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Abstract 1 

Stroke is a complex neurological disorder, and the risk factors and genetic biomarkers 2 

associated with stroke development are not completely understood. This study aims to identify 3 

putative causal traits and their biomarkers that influence the risk of stroke. Here the latent 4 

causal variable (LCV) method has been used to investigate the potential causal genetic 5 

relationships between large-scale genome-wide association studies (GWAS) data of 1504 6 

complex traits from UK Biobank and stroke. Generalised Mendelian randomisation (GSMR) 7 

method has also been further used to examine causal inference. These analyses suggest 14 8 

causal traits associated with stroke risk (|GCP|> 0.60; FDR < 0.05), including atrial fibrillation, 9 

deep venous thrombosis, gamma-glutamyl transferase, and platelet crit. Gene-based analysis 10 

has revealed shared genes, providing novel insights into the genetic biomarkers of the causal 11 

traits on stroke risk. Functional enrichment analyses of the shared genes have provided 12 

biological pathways underlying biological mechanisms to stroke risk, including “oxidative 13 

damage”, “platelet activation”, “cell aging”, and others. This study provides causal evidence 14 

of cardiovascular, metabolic, and blood clot-related traits increasing stroke risk. The identified 15 

shared gene biomarkers provide valuable insights into the shared genetic biomarkers and 16 

underlying mechanisms linking causal traits to stroke risk.  17 

 18 

Keywords: Stroke, latent causal variable method, summary statistic for complex traits, and 19 

genome-wide association studies (GWAS). 20 
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Introduction 1 

Stroke is the second largest cause of mortality and disability worldwide [1]. Stroke affects 2 

around 13.7 million individuals, and about 5.5 million die yearly [2]. Stroke is a neurological 3 

condition characterised by blockage of a blood vessel. For instance, blood clots can form in the 4 

brain, obstructing blood flow and causing blood vessels to rupture, resulting in haemorrhage in 5 

the brain. When the brain arteries rupture during a stroke event, the lack of oxygen causes the 6 

brain cells to die[2].  7 

Clinical and epidemiological studies have repeatedly discovered a hereditary component to 8 

stroke vulnerability along with more typical risk factors, including smoking, hypertension, and 9 

diabetes mellitus [3]. Twins’ studies and family history also provide evidence that genetic 10 

susceptibility is significant in stroke aetiology [4]. The estimated heritability was 37.9% for all 11 

ischemic strokes [5]. In genome-wide association studies (GWAS), several significant risk loci 12 

have been identified as associated with stroke [6]. For instance, cardioembolic stroke was 13 

linked to two atrial fibrillation-related loci (PITX2 and ZFHX3), whereas large-vessel stroke 14 

was linked to a locus on chromosome 9p21 that was previously associated with coronary artery 15 

disease [7]. In addition, a multi-ancestry GWAS analysis revealed 35 risk loci associated with 16 

the aetiology of stroke and its subtypes [8,9]. Recently, cross-ancestry meta-analyses of GWAS 17 

summary data on stroke identified a total of 89 independent loci significantly associated with 18 

stroke and stroke subtypes [10]. Mendelian randomisation (MR) was used genetic data to 19 

understand the causal role of traits on stroke risk [11]. For example, blood pressure, atrial 20 

fibrillation, venous thrombosis, circulating lipoproteins, LDL (low-density lipoprotein) 21 

cholesterol, obesity, type 2 diabetes, insulin resistance, hyperglycaemia, education, BMI, 22 

physical activity, alcohol consumption and smoking have been associated with increased risk 23 

of stroke using MR [11,12]. Mendelian randomisation (MR) and latent causal variable (LCV) 24 

approaches examine the influence of genetic liability for a specific trait on the outcome [13,14]. 25 
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Interestingly, the LCV method represents some advantages over MR methods. Firstly, in 1 

contrast to conventional MR methods, LCV can accurately differentiate between genetic 2 

correlation and full or partial genetic causality. In addition, positive LCV outcomes are more 3 

likely to represent actual causal effects. Secondly, the genetic causality proportion (gcp-value) 4 

can be easily estimated by quantifying the degree of causation, while MR methods, especially 5 

