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Abstract  

Background: Placental disorders contribute to pregnancy complications, including preeclampsia (PE) 

and fetal growth restriction (FGR), but debate regarding their specific pathobiology persists. Our 

objective was to apply transcriptomics with weighted gene correlation network analysis (WGCNA) to 

further clarify the placental dysfunction in these conditions.  

Methods: We performed RNA sequencing with WGNCA using human placental samples (n=30), 

separated into villous tissue and decidua basalis, and clinically grouped as follows: (1) early-onset PE 

(EOPE)+FGR (n=7); (2) normotensive, nonanomalous preterm FGR (n=5); (2) EOPE without FGR 

(n=8); (4) spontaneous idiopathic preterm birth (PTB, n=5) matched for gestational age (GA); and (5) 

uncomplicated term births (TB, n=5). Our data was compared with RNA-seq datasets from public 

databases (GSE114691, GSE148241, and PRJEB30656; n=130 samples). 

Results: We identified 14 correlated gene modules in our specimens, of which most were significantly 

correlated with birthweight and maternal blood pressure. Of the 3 network modules consistently 

predictive of EOPE±FGR across datasets, we prioritized a co-expression gene group enriched for 

hypoxia-response and metabolic pathways for further investigation. Cluster analysis based on 

transcripts from this module and the glycolysis/gluconeogenesis metabolic pathway consistently 

distinguished a subset of EOPE±FGR samples with an expression signature suggesting modified tissue 

bioenergetics. We demonstrated that the expression ratios of LDHA/LDHB and PDK1/GOT1 could be 

used as surrogate indices for the larger panels of genes in identifying this subgroup. 

Conclusions: We provide novel evidence for a molecular subphenotype consistent with a glycolytic 

metabolic shift that occurs more frequently but not universally in placental specimens of EOPE±FGR. 
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Graphical Abstract 
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Nonstandard Abbreviations and Acronyms 

BW  birthweight 

CD  cesarean delivery 

DB   decidua basalis   

DBP  diastolic blood pressure  

EOPE  early-onset severe preeclampsia 

FGR  fetal growth restriction 

GA  gestational age of delivery  

HELLP  hemolysis, elevated liver enzymes and low platelets 

PTB   spontaneous idiopathic preterm birth 

JI  Jaccard index  

MGR   metagene ratio  

PC   principal component 

PE   preeclampsia  

qPCR   quantitative reverse-transcriptase polymerase chain reaction 

RNA-seq  RNA sequencing 

RQ   relative quantification 

SBP   systolic blood pressure 

TB   term birth 

VT   villous tissue  

WGCNA  weighted gene correlation network analysis 

 

 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.08.23286998doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286998


Page 5 
 

 

Introduction   

Placental function within physiological limits is essential for successful pregnancy outcomes. 

Abnormal development or dysfunction of this vital organ can lead to severe pregnancy complications, 

inclusively referred to as pregnancy-related "placental syndromes" 1, 2. Disorders associated with 

disordered placentation include fetal growth restriction (FGR) and preeclampsia (PE) 2, both of which 

increase the acute risk of perinatal morbidity and mortality 1, 3, 4. These disorders can predispose 

pregnant individuals and their offspring to chronic health problems 1.  

PE has traditionally been defined clinically by new-onset or worsening hypertension during 

pregnancy >20 weeks with accompanying proteinuria or other signs of organ system involvement 5. 

FGR, which can accompany PE or occur independently, is typically detected prior to birth through 

ultrasonographic estimation of fetal weight. When it occurs, placental insufficiency is strongly implicated 

in the pathophysiology of FGR and PE alike; however, the precise etiological underpinnings of these 

complex conditions remain incompletely understood 2, 3, 6. "Final common pathway" models for both 

disease states have been proposed. These posit that diverse etiologies can converge to produce 

suboptimal uteroplacental perfusion, which in turn may manifest itself in stereotyped, albeit 

inconsistent, clinical findings 6.  

Weighted gene correlation network analysis (WGCNA) is a data reduction technique applied 

widely in gene expression studies to identify and functionally categorize clusters of highly correlated 

transcripts (co-expression modules) 7. The resulting clusters can then be related to clinical variables 

(e.g., blood pressure) using consolidation metrics such as "eigengenes" 8, and "metagenes" 9. Since 

modules thus constructed are impartial to clinical outcome, WGCNA can be applied when analyzing 

datasets with unknown sample stratifications. Translational examples include use in identifying tumor 

subgroups with differing outcomes but common presentations 10. By distinguishing molecular subtypes 

and their links to candidate prognostic markers and druggable targets, this approach allows 

investigators to crystalize transcriptome expression data in a potentially actionable way 7.   
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Recognizing the considerable heterogeneity in outcomes for patients presenting with PE and 

FGR, Cox and colleagues utilized unsupervised clustering approaches for class discovery using gene 

expression profiling in a large cohort of placental samples from affected pregnancies 11, 12. Their data-

driven classifications revealed several robust subclusters that differed in clinical and histopathologic 

findings as well as molecular-level functional enrichments. These studies illustrated the potential for 

functional genomics in molecular phenotyping as an adjunct to clinical diagnostic criteria in classifying 

PE and FGR and offered new insights into the pathoetiology of these conditions.  

Inspired by these findings, we utilized WGCNA in combination with transcriptome profiling by 

RNA sequencing (RNA-seq) to: (1) define other possible placental subphenotypes in PE and FGR; and 

(2) further elucidate dysregulated placental processes associated with these syndromes.  
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Methods  

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. The RNA-seq data generated for this publication have been deposited in 

NCBI's Gene Expression Omnibus (GSE203507). Detailed Methods are provided in the Supplemental 

Material. 

 

Study Approval 

This study was approved by the IRBs of Yale University, The Ohio State University, the Abigail 

Wexner Research Institute at Nationwide Children's Hospital, and the University of Illinois at Chicago. 

All study participants provided written informed consent. 

 

Recruitment and Tissue Collection 

Transcriptomics was performed using placentas from 30 pregnant individuals carefully 

phenotyped and categorized clinically: (1) early-onset PE (EOPE)+FGR (n=7); (2) normotensive, 

nonanomalous early-onset FGR (n=5); (3) EOPE without FGR (n=8); (4) spontaneous idiopathic 

preterm birth (PTB, n=5) without FGR or triple I (intrauterine infection and/or inflammation), and 

matched for gestational age (GA); and (5) uncomplicated term births (TBs, n=5). Data generated from 

specimens comprising the PTB and TB control groups have been previously analyzed 13-15 but were 

reevaluated starting from the raw data. A summary of these samples is presented in Tables S1&S2.  

 

RNA Extraction and Bulk RNA Sequencing (RNA-seq) 

Villous tissue (VT) and basal plate decidua basalis (DB) were collected, and total RNA was 

isolated, as previously reported 13, 16. RNA-seq was performed using the Illumina HiSeq 2500 system.  

 

Differential Abundance Analysis 
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Differential transcript abundance was determined using DESeq2 v1.32.0 . Surrogate variable 

analysis was performed to control for unrecognized heterogeneity. Statistical models included clinical 

outcome, assigned fetal sex at delivery, and the first 2 components of the surrogate variable analysis 

as covariates. To minimize batch effects, the RNA-seq data were generated in 2 rounds of sequencing. 

The PTB and TB specimens reported previously 13-15 were isolated and sequenced concurrently with 

samples S16, S20, S21, and S22 (Table S2). 

 

Weighted Gene Correlation Network Analysis (WGCNA)  

WGCNA was performed using the top quartile (~4000) of normalized transcript counts exhibiting 

the greatest variability in each placental region (VT and DB). Correlated gene modules were identified 

from co-expression networks using the WGCNA R library.  

 

Module-Trait Associations 

Eigengene-based module-trait associations for continuous clinical variables were computed 

using the WGCNA R package. For categorical variables, we adopted a metagene-centered approach. 

Briefly, associations between binary outcomes and metagenes, defined as the arithmetic mean of 

normalized, variance-stabilizing transformed counts for selected transcripts 9, were assessed using 

ROC analysis. For each module, the metagene comprising the top 10 transcripts most positively 

correlated with select traits was divided by the metagene composed of the top 10 transcripts most 

negatively correlated with those same traits, yielding a metagene ratio (MGR). 

