that are capable of analyzing 

104 complex data structures such as images [14, 16]. DL models require less expert knowledge 

105 compared to classical ML methods as they can learn features that adapt to the input data [15].  
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106 Recently, the introduction of convolutional neural networks (CNN) algorithms using DL, allows 

107 for direct interference, recognition and classification of medical images [17]. CNN has been 

108 utilized in various aspects of science including speech recognition, detecting objects, analyzing 

109 emotions and face recognition. However, its great breakthroughs in major image competitions 

110 have made it a popular technique for medical image analysis and computer visual tasks [18]. In 

111 the field of dentistry, CNNs have performed tasks such as caries, bone loss and apical lesions 

112 detection as well as classifying, segmenting and detecting anatomic hard- and soft-tissue 

113 landmarks [19].  

114 Several AI techniques have been employed for cephalometric radiograph analysis with the focus 

115 on auto-identification of landmarks [20].  However, studies on the assessment of skeletal age 

116 using lateral cephalograms are in the beginning stage [16]. In addition, CVM analysis on lateral 

117 cephalometric radiographs using more recent DL models vary in classification accuracy due to 

118 the differences in preprocessing methods and the applied models [21]. 

119 Recently, a new imaging technology- cone beam computed tomography (CBCT) is becoming 

120 exceedingly popular in the field of orthodontics, which helps in eliminating the problems caused 

121 by magnification [22]. It allows orthodontists to evaluate patients’ hard and soft tissue in three 

122 dimensions (3D) [23]. Besides, it is superior to conventional CTs due to the lower radiation dose, 

123 clearer images, more precision and relatively low cost [5, 24].

124 Given the importance of CVMs classification in clinical application is to determine the 

125 optimum timing for growth modification treatments, and as there is no data available regarding 

126 the performance of CNN models to estimate the CVM on 3D radiographs, the objective of the 

127 proposed study is to demonstrate the application of CNN in dental imaging for classifying 

128 prepubertal, circumpubertal, and postpubertal phases of growth that works in a fully automatic 
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129 manner without the need for segmentation or annotating (labelling) the images. As the major 

130 clinical application of the CVMs classification is to determine the optimum timing for growth 

131 modification treatments, we are using this type of categorization which would be more beneficial 

132 for clinical decision-making.  

133 Results

134 Figure 1 represents a summary of the process from extracting patients’ CBCT images to 

135 classifying the phase of growth through CNN models.

136 Fig 1. Diagram of the whole process

137 Table 1 summarizes the descriptive characteristics of the images and growth phases included in 

138 the study.  CBCT images belonging to 56 patients (consisting of 536 slices per patient) were first 

139 categorized into three growth phases by two orthodontists with an inter-rater reliability of 73%. 

140 In cases of conflict, the growth phase was determined by the third orthodontist.  

141 Table 1. Descriptive information of the included images

Number of patients Age Number of slices
Growth phase

n (%) (mean ± SD) n (%)

I 18(32%) 8 years and 9 month ± 1 year and 5 months 536(31.4%)

II 15(27%) 11 years ± 9 months 527(49%)

III 23(41%) 13 years and 7 months ± 1 year and 3 months 642(37.6%)

142     

143 Table 2 demonstrates the performance of the first CNN model to predict preferred vs. 

144 nonpreferred views of C2-C4 vertebrae (ROI) on a new set of images as the test dataset. The 
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145 training and validation accuracies were found to be 91.78% and 88.19%, respectively. According 

146 to the table, all slices of new test images including a good vision of vertebrae for classification 

147 (n=41) could be predicted correctly.

148 Table 2. Model performance of detecting ROI on the test dataset

Predicted ROIa

Not Preferred Preferred

Not Preferred 103 72Actual(true) 

ROI Preferred 0 41

149 a ROI: region of interest

150  Accuracy, recall, precision, and F1-score were calculated using multi-class classification metrics 

151 for the second CNN network. Table 3 demonstrates the multi-class classification metrics applied 

152 to the validation dataset and a group of 88 images as the testing dataset. The overall accuracy on 

153 this set of new slices was found to be 84%. The average classification accuracy of our CNN-

154 based deep learning model was 98.92% and 95.79% on the training and validation datasets, 

155 respectively.  