MR Egger can be easily confounded by genetic correlations [15]. In addition, the instrumental 6 

variables defined by the conventional MR method may exhibit putative pleiotropic effect (SNP 7 

instruments have an impact on both risk factors and diseases), which may violate the MR 8 

method assumption. The recently developed generalised summary data-based Mendelian 9 

randomisation (GSMR) approach uses more SNPs as instrumental variables and has a strong 10 

statistical power than the conventional MR approach. Furthermore, the GSMR approach used 11 

the HEIDI outlier method, which eliminates pleiotropic outliers, therefore GSMR results were 12 

not influenced by the pleiotropic effect of risk factors and disease and offered unbiased 13 

estimates of the causal influence. 14 

A genetic correlation might be explained by pleiotropic effects, which can be vertical or 15 

horizontal [16]. When genetic variants directly influence trait A and trait B, this type of effect 16 

is called horizontal pleiotropy. On the other hand, vertical pleiotropy may be seen as a causal 17 

cascade where the influence of a genetic variant on a single trait is explained by its impact on 18 

another trait [13]. Horizontal pleiotropy could lead to high-false positive results in genetic 19 

epidemiology to assess the causality [15,17].  20 

Due to the massive public health concerns with severe socio-economic consequences, there is 21 

a growing interest in exploring the potential causal genetic risk factors of stroke. Therefore, in 22 

the present study, we perform a hypothesis-free exploratory large-scale genetic screening for 23 

risk factors of stroke using the LCV method, which is less susceptible to confounding by 24 

horizontal pleiotropic effects [15]. Our findings support some of the causal associations 25 
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hypothesised by observational studies and shed light on the relationship between stroke, 1 

lifestyle factors, diseases, and health conditions. Finally, we performed gene-based and 2 

pathway-based analyses to discover shared gene biomarkers and underlying pathways for the 3 

causal traits and stroke. 4 

 5 

Materials and Methods 6 

The overall analytical approach that we employed in this study is shown in Figure 1. 7 

Stroke data 8 

We obtained GWAS summary statistics for stroke from a meta-analysis of GWAS data from 9 

MEGASTROKE consortium (http://megastroke.org/). This data is generated based on the 10 

fixed-effects meta-analysis of GWAS in 40,585 stroke cases and 406,111 controls of European 11 

ancestry. The details of the study have been described in [18].  12 

 13 

UK biobank cohort datasets 14 

We used 1504 phenotypes available at the Complex Traits Genetics Virtual Lab (CTG-VL) 15 

web-portal (https://genoma.io) [19], which is generated based on UK Biobank datasets 16 

(http://www.nealelab.is/uk-biobank). As a result, the majority of these GWAS summary results 17 

represent people of European ancestry, which eliminates potential biases due to genetic 18 

ancestry variations. This data was corrected for age, age-squared, inferred sex and genetic 19 

ancestry [19].  20 

 21 

Latent causal variable 22 

The latent causal variable (LCV) is a model used to assess the causal association of two 23 

genetically correlated traits. LCV considers a latent variable (L) that has a causal effect on each 24 

trait [15]. The GCP value indicates if the genetic correlation is due mainly to horizontal or 25 
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vertical pleiotropy and is calculated by determining the correlations between latent variable L 1 

with trait A and trait B respectively [15]. A GCP value of 0 indicates that the genetic correlation 2 

is mediated by horizontal pleiotropic effects, suggesting the absence of causal genetic effects. 3 

On the other hand, |GCP| = 1 denotes the presence of vertical pleiotropic effects as well as 4 

complete genetic causality. A |GCP| > 0.6 is regarded as a robust indicator of potential vertical 5 

pleiotropic effects [15]. To evaluate LCV outcomes, three things must be considered: the 6 

amount of genetic correlation, the magnitude of the GCP estimation, and the directionality of 7 

the GCP estimate. The GCP value does not represent the magnitude of prospective causal 8 

effects; rather, it represents the proportion of a genetic correlation that could be described by 9 

potential causal effects. For example, associations with a low genetic correlation (|rG| < 0.30) 10 

and a high |GCP| value near 1 indicate that all the genetic elements overlap between two traits, 11 

despite its small genetic correlation, which is likely due to vertical pleiotropic effects. 12 