 

Comparison with Previously Published Datasets 

To assess the consistency of our present findings with those of prior studies, we identified three 

placenta-derived RNA-seq datasets for further analysis: (1) GSE114691 17, comprising 79 samples; (2) 

GSE148241 18, consisting of 41 samples; and (3) PRJEB30656 19, consisting of 10 samples (Table S3). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.08.23286998doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286998


Page 9 
 

 

For joint analyses, variance-stabilizing transformed counts were adjusted for study-dependent batch 

effects. 

 

Functional Enrichment Analysis 

We performed functional enrichment (hypergeometric testing) on prioritized groups of transcripts 

using clusterProfiler in R.  

 

qPCR Cross-Validation 

We selected 4 transcripts for qPCR cross-validation using the general methodology described 

previously 16: lactate dehydrogenase A (LDHA), lactate dehydrogenase B (LDHB), pyruvate 

dehydrogenase kinase 1 (PDK1), and glutamic-oxaloacetic transaminase 1 (GOT1). These transcripts 

were chosen based on their relevance to core placental metabolic pathways 20-23. TaqMan gene 

expression assays (Thermo Fisher Scientific) were used for quantification (see the Major Resources 

Table). Relative abundance was calculated using the comparative Ct method. The geometric mean of 

the Ct values for β2-microglobulin (B2M) and ribosomal protein L30 (RPL30) was used as a reference 

in each reaction, performed in duplicate. Correlations between the expression levels from RNA-seq and 

qPCR experiments were examined using Pearson's product-moment correlation (on log-transformed 

data).  

 

Statistics  

All statistical analyses were performed using a combination of functions and packages within 

the R v4.1.0, in addition to Prism v9 (GraphPad Software, La Jolla, CA) and MedCalc v20.027 

(MedCalc Software Ltd, Ostend, Belgium). Clinical characteristics among the study groups were 

evaluated using ANOVA or Kruskal–Wallis testing (for continuous variables) and Chi-squared tests (for 

categorical variables) and for these comparisons, a p-value <0.05 was considered statistically 

significant. Adjustments for multiple comparisons were performed using the Benjamini-Hochberg 
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procedure with FDR<0.1 considered significant. Additional details are provided in the figure legends 

and Supplemental Material.    
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Results 

 

Overview of Study Population and Differential Abundance Analysis 

We performed RNA-seq profiling of paired VT and DB placental samples grouped by clinical 

phenotype: (1) EOPE+FGR; (2) normotensive, nonanomalous preterm FGR; (3) EOPE without FGR; 

(4) spontaneous idiopathic preterm birth (PTB) without FGR, matched for GA; and (5) uncomplicated 

TB. The 2 control groups (PTB and TB) were chosen to account for the changes in gene expression 

associated with spontaneous preterm delivery or advancing GA. The demographic, clinical, and 

pregnancy outcome data associated with these placental samples are summarized in Tables S1&S2. 

Similarity analysis with hierarchical clustering revealed that PTB and TB placental samples were 

the most similar groups overall, with EOPE and EOPE+FGR samples forming a more distantly related 

group and FGR occupying an intermediate position (Fig. 1). Consistently, by principal component (PC) 

analysis, we noted that PTB and TB placental samples were more closely aggregated than the EOPE, 

EOPE+FGR, and FGR samples (Fig. 1 B&D). More detailed pairwise comparisons between the groups 

recapitulated these general observations (Fig. S1-S3).  

 

Correlation Network Analysis Reveals Placental Transcript Modules that Correlate with Clinical 

Variables Semi-independently    

We next generated weighted correlation networks to further assess potentially informative gene 

expression patterns in relation to select clinical variables. This approach enables unsupervised, data-

driven assessment of the interplay between molecular signatures and various clinical variables 7. 

Eight co-expression modules were identified in the VT samples (Fig. 2 A&B, Table S4). Module-

trait correlation analysis showed that, among VT samples, modules VT 2 (Blue, 1001 transcripts) and 

VT 3 (Black, 391 transcripts) were the most strongly correlated with blood pressure, whereas module 

VT 1 (Orange, 1066 transcripts) showed the strongest correlation with birthweight (Fig. 2C). Modules 

VT 4 (Turquoise, 327 transcripts) and VT 7 (Brick, 238 transcripts) also exhibited a significant 
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correlation with birthweight in addition to blood pressure, while VT 6 (Gold, 269 transcripts) was 

correlated with birthweight only (Fig. 2C).  

Functional enrichment analysis of the VT Orange module demonstrated overrepresentation for 

proteasome pathway mRNAs (including transcripts encoding multiple proteasome subunits) and 

ribosomal protein subunit transcripts (all FDR<0.006, hypergeometric test) (Fig. 2D). The VT Blue 

module included numerous PE-associated transcripts curated in the Comparative Toxicogenomics 

Database, such as ENG, FLT1, and LEP (Table S4), and was enriched (FDR<0.006) for several 

membrane receptor signaling pathways (Fig. 2D). The VT Black module was chiefly characterized 

(FDR<0.081) by transcripts associated with the hypoxia-inducible factor (HIF) pathway and glucose 

metabolism (Fig. 2D). The VT Turquoise module showed overrepresentation for transcripts involved in 

extracellular matrix interactions and related signaling pathways (FDR<0.04) (Fig. 2D).  

In DB tissues, 6 subnetworks of correlated expression were recognized (Fig. 3, Table S5).  The 

DB Mustard, DB Tomato, and DB Magenta modules were most highly correlated with birthweight, while 

the DB Brown module was the only DB subnetwork with a significant blood pressure correlation (Fig. 

3C). The DB Mustard module (Fig. 3D) was enriched for expressed genes involved in growth factor 

signaling and nuclear envelope function (FDR<0.07., hypergeometric test). Transcripts of the DB 

Tomato module (Fig. 3D) featured protein-coding transcripts involved in histone methylation, 

processing of mRNA, and Notch signaling (FDR<0.06). The DB Magenta group was highly enriched 

(FDR<0.001) for genes involved in host immune response pathways (Fig. 3D). The DB Brown module 

included transcripts encoding proteins involved in the HIF and transforming growth factor-β pathways in 

addition to those involved in the renin-angiotensin-aldosterone response, but these enrichments were 

not statistically significant (FDR>0.1)  (Fig. 3D). The full module enrichment analysis results are shown 

in Figs. S4&S5. 

Modules within each anatomical placental region shared no common transcripts by algorithmic 

design. Between these regions, the degree of similarity among individual modules measured using the 
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Jaccard index (JI) ranged from moderate (JI=17.2% between VT Orange and DB Tomato) to trivial (JI 

≤3% for 30 module pairs) (Fig. S6). 

 

Co-expression Network Module Reproducibility and Predictive Performance Across Studies 

Between the 2 structural placental regions (VT vs. DB), all transcript modules except for the DB 

Mustard group showed statistical evidence for presentation (Fig. 4 A&B). Given this, we proceeded to 

examine network module reproducibility more generally, using three previously published placental 

RNA-seq datasets in which similar clinical phenotypes were studied: 1) GSE148241 18, consisting of 

EOPE (n=3), EOPE+FGR (n=6), and term control (n=32) specimens; 2) GSE114691 17, comprising 79 

samples including FGR (n=18), EOPE (n=20), EOPE+FGR (n=20), and PTB controls (n=21); and 3) 

PRJEB30656 19 in which term FGR placental samples (n=5) were compared with term controls (n=5). 

For the GSE148241 dataset, the VT Blue, VT Black, and DB Brown modules were among those most 

strongly conserved, while the DB Tomato and DB Magenta modules were weakly preserved (Fig. S7 

C&D). The module preservation patterns for the GSE114691 samples were like those of GSE148241, 

except for the weak conservation of the VT Fountain module (Fig. S7C&D). The PRJEB30656 

placentas showed evidence for retention of 4 VT modules (Turquoise, Black, Straw, and Blue) and 3 

DB modules (Mustard, Magenta, and Brown) (Fig. S7C&D). 

Next, to gauge the utility of network modules in classifying clinical disease categories across 

studies (as may be applicable when detailed information on continuous clinical variables is 

inaccessible), we adapted and extended the metagene classification approach of Lauss and colleagues 

9. A metagene ratio (MGR) was calculated for each module, representing the quotient of the averaged 

expression of the transcripts most positively and negatively correlated with specific continuous clinical 

variables (Figs. S8&S9). These latter variables were selected based on their overall statistical 

association with each module in our specimens (Figs. 2C & 3C).  