156 Table 3. Model performance using the multi-class classification metrics on validation and test 

157 datasets for categorizing slices into three growth phases

Test data Validation dataGrowth 

phase Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

I 0.77 1.00 0.87 0.97 0.97 0.97

II 1.00 0.71 0.83 0.94 0.93 0.93

III 0.83 0.77 0.80

0.84

0.96 0.97 0.96

0.96

158

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.23287008doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23287008
http://creativecommons.org/licenses/by/4.0/


9

159 Figure 2 also represents the model performance for classifying the cervical vertebrae into 3 

160 growth phases on validation and testing datasets.

161 Fig 2. Confusion matrices representing the performance of the model to classify the 

162 vertebrae into 3 growth phases on a) validation and b) testing datasets.

163 Discussion

164 In this study, CNN models were designed to classify images according to the presence or 

165 absence of the ROI, and then according to the features of vertebrae into three phases of growth. 

166 The annotating step was skipped in the proposed model, which resulted in a more time-efficient 

167 image pre-processing. To fully automate the process of CVM classification, a recent study by 

168 Atici et al. [25] was conducted. They proposed an innovative custom-designed deep CNN to 

169 detect and classify the CVM stages. A layer of tunable directional filters was applied to fully 

170 automate the procedure and they achieved a validation accuracy of 84.63% in CVM stage 

171 classification using 1018 cephalometric images from 56 patients. They stated that this level of 

172 accuracy was higher compared to other DL models investigated. Our proposed fully-automated 

173 model was successful in determining the growth phase of patients using the CVM staging with a 

174 validation accuracy of 95.79%, which is higher compared to Atici et al. findings. This can be due 

175 to the higher resolution and accuracy of the input images (CBCT slices) in our study that 

176 enhances the training accuracy of the model.

177 Depending on the task to be performed, various architectures of CNN models have been 

178 proposed so far. For instance, Makaremi et al. utilized a semi-automatic CNN-based model to 

179 assess the maturation of cervical vertebrae; however, it needed manual segmentation of the 

180 region of interest [26].  Since then, many novel methods of image segmentation (such as U-Net) 
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181 based on FCN have been utilized for medical image analysis [27, 28]. In a study conducted by 

182 Seo et al. the performance of six CNN-based DL models were evaluated and compared for CVM 

183 analysis on conventional 2D cephalometric images. Inception-ResNet-v2 demonstrated the 

184 highest classification accuracy due to its capability of focusing on all three vertebrae (C2-C4) 

185 compared to other DL models. They stated that most studied DL techniques classify CVM by 

186 focusing on a specific area (region of interest) of the cervical vertebrae. Thus, they suggested 

187 that application of high-quality input data and better-performing CNN architectures that are 

188 capable of segmenting images will help in creating models with higher performance [29].  

189 Our study used CBCT slices of the vertebrae to determine the skeletal age of the patients. 

190 CBCT accuracy and reliability in several aspects of dentistry such as assessment of tumor 

191 lesions, orthognathic surgery planning and implant placement have been reported [30]. There is 

192 universal agreement that CBCT images are more accurate compared to 2D cephalometrics for 

193 craniofacial studies [31, 32]. This can be an explanation for the higher amount of accuracy our 

194 model achieved. A recent systematic review by Rossini et al. also showed that 3D cephalometric 

195 analysis outperforms the conventional 2D cephalometrics in terms of accuracy and 

196 reproducibility [22].   

197 However, the amount of radiation exposure, which is higher in comparison to a 2D 

198 cephalogram, is the biggest controversy about its use in dental imaging [33]. It is suggested that 

199 CBCT images can be a valid and useful tool for assessment of skeletal age using CVM, although 

200 they should not be used solely for that purpose [34]. 