Furthermore, a negative GCP value between stroke and trait A indicates that trait A may have 13 

causal genetic effects on stroke, whereas a positive GCP value between stroke and trait A 14 

indicates that stroke may have causal genetic effects on trait A.  15 

The phenome-wide analytic framework was built by using an R script for the LCV approach 16 

that the original authors of the method made accessible on GitHub [15]. We uploaded GWAS 17 

summary statistics for stroke to perform the analysis on the CTG-VL web platform. The 18 

phenome-wide analytic pipeline was then utilised to perform LD score regression[20] and LCV 19 

analyses[15] to assess genetic correlations and potential putative causal links, respectively. Full 20 

instructions for utilising and understanding the publicly accessible phenome-wide analysis 21 

methodology can be found elsewhere [21]. The LCV was performed on all traits that showed 22 

a genetic correlation with stroke (false discovery rate, FDR<0.05). Similarly, we considered 23 

all GCP estimate values that were significant after multiple testing corrections (FDR<0.05).  24 

 25 
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Mendelian Randomization Analysis 1 

To validate the findings of LCV analyses, we performed generalised Mendelian randomisation 2 

(GSMR) analyses. Mendelian randomisation method uses genetic variants (SNPs) as 3 

instrumental variables to identify causal relationships between exposure and outcome [22]. 4 

GSMR method uses all the top associated genome-wide significant level SNPs as an 5 

instrumental variable for the exposures to examine the causality [23]. GSMR analysis results 6 

are not influenced by the risk factors and disease. In short, GSMR used the MR framework to 7 

perform summary-based Mendelian randomisation (SMR) analysis on each individual SNP 8 

instrument. This analysis considered the variability in sampling for each SNP and the linkage 9 

disequilibrium (LD) between SNPs. It then combined the causal estimates from all SNP 10 

instruments using generalised least squares method. GSMR estimates the causal relationship 11 

between causal traits (exposure) and stroke (outcome). Additionally, GSMR method employed 12 

HEIDI outlier method (p-value < 0.01) to exclude the putative pleiotropic outlier SNPs and 13 

unbiasedly, estimates the causal effect of exposures on outcomes [23].  14 

Gene-based association analysis 15 

We used fastBAT – a fast set-based association analysis method to identify potential causal 16 

genes. The fastBAT method uses GWAS summary statistics and linkage-disequilibrium 17 

reference to summarise genetic associations with a trait of interest at the gene level [24]. We 18 

performed fastBAT analysis for stroke, atrial fibrillation, self-reported pulmonary embolism, 19 

blood clot in the lung, cardiac arrhytmias, blood clot in the leg diagnosed, medication: 20 

Gliclazide, insulin and piolitazone, deep venous thrombosis, atrial fibrillation and flutter 21 

(ICD10), deep venous thrombosis of lower extremities and pulmonary embolism, platelet crit 22 

and gamma-glutamyl transferase to identify potential causal disease associated genes. The 23 

fastBAT method found the association between 24273 genes. We then adjusted the P-value 24 
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using Benjamini-Hochberg method (Adjusted p-value > 0.05) for all traits to identify shared 1 

genes between causal traits and stroke.  2 

 3 

Functional enrichment analysis of shared genes between complex traits and stroke 4 

We performed functional enrichment analysis of shared genes of the causal traits (i.e, 5 

cardiovascular traits, blood clot traits (blood in lung, blood clot in leg, DVT, pulmonary 6 

embolism), metabolic traits (gamma glutamyl-transferase), blood trait (platelet crit)) and stroke 7 

using ConsensusPathDB bioinformatics tool [25], accessed on 20 July 2023, for identification 8 

of significant molecular pathways, gene ontology such as biological processes and molecular 9 

functions. ConcensusPathDB is the largest repository for functional enrichment analysis of 10 

genes. We performed pathway enrichment analyses of the shared genes using database for 11 

pathways such as KEGG, BioCarta, Reactome and, Wikipathways. We also performed gene 12 

ontology (GO) enrichment analysis. In the enrichment analysis, the p-value generated from the 13 

hypergeometric test was adjusted for multiple testing corrections. We considered the 14 

significant pathways and GO terms which passed the adjusted p-value < 0.05. 15 

 16 

Results 17 

Identification of causal traits associated with the risk of stroke using latent causal variable 18 

method 19 

In order to identify potential causal traits of stroke, we have performed phenome-wide 20 

screening using latent causal variable (LCV) analysis by leveraging 1,504 complex traits 21 

GWAS datasets from UK biobank and stroke GWAS from MEGASTROKE consortium. Of 22 

the 1,504 complex traits, we identified 262 traits genetically correlated with stroke risk 23 