Cluster analysis applied to the VT module MGRs revealed 3 major groups among the 4 

datasets: a set with elevated VT Black and VT Blue MGR expression comprising a majority of the 
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EOPE samples; a cluster containing a large proportion of control specimens; and an intermediate group 

(Fig. 4A). By ROC analysis, the VT Black and VT Blue MGRs showed the highest predictive 

performance for EOPE but had more limited associations with FGR (Fig. 4 B&C). Although the VT 

Orange module was significantly correlated with birthweight (r=0.60, Fig. 2C) and had an MGR that was 

strongly associated with FGR in our samples (AUC=0.91, Fig. 4C), its association with FGR in the other 

datasets was weak (AUC=0.61, Fig. 4C). The VT Turquoise MGR showed only limited predictive ability 

for EOPE (Fig. 4B) and lacked consistently significant associations with FGR (Fig. 4C).  

Among DB module MGRs, unsupervised clustering demonstrated 4 major categories: a group 

comprising mostly control specimens having elevated DB Tomato, DB Mustard, and DB Magenta 

MGRs with diminished DB Brown MGR levels; a small cluster with reduced expression of all DB module 

MGRs; and2 clusters containing a majority of the EOPE and FGR samples stratified by DB Brown 

module MGR expression (Fig. S10A). By ROC analysis, the DB Brown MGR was the most predictive 

for EOPE overall and exhibited some ability to detect FGR in the external datasets (Fig. S10B). Across 

studies, the MGRs of the DB Magenta, DB Mustard, and DB Tomato modules exhibited significant 

associations with FGR in our dataset but lacked consistent predictive performance more generally (Fig. 

S10C). 

 

Targeted Pathway Analysis Unveils a Reproducible Transcriptional Signature in a Subset of 

EOPE Placentas Suggestive of a Glycolytic Metabolic Shift 

In reviewing our results, we noted that cluster analysis of the VT Black MGR transcripts 

subdivided the VT placental samples into distinct groups, including a set of EOPE±FGR samples with 

an expression pattern distinct from the remaining specimens (Figs. S8C & S11A). Since exploratory 

functional enrichment analysis for this module showed an overrepresentation of gene sets involved in 

metabolism (Fig. 2F), we performed a targeted analysis of the genes in the glycolysis/gluconeogenesis 

(KEGG hsa00010) pathway. These transcripts reproduced the clustering pattern observed for the VT 

Black MGR transcripts, with a subgroup sharing an increased abundance of genes encoding key 
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glycolytic enzymes (callout in Fig. S11B). Consistent with the observed enrichment for hypoxia-

responsive pathways in the VT Black module, this expression pattern suggested a bioenergetic shift 

away from aerobic oxidative phosphorylation towards increased lactate production 22. 

To further simplify our analysis, we identified 2 RNA-seq expression ratios of VT Black module 

genes: LDHA/LDHB; and PDK1/GOT1. The LDHA gene product preferentially converts pyruvate to 

lactate, whereas the LDHB gene product predominantly catalyzes the reverse reaction 20, and the 

expression ratio of the 2 has been used as a surrogate index for oxidative phosphorylation (Warburg 

effect) usage in cancer cells 21. The transcript for PDK1 is a direct target of HIF-1α and a central 

regulator of the pyruvate dehydrogenase complex, a "gatekeeper" in hypoxia-related metabolic 

reprogramming 22. We prioritized GOT1 because it is repressed by HIF-1α experimentally 23 and 

displayed expression reciprocal to PDK1 in our dataset (r=-0.76, p<0.0001). Clustering based on these 

ratios reiterated the distinct subgroup within EOPE±FGR samples seen with the KEGG pathway 

transcripts (Fig. S11C). In the EOPE VT specimens, PC analysis of the VT Black MGR and KEGG 

hsa0010 pathway transcripts revealed 2 distinct sample clusters (Fig. S11D) strongly correlated with 

the LDHA/LDHB and PDK1/GOT1 ratios (Fig. S11E). Division of the EOPE specimens into these 2 

subgroups produced an expression pattern consistent with a glycolytic metabolic shift toward increased 

lactate production (Cluster 1) and a pattern suggestive of normoxic glucose utilization (Cluster 2) (Fig. 

S11F).The expression ratios in VT specimens by RNA-seq were significantly correlated with the 

corresponding ratios detected using qPCR (r=0.70, p<0.001 for LDHA/LDHB; r=0.56, p<0.002 for 

PDK1/GOT1; Fig. S12). A comparison of the RNA-seq expression ratios within and between the VT 

and DB anatomical placental regions for the paired samples (n=27) is shown in Fig. S13 where, in 

addition to the main VT cluster (Cluster 1), a second cluster of four samples exhibiting selectively 

elevated DB ratios was also noted (Fig. S13D).   

 We broadened our analysis to the 3 previously published datasets to determine whether these 

findings were reproducible. Clustering of the batch-corrected, normalized expression data for the VT 

Black MGR and KEGG hsa0010 transcripts consistently partitioned a common subset of samples (tan 
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dendrogram lines, Fig. 5 A&B). This cluster could be reproduced using the RNA-seq expression ratios 

LDHA/LDHB and PDK1/GOT1, and included the Cluster 1 VT samples from our study (Fig. 5C). Across 

EOPE±FGR specimens from the available studies, combined analysis of these strongly correlated 

indices again revealed metabolic gene expression patterns consistent with a spectrum ranging from a 

standard bioenergetic profile to a shift similar to that seen in anaerobic glycolysis (Fig. 5 E&F).     
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Discussion 

In this placental transcriptional profiling study, WGNCA revealed 14 correlated gene modules in 

our dataset. All but 2 exhibited significant correlations with clinical variables (maternal blood pressure, 

birthweight, and gestational age at delivery) in our samples, providing a complementary alternative to 

differential abundance analysis for relating the placental transcriptome to EOPE and FGR. In 

considering the 160 samples from all 4 datasets, integrated analysis revealed 2 modules with strongly 

conserved EOPE and FGR associations: VT Blue (1001 transcripts, highly correlated to BP and 

enriched for membrane receptor signaling pathways), and DB Brown (124 transcripts, highly correlated 

to BP, comprised of transcripts involved in the regulation of the renin-angiotensin-aldosterone system, 

hypoxia-inducible factor, and steroidogenesis). These modules were 9.6% similar (by Jaccard index) 

and shared 99 genes in common, including several transcripts canonically associated with PE, such as 

LEP and FLT1 24. Of the 5 modules most strongly correlated with birthweight, 4 (VT Orange, DB 

Tomato, DB Magenta, and DB Mustard) were significantly associated with FGR in our specimens but 

lacked strong associations when the 4 datasets were considered in aggregate. Our identification of the 

VT Black module was of particular interest, given its independence from the larger VT Blue cluster, its 

strong association with EOPE across studies, and its functional enrichment for transcripts associated 

with HIF signaling and core cellular metabolism; we therefore focused further consideration around this 

co-expression subnetwork.  

Throughout pregnancy, the placenta must continually support the developing fetus while 

simultaneously executing its own energy-intensive biosynthetic activities; as such, it has a particularly 

high metabolic activity and requirement for oxygen 25. Glucose is the main carbohydrate used by the 

uteroplacental system, and glycolysis serves as the central hub for placental metabolism 25. Under 

stress conditions, particularly when oxygen supply is reduced, the placenta must compensatively 

reprogram its metabolism to keep pace with bioenergetic demands. In general, such circumstances 

require a switch to less energetically efficient pathways (e.g., anaerobic glycolysis) than would be used 

otherwise. We thus anticipated that the placental insufficiency associated with EOPE and FGR — of 
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which oxidative stress and uteroplacental hypoxia are cardinal features 6 — would involve the 

coordinated expression changes in the VT Black module transcripts. However, we were surprised by 

the degree of variability in this expression signature among samples, both in our dataset and in the 

EOPE specimens from public sources.  