201 Our model accuracy on predicting a group of unseen images was greater than 80% with 

202 the highest performance at phase I (F1 score:87%), which is consistent with previous studies. 

203 According to the literature, CVM stages are sometimes difficult to differentiate according to the 
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204 continuous nature of morphological changes in cervical vertebrae (McNamara and Franchi 

205 2018).  Thus, CS 1 (meaning no development) and CS 6 (maturity) stages are easier to identify. 

206 Our model performed well in predicting the CS3 (phase II) with the F1 score of 85%. This was 

207 in contrast with a study conducted by Zhou et al. [36] who reported an F1 score of 31% for 

208 diagnosing the pubertal spurt on cephalometric radiograph. As the authors mentioned, this could 

209 be due to their insufficient training set of CS3 for growth spurt is short and difficult to find in 

210 clinical practice.  

211 Hand-wrist radiographs were not used which can be described as a limitation of this 

212 study. However, this study focused solely on classifying the patients at their pre-, circum-, and 

213 postpubertal growth stages using sagittal slices of the CBCT images and evaluation of the 

214 reliability of this method was not taken into consideration. 

215 In contrast to previous studies, we only classified patients according to the three growth 

216 phases. However, according to the main clinical application of CVM staging, which is to 

217 determine the growth potential of the patients, our classification method can be justified in terms 

218 of orthodontic treatment planning and correction of the jaw discrepancies.

219 In conclusion, our proposed model could automatically detect the ROI (C2-C4) required 

220 for CVM staging and accurately classify images into 3 growth phases without the need for 

221 annotating the shape and configuration of vertebrae. This will result in developing a fully 

222 automatic and less complex system with reasonable performance, comparable to expert 

223 practitioners. Classical methods are time-consuming and prone to inter- and intra-rater variability 

224 thus, using methods that automate this process will be of value. Expansion and application of 

225 utilizing such DL models in clinical practice will enable practitioners to make more accurate 

226 diagnosis and treatment planning in a time-saving manner. Moreover, using 3D cephalometric 
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227 radiographs –which is the primary distinction of the proposed study from the previous ones- 

228 could enhance the performance and secure the reliability of the DL model in CVM classification.  

229

230 Materials and Methods

231 This study was approved by the Health Research Ethics Board (HREB) of the University 

232 of Alberta (Approval number: Pro00118171). All patients aged between 7-16 years, who 

233 underwent CBCT (120 kVp, 5 mA and 4 sec) sagittal views of craniofacial structures between 

234 2013 and 2020 at the University of Alberta, Orthodontics clinic, were included in this study.

235 The inclusion criteria was as follows:

236 1-    Patients without congenital or acquired malformation of the cervical vertebrae

237 2-    Radiographs with good vision of C2, C3 and C4 vertebrae

238  Chronological age was collected and calculated based on the date of filming and date of birth. 

239 Images of 56 patients were studied. All collected images were kept as DICOM format, so to 

240 prepare them for further processing, they were all transformed to PNG images using the ITK-

241 SNAP software (726 * 644 pixels). The sagittal views (cephalometric views), which consisted of 

242 536 slices for each patient studied and classified by two expert Orthodontist Scientists (A. S. and 

243 N. A.) with more than 6 years of experience. In the case of any conflicts, a third orthodontist (S. 

244 F.) evaluated the slices for determining the class of CVM. CVM was classified into six stages 

245 (CS1- CS6) according to the methodology from previous studies [4]. Then slices were grouped 

246 into 3 growth phases (I, II, and III) by combining the CS1 and 2 as phase I, CS 3 as phase II, and 

247 CS4, 5, and 6 as phase III. Then, the slices were exported into Google Colaboratory for CNN 

248 training. Using the original image for classification may lead to poor performance of CNN 
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249 models since they will classify the cervical stage based on parts other than the shapes of the C2-

250 C4 vertebrae. To overcome this problem, segmentation of the ROI around C2-C4 will enable the 

251 classifier model to focus more on these cervical vertebrae [16].  For this purpose, regions of 

252 interest (ROI) which included the C2-C4 vertebrae were cropped from the original slices for 

253 CVM classification. The result was a collection of 536 slices for each patient (a total of 30,016 

254 slices). 