(FDR<0.05; Supplementary Table (S1). Among those genetically correlated traits, 14 could be 24 
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explained via robust vertical pleiotropic effects with stroke (|GCP|> 0.60; FDR <0.05), while 1 

seven showed limited partial genetic causality (|GCP|< 0.60; FDR < 5%; (Supplementary Table 2 

S2 & S3 respectively).  3 

 4 

We observed the putative causal risk factors of stroke including, cardiovascular traits (atrial 5 

fibrillation, cardiac arrythmias), blood cell trait (platelet crit), liver enzymes (gamma-glutamyl 6 

transferase), physical health conditions such as pulmonary embolism, blood clot in the lung, 7 

blood clot in the leg, deep venous thrombosis of lower extremities. Our findings suggest that 8 

these traits may be causally associated with the risk of stroke (Table 1). 9 

 10 
 11 
Exploring the relationships between causal traits and stroke using generalised summary-12 

based Mendelian randomisation 13 
 14 

To further validate the causal relationships identified by LCV method, we performed 15 

generalised summary-based Mendelian randomisation (GSMR) analysis of the causal traits. To 16 

assess causal roles, the causal traits were considered as exposure and stroke was considered as 17 

outcome in GSMR analysis. GSMR analysis showed that putative risk factors suggested by the 18 

LCV method were also consistently causal for stroke. The GSMR suggested cardiovascular 19 

traits (atrial fibrillation, cardiac arrythmias), physical health conditions (pulmonary embolism, 20 

blood clot in the lung, blood clot in the leg, deep venous thrombosis of lower extremities), 21 

blood cell traits (platelet crit) and liver enzyme (gamma-glutamyl transferase) were found 22 

causally associated with the increase the risk of stroke (Table 2). Due to small sample size, 23 

GSMR could not be performed on the traits, weight change during the worst episode of 24 

depression, and diabetes proxy trait (use of pioglitazone medication). 25 

 26 

Gene-based association analysis of causal traits and stroke 27 
 28 

To identify genes associated with causal traits and stroke, we performed fastBAT analysis and 29 

identified 97 genes for atrial fibrillation, 202 genes for atrial fibrillation and flutter, 85 genes 30 
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for blood clot in leg, 58 genes for blood clot in lung, 180 genes for cardiac arrhymias, 118 1 

genes for DVT of lower extremities and pulmonary embolism, 52 genes for pulmonary 2 

embolism, 10515 gene for platelet crit, 12734 genes for gamma-glutamyl transferase, 85 genes 3 

for stroke (adjusted p-value <0.05) (Supplementary Table S4 to S12). Next, Venn analysis 4 

demonstrated several overlapping genes between causal traits and stroke Figure 3 and 5 

(Supplementary Table S13). We found 4 genes (ZFHX3, HCCAT5, OBFC1, SH3PXD2A) were 6 

shared among atrial fibrillation, cardiac arrhythmias and stroke. FGA, FGG, ILF3, FGB, ILF3-7 

AS1, SH2B3, PLRG1, ARHGAP1 were overlapped in blood clot in leg, deep venous thrombosis 8 

in lower extremities & pulmonary embolism and stroke. ARMS2, ACAD10, CDKN2B-AS1, 9 

FOXF2, ZFHX3, among other genes, were shared between DVT and stroke Figure 3 and 10 

(Supplementary Table S13). 11 

 12 

Functional enrichment analysis  13 

To gain a better understanding of the potential biological functions and molecular pathways 14 

that underlie shared genetic overlap between causal traits and stroke, we performed functional 15 

enrichment analysis of those shared candidate genes. Our functional enrichment analysis 16 

revealed some important pathways and gene ontology terms shared between causal traits and 17 

stroke. We found some significant pathways, such as “intrinsic and extrinsic prothrombin 18 

activation pathway”, “fibrinolysis pathway” and “invadopodia formation” pathways were 19 

shared between atrial fibrillation, cardiac arrhythmias, and stroke (Figure 4(A)). In addition, 20 

we also found “blood clotting cascade”, “platelet aggregation”, “fibrin clot formation”, 21 

“regulation of TLR by endogenous ligand” pathways were shared between traits i.e., blood clot 22 

in lung, blood clot in leg, deep venous thrombosis, pulmonary embolism, and stroke (Figure 23 

4(B)). Furthermore, we also found “STAT5 activation downstream of FLT3ITD mutants”, 24 