Closer examination of the glycolysis/gluconeogenesis pathway genes revealed a distinct 

molecular subgroup with a transcriptional signature consistent with a glycolytic shift; this cluster could 

be recapitulated using just the expression ratios of LDHA/LDHB and PDK1/GOT1 (Fig. 5). Strikingly, 

roughly half of all EOPE specimens (with or without FGR) and most of the isolated FGR specimens fell 

outside of this molecular cluster. To contextualize our present findings in light of the molecular 

classifications put forth by Cox and collaborators 11, 12, we evaluated our data in comparison to the gene 

panels used by these investigators (Fig. S14). We approximated their "canonical" and "immunologic" 

subclasses by hierarchical clustering based on the relative expression of TAP1 to FLT1 and LIMCH1. 

Although an imperfect surrogate to their qPCR-based classification strategy, our analysis suggests that 

the metabolic shift signature occurred in both molecular subtypes described by Cox and colleagues and 

could represent an independent source of information within this framework.   

It is now recognized that the plasticity associated with cancer cell metabolism is more nuanced 

than originally suggested by the classical model of Warburg-type glucose metabolism 22. This is 

likewise the case with the intricacies of intermediary metabolism in the human placenta 25, and the 

current results should be interpreted with these particularities in mind. It has recently been proposed 

that placental metabolic programming (e.g., increased lactate production from glucose) may actually 

reflect a dynamic and adaptive physiological state, and that failure of such adaptations might contribute 

to the pathobiology of PE 25. While we cannot yet characterize our observations in terms of adaptation, 

decompensation, or malplacentation, it is possible that the altered glycolytic transcriptional patterns we 

identified may be transient, either spatially (through regional variation within the placenta) or temporally 

(e.g., in response to acute stressors). Further work using animal models 26 and in vivo functional 
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imaging of the human placenta 27 might help clarify the extent and nature of dynamic metabolic 

changes in complicated pregnancies.  

Among the FGR cases, several co-expression modules were significantly associated with 

birthweight and FGR in our samples. However, these modules showed inconsistent evidence for 

preservation and poor associations with FGR in the other cohorts in which this condition was explicitly 

studied (GSE114691 and PRJEB30656). Indeed, we could identify no characteristic transcriptional 

signatures uniting these three studies. Research into FGR pathobiology is challenging given the diverse 

etiologies that might contribute to compromised fetal growth 28. The clinical criteria used to diagnose 

FGR are continually evolving, and the distinction between constitutionally small for gestation age 

fetuses (SGA) and those with FGR is not always clear. Therefore, it is unsurprising that prior placental 

transcriptional profiling studies of FGR have reflected this heterogeneity, particularly given that the 

criterion of SGA alone has been frequently applied as a surrogate for FGR 24. While previous studies 

have reported overlap in the molecular processes between normotensive FGR and FGR associated 

with PE 12, 19, 29, a recent large and comprehensive study reported multiple instances of divergence 

between FGR and EOPE expression patterns for several long RNA classes 30. 

Since the isolated FGR cases were delivered preterm for fetal indications, it is impossible to 

predict whether the trajectory of these pregnancies might have included PE manifestations. Further, we 

cannot exclude the possibility that a small number of the FGR cases harbored associated (and 

potentially causal) chromosomal aberrations that were undetectable by traditional karyotyping. Further 

research to increase insight into the placental dysfunction associated with growth-compromised fetuses 

may require emphasis on pathway-level dysregulation rather than focusing on individual gene 

expression patterns. 

 

Strengths and Limitations 

Strengths of the present study include the availability of rich clinical phenotyping data for trait 

correlation analysis, integration with data from other studies to assess reproducibility, the separate 
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consideration of VT and DB samples, and the use of gestational age-matched preterm controls in 

additional to term controls. The application of WGCNA as means for gene and preeclampsia sample 

classification has garnered increased research focus 31-33, and it will be of interest to see how this 

approach may be further used for molecular subphenotyping of this syndrome in the near future. 

Our study has several limitations. First, we recognize that isolated tissue biopsies may not 

reflect the global functioning of the placenta. We attempted to mitigate this potential shortfall by 

extending our observations to studies in which samples were pooled from multiple placental regions, 

finding that our principal observations were upheld in these other cohorts. Second, in our design, we 

focused on EOPE and FGR using carefully selected specimens that we believed would represent cases 

with the greatest potential to benefit from further targeted research; however, this restriction did not 

allow us to explore other clinical manifestations of these conditions. Finally, while powerful, we 

recognize that the analytical methods applied also entail shortcomings 7. The foremost goal of this 

study was to explore the utility of correlation network analysis for prioritizing informative transcript 

modules in the settings of EOPE and FGR delivered before term. We recognize that identifying 

correlation networks more robustly would require a broader representation of the full clinical spectrum.   

 

Perspectives  

Our results contribute to a growing body of literature demonstrating that PE and FGR are more 

heterogeneous conditions than can be appreciated by applying clinical diagnostic criteria alone. We 

provide novel evidence for a molecular subphenotype consistent with a glycolytic metabolic shift that 

occurs frequently, but not universally, in placental specimens, suggesting a spectrum of placental 

responses to these clinical conditions. Translating this work into actionable methods to inform targeted 

therapeutics and guide personalized care will require further integration with key clinical variables 

including minimally invasive screening of placenta-derived materials, such as microparticles or cell-free 

nucleic acids 34. Molecular subphenotyping through placental transcriptomics has promise to clarify and 

guide this work.   
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Novelty and Relevance 

What Is New? 

This study demonstrates:  

• A subphenotype consistent with a glycolytic metabolic shift occurs more frequently but not 

universally in placentas from pregnancies complicated by preeclampsia. 

• The ratios of LDHA/LDHB and PDK1/GOT1 mRNA transcripts may serve as surrogate indices 

for larger gene panels to identify metabolically stressed placentas.  

 

What Is Relevant? 

• The 2 placental transcript ratios described in this study may add additional precision to the 

molecular subphenotyping of the placenta beyond want could be inferred from clinical 

characteristics alone. 

 

Clinical/Pathophysiological Implications? 

• Our findings add to general knowledge that preeclampsia is a heterogeneous hypertensive 

syndrome and this heterogeneity extends to the placenta. 
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Figure Legends 

 

Figure 1. Relationships among samples in clinically-phenotyped groups based on differential 
transcript abundance analysis. (A) Similarity plot with hierarchical clustering using Ward's minimum 
variance method for VT specimens based on the expression of 6,865 consensus differentially abundant 
transcripts. The color scale is arranged from light (most dissimilar) to dark (identity). (B) Scatterplot 
showing the results of PC analysis in VT samples. (C) Similarity plot with hierarchical clustering for DB  
specimens based on the expression of 2,551 consensus differentially abundant transcripts averaged for 
each clinicallgroup. (D) Scatterplot of PC analysis applied to differentially abundant consensus 
transcripts in DB specimens. The differentially abundant consensus transcripts for each placental 
region represent the union of unique transcripts present in at least one pairwise comparison in DESeq2 
statistical models that included clinical outcome, assigned fetal sex at delivery, and the first 2 
components of the surrogate variable analysis as covariates (FDR<0.1).  
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Figure 2. Consensus correlation network modules among villous tissue (VT) placental 
specimens. WGCNA was applied to the most variable VT transcripts (top quartile, 4,037 RNAs). (A) 
Clustering dendrograms and topological overlap matrix heatmap (β=9, scale-free topology model fit 
r2=0.90, median connectivity=6.4). Dendrogram colors represent individual transcript modules. (B) 
Multidimensional scaling was applied to the transcript dissimilarity matrix based on the topological 
overlap and represented as a scatterplot, color-coded by module. (C) Module-trait correlation analysis. 
Statistically significant (p<0.05) Pearson correlation coefficients are shown in colored boxes. (D) Chord 
diagrams showing the top10 overrepresented pathways associated with select modules 
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Figure 3. Consensus correlation network modules among decidua basalis (DB) placental 
specimens. WGCNA was applied to the most variable DB transcripts (top quartile, 4,288 RNAs). (A) 
Clustering dendrograms and topological overlap matrix heatmap (β=21, scale-free topology model fit r2 
= 0.90, median connectivity=0.8). (B) Multimensional scaling scatterplot for the topological overlap 
matrix in panel A. (C) Module-trait correlation analysis results with statistically significant (p<0.05) 
correlation coefficients shown in colored boxes. (D) Chord diagrams depicting the top10 enriched 
pathways associated with select modules. 
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Figure 4. Metagene ratio (MGR) analysis for selected villous tissue (VT) correlation network 
modules and associations with clinical diagnoses. (A) Heatmap with unsupervised hierarchical 
clustering applied to MGRs for 4 VT co-expression network modules. (B, C) ROC curves for MGRs of 
selected VT modules in association with EOPE (B) and FGR (C). ROCs for the VT specimens in the 
present study (n=30), public datasets (n=130), and the aggregated set of all samples (n=160) are 
shown in the leftmost, middle, and rightmost columns of panels B and C, respectively. The points where 
Youden's J is maximized (Jmax) are indicated by circles in cases where the AUC is significant (p<0.05).  
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Figure 5. A reproducible molecular signature consistent with a glycolytic metabolic shift is 
observed in a subset of EOPE placenta specimens. (A-C) Heatmaps with unsupervised hierarchical 
clustering in samples from 4 studies (n=160) based on: (A) VT Black module MGR transcripts; (B) 
transcripts associated with the KEGG pathway hsa00010; and (C) normalized RNA-seq expression 
ratios of LDHA/LDHB and PDK1/GOT1. (D) Bubble plot comparing the first PCs of EOPE±FGR 
specimens , stratified by the expression VT Black module MGR and hsa00010 KEGG pathway 
transcripts. Bubble size correlates with the LDHA/LDHB RNA-seq expression ratios. (E) Pearson 
correlation matrix for pairs comprising PC1 values for VT Black MGR transcripts, PC1 values for KEGG 
hsa00010 transcripts, and the RNA-seq expression ratios for LDHA/LDHB and PDK1/GOT1 (all 
p<0.01). (F) Pathway diagrams adapted from the KEGG hsa00010 map showing the expression of 
EOPE specimen transcripts, subdivided into metabolic subphenotypes based on transcriptional profiling 
evidence, relative to control samples.  
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1a. Detailed Methods 
 