255 To fully automate the analysis from landmark detection to CVM classification without 

256 the need to label the target structures (C2-C4 vertebrae), two classification models capable of 

257 classifying the preferable view of C2-C4 vertebrae and estimating the growth phases using a 3D 

258 lateral cephalogram were created.  In the first model, the resized and cropped ROI obtained from 

259 the original image, was used as input for the classifier without segmentation. The classifier 

260 model received a fixed image of size 344*350 pixels that fitted the model as an input and 

261 classified the image based on presence or absence of the preferable view of all three vertebrae 

262 that is required for CVM classification. The output -slices including the preferred vision of 

263 vertebrae- was fed to the second CNN model, which predicted the three phases of growth as 

264 output. CNNs are types of DL methods consisting of minimum of three layers: input, hidden and 

265 output layers [37].  They apply supervised learning technique and called “backpropogation” and 

266 have been utilized for various image analysis tasks such as classification, segmentation and 

267 landmark detection [38]. In addition to requiring little preprocessing techniques, CNNs are 

268 devoid of manual feature handcrafting [3]. The main constituents of a CNN model are: 1) 

269 Convolutional layers (the first step) with the purpose of extracting features such as gradients or 

270 edges from the input image using the mathematical transformations, 2) Non-linear activation 

271 functions, which is sandwiched between any two layers and guides the input signals into output 
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272 signals required for the NN to act,  3) Pooling layer, which reduces the number of parameters to 

273 learn and the amount of computation to summarize the features generated by the convolution 

274 layer, and 4) Fully connected layers that are responsible for the interpretation of the feature 

275 representations learned by preceding layers [39]. 

276  To train the first CNN model for classifying the preferred vs. not preferred views of 

277 vertebrae, a labeled dataset is essential. We used 638 slices belonging to two categories from 

278 which 127 slices (%20) were selected as validation dataset and remaining slices were used for 

279 training. U-Net, a CNN model capable of performing image classification based on fully 

280 convolutional networks (FCN) was used [40]. It is a U-shaped model consisting of a contracting 

281 path, which goes down to the symmetry point and an expanding path that goes up from that 

282 point. The first path, which contains repeated applications of 3-3 convolutions with a rectified 

283 linear unit (ReLU) activation, and a 2-2 max pooling operation for downsampling, captures the 

284 characteristics of the input image and reduces its size. The second and third path, expanded the 

285 image for accurate segmentation and consisted of 3-3 convolutions with a ReLU activation 

286 function. The final layer included a 1-1 convolution and the model was compiled using the Adam 

287 optimizer and sparse categorical cross entropy loss function. The final output was a collection of 

288 a range of 21-35 slices (28.17± 3.06) for each patient thus, a total number of 1705 slices from 56 

289 patients (536 slices for phase I, 527 for phase II, and 642 slices for phase III) were finally 

290 obtained. From each phase, a collection of slices belonging to a patient was randomly selected as 

291 the test dataset, thus 88 slices (34, 26, and 28 slices representative of growth phase I, II, and III, 

292 respectively) were not input the second model 

293 The second CNN model to classify the slices into three growth phases was trained using 

294 1617 slices (out of 1705 total slices), which were split into training (1294 or 80%) and validation 
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295 (323 or 20%) datasets. The architecture of the second model was the same as the first one except 

296 for removing the dropout from the third hidden layer, and the number of epochs (25 vs. 3). After 

297 training the model, 88 unused slices were used as the testing dataset to evaluate the performance 

298 of the model using multi-class classification metrics. All calculations and computations were 

299 completed using python (TensorFlow, NumPy, Matplotlib, and Keras packages). 
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