“FLT3 signalling in disease”, “oxidative damage” and among other pathways were shared 25 

between platelet crit and stroke (Figure 4(C)), and “chromic myeloid leukemia”, “glioma” and 26 
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“nervous system development pathways were shared by gamma glutamyl-transferase and 1 

stroke (Figure 4(D)) (Supplementary Table S14 to S22).  2 

 3 

The shared genes were also enriched in some gene ontology pathways, particularly involved in 4 

biological process and molecular functions. We identified some significant GO terms such as 5 

“blood coagulation, fibrin clot formation”, “apoptotic signalling pathway”, “defence response” 6 

were shared by pulmonary embolism and stroke. Furthermore, we also found “cell aging”, 7 

“regulation of cell adhesion” and “regulation of haemostasis” were shared between deep 8 

venous thrombosis and stroke. The enriched gene ontology terms are presented in Figure 5(A-9 

F).  10 

 11 

 12 

Discussion 13 

This study advances our understanding of stroke aetiology by shedding light on the causal 14 

architecture of stroke. We leveraged GWAS summary data to examine the potential causal 15 

association between 1,504 complex traits and stroke. Based on genetic evidence, we discovered 16 

14 traits potentially causally associated with stroke. Consistent with the LCV results, GSMR 17 

analyses also provided significant evidence for the causal genetic influence of those causal 18 

traits in increasing the risk of stroke. Our findings suggest that certain cardiovascular traits, 19 

pathophysiological conditions, vascular disorders, liver enzymes (gamma glutamyl-20 

transferase), and blood cell traits (platelet crit) may increase the risk of stroke. Furthermore, 21 

gene-based and pathway-based analyses revealed their shared genes and underlying biological 22 

pathways between causal traits and stroke, which may suggest novel molecular insights into 23 

stroke aetiology.   24 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.03.08.23287006doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23287006


 

11 
 

Our study revealed that the causal genetic effects of certain traits may influence the risk of 1 

stroke, such as atrial fibrillation (AF). Previous studies reported that AF contributes to the 2 

pathogenesis of stroke by causing stasis in the left atrium and subsequent brain embolism [26]. 3 

A study showed that about 15–38% of people who suffered an ischemic stroke had AF [27], 4 

and it also enhanced stroke risk five-fold compared with healthy people [28]. However, apart 5 

from triggering stroke, AF may be associated with other risk factors that may influence stroke. 6 

For instance, age, sex, coronary artery disease, high blood pressure, diabetes, inflammatory 7 

disorders, and cardiac embolism are all potential risk factors for both stroke and AF [29]. Our 8 

study highlighted that the genetic predisposition of AF contributes to stroke risk. Venous 9 

thromboembolism (VET), also known as deep vein thrombosis (DVT) and pulmonary 10 

embolism (PE), may have a role in circulatory collapse and short- and long-term serious effects 11 

on quality of life [30]. VTE is a complex disorder, with increasing age and obesity recognised 12 

as prevalent atherosclerotic risk factors for ischemic stroke [31]. The incidence of DVT is 13 

higher in aged people with age ≥ 65 years [32]. DVT happens when a thrombus (blood clot) 14 

forms in the deep veins, particularly in the lower extremities (legs), which leads to pain, 15 

cramping, and swelling in the lower extremities, and DVT is common among patients with 16 

stroke [32]. Our findings demonstrated that genetic variants of VTE and PE make a strong 17 

contribution to the risk of stroke. Moreover, weight change (weight gain) after depression is 18 

also a serious public health concern, and depressed individuals have a 58% chance of 19 

developing obesity [33]. Research conducted in 2021 revealed that patients who had a history 20 

of adolescent overweight and obesity as measured by BMI had a higher risk of developing an 21 

early-onset ischemic stroke [34]. Our study found the genetic variation of weight gain after 22 

depression may increase the risk of stroke. Our study highlights the genetic variants of the liver 23 

enzyme “gamma-glutamyl transferase” that were casually associated with stroke risk. Gamma-24 

glutamyl transferase is a hepatic biomarker that is linked to liver dysfunction, physiology, and 25 
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metabolism [35]. Genetic variants associated with liver enzymes have previously been found 1 

to be genetically correlated with increased risk of cardiovascular diseases, and lipid and glucose 2 

metabolism [36]. The gamma-glutamyl transferase is secreted by the liver in response to 3 

various liver diseases[36], which could lead to increased metabolic disruption or lipid 4 

metabolism alterations ultimately contributing to stroke risk. Our study provides novel insights 5 

into the causal role of gamma-glutamyl transferase in the increased risk of stroke. Our study 6 

demonstrated that the blood cell trait i.e., platelet crit, was causally associated with stroke risk. 7 