See also: Major Resources Table. 
 
Study Approval 

This study was approved by the IRBs of Yale University, The Ohio State University, the Abigail 
Wexner Research Institute at Nationwide Children's Hospital, and the University of Illinois at Chicago. 
All study participants provided written informed consent. 
 
Recruitment and Tissue Collection 

Transcriptomics analysis was performed using placentas from 30 pregnant individuals carefully 
phenotyped and categorized into the following clinical groups: (1) severe early-onset PE (EOPE) with 
appropriate fetal growth for gestational age (GA) (n=8); (2) EOPE with FGR (EOPE+FGR, n=7); (3) 
normotensive, nonanomalous preterm births (PTBs) complicated by early-onset fetal growth restriction 
(FGR, n=5); (4) spontaneous idiopathic PTB without FGR (PTB, n=5); and (5) uncomplicated 
pregnancies delivered at term in the absence of labor by cesarean section (TB, n=5). The specimens 
comprising the TB and PTB comparator groups have been reported previously 1-3, but were reevaluated 
starting from the raw data using the methodologies described herein. A summary of these samples is 
presented in Table S1.  

This study defined PTB as the spontaneous onset of labor with delivery before 37 weeks GA. 
For all cases of PTB, triple I (intraamniotic infection and/or inflammation) was excluded based on 
negative results of amniotic fluid biochemical tests, negative bacterial cultures, and the absence of 
histologic chorioamnionitis or funisitis on placental examination 1. 

FGR was diagnosed in the antepartum period and defined ultrasonographically as an estimated 
fetal growth <10th percentile for GA and assigned sex with abnormal umbilical artery Doppler 
velocimetry; the diagnosis was confirmed following delivery. A diagnosis of nonanomalous, idiopathic 
FGR was established in infants without detectable structural anomalies when pathological examination 
of the placenta and clinical work-up to rule out karyotype abnormalities did not provide a cause for 
growth restriction. 

The clinical definition of PE was based on the criteria put forth by American College of 
Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Only patients diagnosed 
before 34 weeks GA (early-onset) were included in this study. Severe EOPE was diagnosed clinically 
by one or more of the following criteria: (1) systolic blood pressure of >160 mm Hg or diastolic >110 
mm Hg on at least 2 occasions 6 h apart; (2) >5 g protein excretion per 24 h urine collection, and/or 
persistent +3 proteinuria on dipstick testing; (3) oliguria <500 ml/24 h; (4) cerebral or visual 
disturbances; (5) pulmonary edema or cyanosis; (6) epigastric or right upper quadrant pain; (7) 
impaired liver function; and/or (8) thrombocytopenia;  All patients with EOPE met at least 3 criteria for 
severe status. 

Individuals were delivered by cesarean section for medical indications including breech 
presentation, non-reassuring fetal status remote from delivery, worsening pregnancy status, and/or 
suspected abruption (see Table S2). At enrollment, pregnancies with multifetal gestations, 
chromosomal aneuploidies, fetal structural anomalies, infection, and known comorbidities (e.g., 
diabetes, thrombophilias, thyroid disease, etc.) were excluded. In all cases, GA was established based 
on last menstrual period and/or ultrasonographic examination prior to 20 weeks of gestation. Clinical 
indications for ultrasound-guided amniocentesis to evaluate for intraamniotic infection and/or 
inflammation included symptoms of preterm labor, preterm premature rupture of membranes, advanced 
cervical dilatation (≥3 cm), and/or uterine contractions unresponsive to tocolysis. 

 
Total RNA Extraction 

Villous tissue (VT) and basal plate decidua basalis (DB) were collected as previously described 
1. The DB was separated from the VT immediately after delivery, and the individual matched specimens 
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were flash-frozen in liquid nitrogen and stored at -80°C until processing. Total RNA was isolated using 
TRIzol reagent (Life Technologies, Grand Island, NY), including phenol-chloroform extraction, 
isopropanol precipitation, and ethanol wash steps 1, 4, 5. In all cases, RNA integrity was confirmed 
through visualization of intact 28S and 18S rRNA bands by agarose gel electrophoresis in the presence 
of Protector RNase Inhibitor (Roche, Indianapolis, IN). Prior to sequencing, RNA extracts were purified 
using the RNA Clean-Up and Concentration Kit (Norgen Biotek, Thorold, Ontario, Canada).  
 
Bulk RNA Sequencing (RNA-seq) and Differential Abundance Analysis 

RNA-seq libraries were constructed as described in prior reports 1, 4, 5 using the TruSeq 
Stranded Total RNA Sample Prep Kit with Ribo-Zero Gold (Illumina, San Diego, CA). The libraries were 
quality-controlled for appropriate mass using the Qubit 2.0 fluorometer (Life Technologies) and insert 
size using the BioAnalyzer 2100 system (Agilent, Santa Clara, CA). All sequenced samples had an 
RNA integrity number ≥6. Sequencing was performed using the Illumina HiSeq 2500 system and HiSeq 
version 3 sequencing reagents to generate 50 bp single-end reads. Clonal clusters were created using 
the Illumina cBOT platform with Illumina HiSeq version 3 cluster generation reagents to achieve a 
target density of approximately 800,000/mm2 per flow cell channel. Image analysis, base calling, and 
error estimation were performed using Illumina Analysis Pipeline in the HiSeq Control Software v2.2.38.  