Platelets are an essential component of blood and have an immense role in physiology. The 8 

total volume of platelets in the blood is regulated under normal physiological conditions. The 9 

total mass of platelets in the blood is called platelet crit. Platelet activation may narrow the 10 

blood vessels, obstructing the normal blood flow, which is called atherosclerosis [37]. 11 

Atherosclerosis may increase the risk of stroke by impairing the circulation of blood through 12 

the blood vessels. Consistently, our ontology and pathway analysis also showed platelet 13 

activation and platelet coagulations were enriched in stroke and platelet crit traits. 14 

Previous studies reported that lifestyle and vascular factors may increase the risk of ischemic 15 

and intracerebral haemorrhagic stroke by 80–90% [38]. MR studies revealed that genetically 16 

predicted type 2 diabetes was associated with ischemic heart disease, stroke, and cardiovascular 17 

diseases [39]. We found the use of medication GWAS (pioglitazone, insulin, gliclazide) for 18 

type 2 diabetes were causally associated with stroke risk. In these cases, type 2 diabetes would 19 

be the risk factor for stroke. Use of medication GWAS contribute to understand the aetiology 20 

and biological mechanisms of the lifestyle related risk factors [40]. It could be one of the 21 

explanations that power of these medication use GWAS were more robust than the disease 22 

associated GWAS (e.g., type 2 diabetes).  23 

Further, gene-based association analyses revealed shared genetic architecture between stroke 24 

and causal traits. Gene based association analysis is an alternative and complementary to single 25 
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marker (SNPs), providing an opportunity to discover gene level associations for respective 1 

traits [41]. Therefore, in this study, we performed the gene-based associations analysis for 2 

stroke and causal traits. Our findings suggest many expected overlapped genes between stroke 3 

and causal traits. For instance, ILF3 was found overlapping among stroke and deep venous 4 

thrombosis, blood clot in lung and leg, platelet crit, and pulmonary embolisms. ILF3 is a protein 5 

coding gene, and its over expression was reported to be associated with the calcification of 6 

human aortic vascular smooth muscle cells and induced the formation of atherosclerotic 7 

plaques [42]. Likewise, we observed ARMS2 was overlapped between stroke and deep venous 8 

thrombosis, platelet crit. ARMS2 encodes the mitochondrial protein age-related maculopathy 9 

susceptibility protein 2 which was reported to be associated with oxidative damage, apoptosis, 10 

and aging process [43]. Furthermore, OBFC1, SH3PXD2A, HCCAT5 were overlapped between 11 

stroke and atrial fibrillation, cardiac arrhythmias. Our previous study demonstrated 12 

SH3PXD2A, OBFC1, among others were causal risk biomarkers of stroke [44]. 13 

Our study demonstrated some important biological insights and molecular pathways enriched 14 

by the shared genes, providing novel insights into aetiology and underlying biological 15 

mechanisms implicated in the causal traits and stroke, including “oxidative damage”, 16 

“mitochondrial fatty acid beta-oxidation”, “platelet activation and aggregation”, “regulation of 17 

hemostasis”, “cell aging”, “fibrinolysis pathway”. The interruption of blood circulation in the 18 

brain is the hallmark of stroke, and have negatively impacted cell homeostasis, resulting in 19 

inflammation, oxidative damage, ionic imbalance, excitotoxicity, and ultimately induced 20 

neuronal cell death [45]. The production of high volume of intracellular molecules particularly, 21 

Ca2+, Na+, and adenosine diphosphate (ADP) causes oxidative stress that has a negative 22 

impact on mitochondrial function, as mitochondria are the fundamental energy generation 23 

stations of cells, ischemic stroke has a significant impact on them [46]. When necessary 24 

resources, particularly glucose, are inaccessible to brain cells, the mitochondria then produce 25 
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energy by consuming 15% more oxygen, produces more superoxides and less ATP via fatty 1 

acid oxidation (β-oxidation) process [47]. Our pathway-based enrichment analysis suggested 2 

the causal influence of mitochondrial fatty acid beta oxidation pathway in the progression of 3 

stroke. By inhibiting the mitochondrial fatty acid beta oxidation pathway could be a potential 4 

target for the treatment of stroke. Prior study has reported that oxidative stress is associated 5 

with aging process that influence the risk of stroke [48]. Another pathway, we found in our 6 

study is platelet activation and aggregation, platelet is the primary components of thrombi and 7 

have potential role in the formation of thrombus in both healthy and disease blood vessels. In 8 

hemostasis, during vascular injury, circulating platelet become struck in the injured site and 9 

stimulate the activation and aggression of hemostatic thrombi, which stop further bleeding. 10 