FastQC v0.11.8 was used for quality assessment of all sequenced reads. Reads were trimmed 
for quality (a minimum Phred quality score of 15) and contaminating adapter sequences with 
Trimmomatic v0.39 software, followed by mapping to the hg38 genome assembly using the TopHat2 
v2.0.14 splice-aware alignment algorithm. Annotated feature counts were generated using HTseq 
v0.11.2. Sample scripts and code parameters used were as follows: 

 
$ fastqc -o qc <sample_name>.fastq.gz 

$ for f in *.gz; do array=(${f//.fastq.gz/ }); java -jar  

${TRIMPATH}/trimmomatic-0.39.jar SE -threads 4 -phred33 $f  

${OUTPATH}/${array}_trimmed.fastq 

ILLUMINACLIP:${ADAPTPATH}/TruSeq3-SE.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36; done 

$ tophat2 -p 24 -a 6 -o ${OUTPATH}/<sample_name> --library-type  

fr-firststrand ${BT2INDEX}/genome <sample_name>_trimmed.fastq 
 $ for f in */accepted_hits.bam; do parentdir=`dirname $f`;  

parentdirname=`basename $parentdir`; samtools view $f  

| htseq-count --stranded=reverse - ${GTFFILE} > 

${OUTDIR}/${parentdirname}.count; done 

 

Human Genome Organisation Gene Nomenclature Committee (HGNC) symbols were updated 
using HGNChelper v0.8.1, and additional metadata was assigned using AnnotationDbi v1.60.0, both 
within the R environment. Differential transcript abundance was determined using the DESeq2 v1.32.0 
statistical package in R, applying multivariate negative binomial generalized linear models. Surrogate 
variable analysis, performed using the sva v3.40.0 library, was included to model unrecognized 
heterogeneity not otherwise accounted for in clinical variables. Significant changes in gene expression 
were based on raw p-values <0.05 and a false discovery rate (FDR) <0.1 to adjust for multiple testing. 
Statistical models included clinical outcome, assigned fetal sex at delivery, and the first two 
components of the surrogate variable analysis as covariates. 

To minimize batch effects, the RNA-seq data reported in this report were generated in two 
rounds of sequencing. The PTB and TB specimens, reported on previously 1-3, were isolated and 
sequenced concurrently with samples S16, S20, S21, and S22 (Table S2). The original RNA-seq data 
generated for this publication have been deposited in NCBI's Gene Expression Omnibus (GEO) and 
are accessible through accession number GSE203507. 
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Weighted Gene Correlation Network Analysis (WGCNA) and Module Preservation 
Correlation network analysis was performed using the top quartile (~4000) of normalized 

transcript feature counts exhibiting the greatest variability across samples in each placental region (VT 
and DB), as determined using standard error of the mean (SEM). Co-expression networks were 
assembled using the WGCNA v1.72-1 R library. First, similarity matrices were obtained using Pearson 
correlation coefficients (PCCs) between transcript pairs from log2-transformed gene expression data. 
Next, weighted adjacency matrices (encoding the connection strengths between pairs of nodes) were 
obtained by raising individual entries in a given similarity matrix to a power parameter β (i.e., node 
adjacency = |PCC|β), selected using the pickSoftThreshold() function to approximate a scale-free 
network topology. Topological overlap matrices (TOMs, unsigned type, with similarity measures 
reflective of the relative interconnectedness among individual nodes) were then calculated using the 
TOMsimilarity() function, together with the corresponding dissimilarity matrices (1-TOM). Finally, co-
expression modules of highly interconnected transcripts were identified using an adaptive branch 
pruning approach by applying the Dynamic Tree Cut algorithm implemented with dynamicTreeCut 
v1.63-1.  

Statistical evaluation for the preservation (robustness) of network modules identified by WGCNA 
was performed using the modulePreservation() function in the WGCNA R package. Summary Z 
statistics and p-values were calculated using log2-scaled, normalized gene expression data. The 
Zsummary (Zs) statistic, representing the average of density and connectivity-based network module 
preservation statistics, was interpreted as follows: Zs>10, strong evidence of module preservation; 
2<Zs<10, weak to moderate evidence for preservation; and Zs<2 minimal evidence of preservation. 
 
Eigengene-Based Assessment of Module-Trait Associations 

Module-trait associations for groups of transcripts were computed by taking the modulus of the 
PCC between the eigengenes for transcripts of interest and selected continuous clinical variables. The 
eigengene for each module was defined as the first principal component of the scaled expression 
matrix and calculated using singular value decomposition implemented by the moduleEigengenes() 
function in the WGCNA package. The corPvalueStudent() function in the WGCNA library was used to 
calculate p-values for all module-trait correlations except for the binary categorical variable of cesarean 
delivery (yes or no), which was evaluated using point-biserial correlation with the cor.test() function.  

 
Metagene Ratio (MGR) Analysis 

As a complement to the eigengene-based module-trait correlation analysis applicable for 
continuous phenotypic trait variables, we adopted a metagene-centered approach to evaluate the 
predictive utility of individual modules in the classification of categorical variables using conventional 
receiver-operating characteristic (ROC) analysis. In this context, metagenes were defined as the 
arithmetic mean of normalized, variance-stabilizing transformed feature counts for selected groups of 
transcripts, as per the general approach described by Lauss et al. 6. Transcript selection was guided by 
each module's overall gene-trait correlation analysis results. First, PCCs relating the abundance of 
individual transcripts in each module to continuous variables of clinical relevance (birthweight and 
maternal blood pressure) were calculated, then ranked according to the strength of association (taking 
the arithmetic mean of PCCs in cases where modules showed significant correlations with multiple 
phenotypic indices). Next, metagenes were computed for groups of transcripts with the greatest 
positive (n=10) and negative (n=10) correlation rankings. Finally, for each module, a metagene ratio 
(MGR) was quantified by dividing the mean expression of the positively correlated metagene by that of 
the negatively correlated metagene. MGRs so derived were subsequently assessed for their 
association with EOPE and FGR using ROC analysis, employing area under the ROC curve (AUC) as 
the performance metric.  
 
Comparison and Integration with Previously Published Datasets 
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To assess the consistency of our present findings with those of prior studies, we performed a 
literature search for bulk RNA-sequencing datasets of the human placenta in the clinical contexts of 
early-onset preeclampsia and/or fetal growth restriction, in addition to querying the data repositories 
such as GEO and the European Nucleotide Archive (ENA) directly. We selected for consideration 
studies for which raw data (fastq files) had been deposited to repositories with unrestricted access, and 
with clinical information sufficient to allow a reasonable estimation of the criteria used to define PE and 
FGR. We aimed to obtain a representative, but not exhaustive, set of samples for comparison. 

We identified three relevant, public placenta-derived RNA-seq datasets for further analysis: (1) 
GSE114691 7, comprising 79 samples (18 with preterm FGR [defined as estimated fetal weight <10th 
percentile for GA with abnormal umbilical and uterine artery Doppler evaluations], 20 with EOPE, 20 
with EOPE+FGR, and 21 with preterm birth in the absence of other complications used as control 
specimens) from Ontario, Canada; (2) GSE148241 8, consisting of 41 samples (6 from participants with 
severe EOPE+FGR, 3 from patients with severe EOPE without FGR, and 32 from subjects delivered at 
term) from the Guangdong Province of China; and (3) PRJEB30656 9, which consisted of 5 term 
placental specimens from subjects with FGR (based on ultrasonographic estimation of fetal weight 
<10th percentile with abnormal cerebroplacental ratio or uterine artery pulsatility index measurements, 
or an estimated fetal weight <3rd percentile with normal vascular indices), and 5 uncomplicated term 
control samples, all from Olsztyn, Poland.  

The same analytical workflow described above was used to generate feature counts from the 
available raw fastq files, except that paired-end trimming and mapping algorithms were employed for 
the samples from the GSE148241 and PRJEB30656 datasets. In instances where feature counts from 
multiple studies were integrated for joint analyses, study-dependent batch effects were removed using 
the removeBatchEffect() function from the limma v3.54.1 R package. A summary of the characteristics 
of these studies in relation to the present study is presented in Table S3 
 
Functional Enrichment Analysis 

We performed functional enrichment on prioritized groups of transcripts using the clusterProfiler 
v4.6.0 R package, applying curated gene sets archived in the Molecular Signatures Database 
(MSigDB) Canonical Pathways v7.4 having sizes between 10 and 250 members, inclusive. 
Overrepresentation was calculated using hypergeometric testing employed by the enricher() analyzer 
function. Chord diagrams for top enriched pathways (ranked according to p-value in ascending order) 
were rendered using the circlize v0.4.15 R library. Where indicated, gene expression datasets were 
intersected with curated gene lists from the Therapeutic Target Database (https://db.idrblab.net/ttd/), a 
repository of known and potential druggable targets, and the Comparative Toxicogenomics Database, a 
compendium of curated gene-disease associations (http://ctdbase.org/).   
 
qPCR 

Guided by our WGCNA results, we selected 4 transcripts, lactate dehydrogenase A (LDHA), 
lactate dehydrogenase B (LDHB), pyruvate dehydrogenase kinase 1 (PDK1), and glutamic-oxaloacetic 
transaminase 1 (GOT1) for cross-validation by qPCR using the general methodology described 
previously 4, 5. These transcripts were chosen based on their relevance to core placental metabolic 
pathways. For all reactions, reverse transcription was achieved using Superscript II Reverse 
Transcriptase (Invitrogen) with oligo(dT) primers. The following TaqMan gene expression assays 
(Thermo Fisher Scientific) were used:  LDHA: Hs01378790_g1, LDHB: Hs00600794_mH, PDK1: 
Hs00176853_m1, GOT1: Hs00157798_m1.The geometric mean of the Ct values for β2-microglobulin 
(B2M, Hs99999907_m1) and ribosomal protein L30 (RPL30, Hs00265497_m1) was used as a 
reference in each reaction.  

Every 20 μL reaction comprised 1 μL cDNA (500 ng), 1 μL of TaqMan Gene Expression Assay, 
10 μL TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific), and 8 μL of nuclease-free water. 
All reactions were performed in duplicate. The relative abundance of each mRNA was calculated using 
comparative Ct method. The transcript ratio LDHA/LDHB was calculated as 2–ΔC, with ΔC representing 
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the difference between the Ct values for LDHA and LDHB (i.e., ΔC = CtLDHA – CtLDHB). The PDK1/GOT1 
ratio was calculated in a similar manner. Correlations between the expression levels from RNA-seq and 
qPCR experiments were examined using Pearson's product-moment correlation (on log-transformed 
data). 

 
Statistics  

All statistical analyses were performed using a combination of functions and packages within 
the open-source R environment v4.1.0 (https://www.R-project.org/), in addition to Prism v9 (GraphPad 
Software, La Jolla, CA) and MedCalc v20.027 (MedCalc Software Ltd, Ostend, Belgium) statistical 
software. Cytoscape v3.9.0 (https://cytoscape.org/) was used for network graph manipulation.  

Clinical characteristics of the study group were summarized as mean ± standard deviation (SD) 
or median and interquartile range (IQR) for continuous variables, and group percentages for categorical 
variables. Clinical characteristics among of the study groups were evaluated using (analysis of variance 
ANOVA) or Kruskal–Wallis testing (for continuous variables) and Chi squared tests (for categorical 
variables). For these comparisons, a p-value <0.05 was considered statistically significant. Adjustments 
for multiple comparisons were performed using the Benjamini-Hochberg procedure, and in these cases, 
FDR<0.1 was considered significant. 

Distance matrix calculations and hierarchical clustering were achieved using the dist() and 
hclust() R functions, respectively. Principal component (PC) analysis was performed on consensus 
pools transcripts using the prcomp() function in the R stats library. Consensus transcripts were defined 
as unique transcripts for each placental region assembled by taking the union of statistically significant 
(FDR<0.1) RNAs present in at least on pairwise statistical comparison in multivariate models evaluated 
using DESeq2 software using models that included clinical outcome, assigned fetal sex at delivery, and 
the first two components of the surrogate variable analysis as covariates. 

Classic multidimensional scaling (MDS) was applied to dissimilarity based on topological 
overlap using the cmdscale() function in the R stats package. Convex hull calculations were performed 
using convhulln() in the geometry v0.4.6.1 R package. ROC renderings were generated using 
MedCalcv20.027 (MedCalc Software Ltd). Calculation and statistical testing of correlations were 
performed using the cor) and cor.test() functions in the R stats library. The corrplot v0.92 library was 
used to assist with correlogram plotting. Heatmaps were generated using the pheatmap v1.0.12 and 
ComplexHeatmap v2.14.0 R packages. 
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1b. Supplemental Results 
 
Differential Abundance Results in Pairwise Statistical Comparisons  

Among the VT samples, the EOPE specimens exhibited the greatest dispersion along the PC 
coordinates and showed considerable overlap with the EOPE+FGR tissues (Fig. 1B). In the DB 
specimens, co-clustering was noted between PTB and TB tissues, with intermixing among the EOPE, 
EOPE+FGR, and FGR groups (Fig. 1D). Furthermore, the EOPE and FGR DB biopsies showed 
pronounced dispersal, with the latter having appreciably more scattering in the PC space compared to 
the corresponding FGR VT tissues (Fig. 1 B&D).  

For the VT samples, there were 4,772 and 4,414 differentially abundant (FDR<0.1) transcripts in 
the FGR and EOPE+FGR VT biopsies, respectively, relative to the PTB VT specimens (Fig. S1). 
Although comparatively fewer (2,692) transcripts were significantly altered in the EOPE VT samples 
relative to the PTB VT group, this was consistent with the more dispersed clustering observed in PC 
analysis (Fig. 1B). Similar trends were noted when these specimens were compared with the TNL VT 
samples, with 4,330, 3,984, and 2,345 differentially abundant transcripts for the FGR, FGR+EOPE, and 
EOPE groups, respectively. The VT specimens from pregnancies complicated by FGR alone differed 
from the EOPE VT samples by 1,013 expressed genes, while the EOPE+FGR VT samples differed 
from the FGR and EOPE VT tissues by 99 and 38 RNA species, respectively. These results agreed 
with the overall similarity rankings shown in Fig. 1A. 

For the DB specimens (Fig. S2), the FGR, EOPE+FGR, and EOPE samples differed from the 
PTB samples by 921, 876, and 1,095 transcripts, respectively. Relative to the TNL DB placenta 
specimens, the FGR, EOPE+FGR, and EOPE samples had 1,565, 1,443, and 1,819 differentially 
abundant transcripts, respectively. There were 834 differentially abundant RNAs when FGR samples 
were compared with EOPE, 235 when EOPE+FGR was contrasted with FGR, and 13 when EOPE was 
compared against EOPE+FGR, in accord with the hierarchy of similarity scores for these groups (Fig. 
1C). 

In pairwise comparisons between the placental subregions in each of the clinical conditions 
(EOPE, EOPE+FGR, and isolated FGR), the DB specimens consistently exhibited a greater abundance 
of transcripts enriched or specific to this region compared to the VT (Fig. S3), consistent with our 
previously reported findings 1. Nevertheless, relative enrichment for certain RNA species in the VT 
region was also noted (Fig. S3).  
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2. Supplemental Tables.  
 

a. Table S1. Summary of clinical characteristics for present study. 
 

b. Table S2. Detailed clinical characteristics for present study. 
 

c. Table S3. Comparisons of study criteria, sampling methods, and sequencing methods among 
datasets considered. 

 
d. Table S4. Transcripts assigned to co-expression modules by correlation network analysis in 

villous tissue specimens. 
 

e. Table S5. Transcripts assigned to co-expression modules by correlation network analysis in 
decidua basalis specimens. 

 
Note: Supplemental spreadsheets are available at: 
https://uofi.box.com/s/h1fraq80bydl8dvq9rui7x21rahjoi2r 
 
(These supplemental spreadsheets will also be archived and maintained at UIC INDIGO, 
https://researchguides.uic.edu/indigo/about, hosted by the University of Illinois-Chicago University 
Library). 
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Table S1. Summary of clinical characteristics for present study. 

Characteristic EOPE EOPE+FGR FGR PTB 
p-
value 

test 
statistic 

test 

Pregnancy Characteristics 

n 8 7 5 5    

Mother Age a 24.4 ± 5.3 27.3 ± 8.2 24.0 ± 5.2 27.2 ± 10.0 0.781 F = 0.36 ANOVA 

Gravidity b 2 [1-2] 1 [1-2] 2 [1-2] 3 [1-3] 0.533 H = 2.20 
Kruskal–
Wallis 

Parity b 0 [0-0] 0 [0-1] 0 [0-0] 1 [0-2] 0.476 H = 2.50 
Kruskal–
Wallis 

Mother Hispanic Ethnicity c       

 Hispanic 0 ( 0.0)  1 (14.3)  2 (40.0)  0 ( 0.0)  0.137 χ2 =  5.52 
Chi 
Square 

 Non-Hispanic 8 (100.0)  6 (85.7)  3 (60.0)  5 (100.0)     

Mother Race c        

 Black 5 (62.5)  1 (14.3)  1 (20.0)  2 (40.0)  0.352 χ2 =  6.67 
Chi 
Square 

 White 3 (37.5)  5 (71.4)  4 (80.0)  2 (40.0)     
 Other 0 (0.0)  1 (14.3)  0 (0.0)  1 (20.0)     