However, in thrombosis, abnormal platelet activation results in uncontrollable thrombus 11 

formation, which in turn may embolise or block the blood vessel, potentially resulting 12 

downstream ischemic events [49]. We also found fibrinolysis pathway which is involved in 13 

blood coagulation process and contributes to the progression of arterial and venous thrombosis 14 

[50] and ultimately induced the risk of stroke.  15 

We acknowledged several limitations in this present study. Firstly, the GWAS summary 16 

statistics used in this study were obtained from the MEGASTROKE and UK Biobank cohort, 17 

where the participants are all from European ancestry. Thus, our findings should not be 18 

consistent with other ancestries unless they are verified using data from diverse populations. 19 

Secondly, our studies included 1504 traits, but other causal relationships may still exist with 20 

other traits. Thirdly, by definition, the LCV method evaluates the causal relationship between 21 

two traits and assumes no bidirectional causality [15]. Consequently, it is still debatable 22 

whether the LCV method would be able to determine the bidirectional causality between the 23 

traits. This assumption must be systematically evaluated in the future. Null findings in this 24 

study might be explained in a way that there is no causal association between the phenotypes 25 
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or there may exist bidirectional causality. In the current study, caution must be taken when 1 

interpreting null findings.  2 

In summary, our study provides evidence for potential causal genetic relationships between 3 

stroke and other complex traits. Our findings suggest that the role of several cardiovascular 4 

traits (such as atrial fibrillation, cardiac arrhythmias), blood cell traits (such as platelet crits), 5 

and blood clot-related traits, and liver enzyme traits increase the risk of stroke. Our study also 6 

revealed the shared genetic architecture, genes, pathways implicated in stroke and causal traits. 7 

Overall, our findings support the evidence of previous epidemiological studies and provide 8 

novel insights into the causal genetic architecture, shared genes and pathways of complex traits 9 

and stroke, which in turn could be used as testable hypotheses to improve the development of 10 

future studies, treatments, and preventative strategies.  11 

 12 

 13 

 14 

 15 

 16 

Data Availability Statement 17 

All data here analysed is publicly available on MEGASTROKE consortium and the UK 18 

biobank summary data is available on CTG-VL. 19 
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Figure legends: 

Figure 1. The schematic diagram illustrates the genetic relationships between 1504 complex 

traits and stroke. The genetic correlation was consistent across the phenotypes, demonstrating 

that genetic variants specific to each of the 1504 complex traits had consistent positive or 

negative correlations with the genetic variants associated with stroke. Gene-based and 

pathway-based analyses revealed shared genetic architecture and molecular mechanisms 

shared between causal traits and stroke. This figure was generated from Biorender.com. 

Figure 2. Share genes between causal traits and stroke. Right side represents causal traits and 

stroke, and left side represents shared genes between causal traits and stroke. 

Figure 3. Common pathways shared between complex traits and stroke. (A) pathways shared 

between atrial fibrillation, atrial fibrillation and flutter, and cardiac arrhythmias and stroke; 

(B) pathways shared between blood clot in lung, blood clot in leg, deep venous thrombosis, 

pulmonary embolisms, and stroke; (C) pathways shared between platelet crit and stroke; (D) 

pathways shared between gamma glutamyl-transferase and stroke.  

Figure 4. Common gene ontology (GO) terms shared between complex traits and stroke. (A) 

shared GO term between pulmonary embolisms and stroke; (B) common GO term between 

deep venous thrombosis and stroke; (C) shared GO between blood clot in lung and stroke; (D) 

shared GO term between blood clot in leg and stroke; (E) shared GO between platelet crit and 

stroke; (F) shared GO term between gamma-glutamyl transferase and stroke. 
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Table legends: 

 

Table 1. Traits with potential causal association with stroke. This table represents the 

phenotypes with FDR<.05 and robust genetic causal proportions (|GCP| > 0.60) with stroke. 

 

Table 2. Traits with potential causal association with stroke using generalised Mendelian 

randomisation analysis. 
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Table 1. Traits with potential causal association with stroke. This table represents the 

phenotypes with FDR<.05 and robust genetic causal proportions (|GCP| > 0.60) with stroke. 

 

Trait GCP GCPse GCPpval rG rGse rGpval 

Self-reported atrial fibrillation -0.97 0.03 8.97×10-202 0.58 0.18  9.51 × 10-4 

Self-reported pulmonary embolism -0.79 0.15 1.37×10-7 0.45 0.13 3.20 × 10-4 

Blood clot in the lung diagnosed by a doctor -0.75 0.17 2.46 × 10-5 0.44 0.13 3.41 × 10-4 

Cardiac arrhytmias -0.72 0.19 2.99 × 10-4 0.44 0.08  1.76 × 10-7 

Blood clot in the leg diagnosed by a doctor -0.74 0.18 5.25 × 10-5 0.43 0.11 1.96 × 10-4 

Medication: Gliclazide -0.66 0.23 3.75 × 10-3 0.42 0.09 2.33 × 10-5 

Self-reported deep venous thrombosis -0.74 0.18 4.23 × 10-5 0.40 0.11 2.60 × 10-4 

Atrial fibrillation and flutter (ICD10) -0.80 0.14 2.10 × 10-8 0.40 0.08 1.91 × 10-6 

Medication: Insulin -0.84 0.12 1.43 × 10-11 0.38 0.14 6.43 × 10-3 

Medication: Pioglitazone -0.74 0.17 1.72 × 10-5 0.33 0.12 8.45 × 10-3 

Weight change during worst episode of depression: Gained 

weight 

-0.64 0.23 4.03 × 10-3 0.32 0.12  1.01 × 10-2 

Deep venous thrombosis of lower extremities and 

pulmonary embolism 

-0.78 0.14 1.28 × 10-8 0.24 0.08 6.00 × 10-3 

Gamma glutamyltransferase (female) -0.69 0.15 4.13 × 10-6 0.16 0.04 3.23 × 10-4 

Platelet crit -0.67 0.20 7.61 × 10-4 0.14 0.04 1.32 × 10-3 

Gamma glutamyltransferase (male) -0.64 0.19 7.61 × 10-4 0.14 0.05 6.60 × 10-3 

 

This table represents the traits with significant false discovery rate (FDR < .05); GCP: genetic causal proportion; 

GCP se: genetic causal proportion standard deviation; GCP pval: genetic causal proportion unadjusted p-value; 

rG: genetic correlation; rG se: genetic correlation standard deviation; rG pval: genetic correlation unadjusted p-

value. 
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Table 2. Traits with potential causal association with stroke using Generalised Mendelian 

Randomisation analysis. 

 

Exposure Outcome Effect SE P HEIDI 

test P 

SNPs # 

Self-reported atrial fibrillation Stroke 

 

13.80 1.37 1.2 × 10-23 0.28 13 

Self-reported pulmonary embolism 20.06 2.75 3.2 × 10-13 0.31 4 

Blood clot in the lung diagnosed by a doctor 17.20 2.69 1.6 × 10-10 0.12 3 

Cardiac arrhytmias 7.00 0.65 1.4 × 10-26 0.06 24 

Blood clot in the leg diagnosed by a doctor 4.72 1.13 2.9 × 10-5 0.1 9 

Medication: Gliclazide 5.23 2.22 0.01 0.08 7 

Self-reported deep venous thrombosis 4.75 1.14 3.2 × 10-5 0.09 9 

Atrial fibrillation and flutter (ICD10) 7.40 0.66 6.1 × 10-29 0.12 29 

Medication: Insulin 1.89 0.89 0.02 0.2 10 

Deep venous thrombosis of lower 

extremities and pulmonary embolism 

15.21 2.18 3.49 × 10-12 0.26 5 

Gamma glutamyltransferase 0.07 0.01 8.23 × 10-7 0.05 654 

Platelet crit 1.72 0.37 4.71× 10-6 0.06 616 

This table represents the traits with significant false discovery rate (FDR < .05); SE: standard error; P: p-value; 

HEIDI test P: heterogeneity in dependent instruments test. SNPs#: number of single nucleotide polymorphism 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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