Highest Antepartum SBP a 179.6 ± 16.4 156.1 ± 11.6 121.6 ± 20.0 117.6 ± 5.8 <0.001 F = 26.34 ANOVA 
Highest Antepartum DBP a 109.0 ± 11.0  99.6 ± 10.0  78.6 ± 11.3  63.8 ± 5.2 <0.001 F = 25.74 ANOVA 
Dipstick Proteinuria c       

 0 0 (0.0)  1 (14.3)  4 (80.0)  2 (40.0)  0.016 χ2 =  15.56 
Chi 
Square 

 2 4 (50.0)  4 (57.1)  1 (20.0)  0 (0.0)     
 3 4 (50.0)  1 (14.3)  0 (0.0)  0 (0.0)     
 not performed 0 (0.0)  1 (14.3)  0 (0.0)  3 (60.0)     

24-Hour Proteinuria >300mg c       

 no 0 (0.0)  0 (0.0)  2 (40.0)  0 (0.0)  0.002 χ2 =  20.60 
Chi 
Square 

 yes 5 (62.5)  6 (85.7)  0 (0.0)  0 (0.0)      
 not performed 3 ( 37.5)  1 (14.3)  3 (60.0)  5 (100.0)     

Neurological Manifestations d       

 no 4 (50.0)  4 (57.1)  5 (100.0)  5 (100.0)  0.087 χ2 =  6.58 
Chi 
Square 

 yes 4 (50.0)  3 (42.9)  0 (0.0)  0 (0.0)     

HELLP manifestations c       

 no 6 (75.0)  6 (85.7)  5 (100.0)  5 (100.0)  0.444 χ2 =  2.68 
Chi 
Square 

 yes 2 (25.0)  1 (14.3)  0 (0.0)  0 (0.0)     

Birth Characteristics 

Gestational Age at Delivery 
(weeks) a 

30.0 ± 2.3 30.7 ± 3.4 29.0 ± 1.5 31.5 ± 1.3 0.381 F = 1.08 ANOVA 

1 Minute Apgar b 7 [5-8] 6 [5-7] 8 [4-9] 7 [4-9] 0.922 H = 0.49 
Kruskal–
Wallis 

5 Minute Apgar b 9 [8-9] 8 [7-9] 9 [7-9] 9 [8-9] 0.408 H = 2.90 
Kruskal–
Wallis 

Sex Assigned c        

 Female 6 (75.0)  4 (57.1)  1 (20.0)  2 (40.0)  0.25 χ2 =  4.12 
Chi 
Square 

 Male 2 (25.0)  3 (42.9)  4 (80.0)  3 (60.0)     

Birthweight c        

 >1000 g  5 (62.5)  4 (57.1)  0 (0.0)  5 (100.0)  0.015 χ2 =  10.43 
Chi 
Square 

 <1000 g  3 (37.5)  3 (42.9)  5 (100.0)  0 (0.0)     

Mode of Delivery c        

 Cesarean 6 (75.0)  7 (100.0)  4 (80.0)  3 (60.0)  0.373 χ2 =  3.13 
Chi 
Square 

 Vaginal 2 (25.0)  0 (0.0)  1 (20.0)  2 (40.0)     

Footnotes: 
a mean ± SD 
b median [IQR] 
c n (%)  
d Neurological manifestations included headache and/or visual disturbances.  
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; HELLP, hemolysis, elevated liver 
enzymes and low platelets 
Bold text indicates p-value <0.05 (two-sided). 
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Table S2. Detailed clinical characteristics for present study. 
 
Please see: 
https://uofi.box.com/s/8kj1wac03sq9x4lw7148d8tyvbrcvm4q 
 
Alternate repository: 
https://osf.io/pa5wq/ 
doi; 10.17605/OSF.IO/PA5WQ 
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Table S3. Comparisons of study criteria, sampling methods, and sequencing methods among 
datasets considered. 

Study 
Cohort 

Sample 
Size: n 

GA at Delivery 
(mean±SD) 

FGR Inclusion 
Criteria 

PE Inclusion 
Criteria 

Placental 
Sampling 

Sequencing 

Present 
Study 
(GSE203507) 

• EOPE: 8 
• FGR: 5 
• 
EOPE+FGR: 
7 
• PTB: 5 
• TB: 5 

• EOPE: 
29.8±2.3 wks 
• FGR: 29.1±1.4 
wks 
• EOPE+FGR: 
30.7±3.4 wks 
• PTB: 31.6±1.9 
wks 
• TB: 39.0±0.1 
wks 

Ultrasonographic 
EFW < 10th 
percentile for GA and 
assigned sex with 
abnormal Doppler 
evaluations 

ACOG Task 
Force on 
Hypertension in 
Pregnancy 
2013 [PubMed: 
24150027]  

Single placental 
biopsy, 
separated into 
villous tissue 
and decidual 
basalis tissue 

• Ribosome depletion 
• 50 bp single-end 
• Illumina HiSeq 
2500 platform 

GSE148241 • EOPE: 3 
• 
EOPE+FGR: 
6 
• Control: 32 

• EOPE: 
30.0±2.0 wks 
• EOPE+FGR: 
32.9±1.1 wks 
• Control: 
38.8±2.3 wks 

Not specified ACOG Task 
Force on 
Hypertension in 
Pregnancy 
2013 [PubMed: 
24150027] 

Villous tissues 
collected from 
mid-section of 
placenta 
between 
chorionic and 
basal surfaces 
at 4 different 
positions 

• Poly-A enrichment 
• 125 bp paired-end  
• Illumina Hiseq 2500 
platform 

GSE114691 • EOPE: 20 
• FGR: 18 
• 
EOPE+FGR: 
20 
• Control: 21 

< 34 weeks at 
diagnosis  
• EOPE: 
29.6±3.1 wks 
• FGR: 32.3±3.4 
wks 
• EOPE+FGR: 
29.4±2.5 wks 
• Control: 
30.6±2.6 wks 

Ultrasonographic 
EFW < 10th 
percentile for GA and 
assigned sex with 
abnormal umbilical 
and uterine artery 
Doppler evaluations 

Hypertension 
(blood 
pressure > 140/
90 mmHg) and 
proteinuria (≥ 
300 mg in 24 h) 

Villous tissue 
pooled from 2 
central and 2 
peripheral 
placental 
regions 

• RNA 
enrichment/depletion 
method not specified 
• 50 bp single-end 
• Illumina HiSeq 
2000 platform 

PRJEB30656  • FGR: 5 
• Control: 5 

Term Ultrasonographic 
EFW < 10th 
percentile for GA with 
abnormal 
cerebroplacental or 
uterine artery Doppler 
evaluations, or normal 
Doppler evaluations 
with EFW ≤ 3rd 
percentile for GA 

Not included Placenta biopsy 
(details of 
placental 
sampling not 
specified) 

• Poly-A enrichment 
• 50 bp paired-end 
• Illumina HiSeq 
4000 platform 

 
Abbreviations: 
ACOG, American College of Obstetricians and Gynecologists 
EOPE, early-onset preeclampsia 
FGR, fetal growth restriction 
GA, gestational age 
PTB, spontaneous idiopathic preterm birth 
PE, preeclampsia  
wks, weeks 
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Table S4. Transcripts assigned to co-expression modules by correlation network analysis in 
villous tissue specimens. 
 
Please see:  
https://uofi.box.com/s/jfwzaord2fn7xzc6krk023ow1pamf6pa 
 
Alternate repository: 
https://osf.io/pa5wq/ 
doi; 10.17605/OSF.IO/PA5WQ 
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Table S5. Transcripts assigned to co-expression modules by correlation network analysis in 
decidua basalis specimens. 

 
Please see: 
https://uofi.box.com/s/x81ml7u8p1ltiollhmou7wean6a0t9ib 
 
Alternate repository: 
https://osf.io/pa5wq/ 
doi: 10.17605/OSF.IO/PA5WQ 
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3. Supplemental Figures and Figure Legends 

 
 
Figure S1. Overview of differential transcriptional abundance patterns in placental villous tissue 
(VT) samples. Scatterplots of average transcript expression data following variance stabilizing 
transformation with log2-scaling, showing the overall degree of correlation and differential abundance 
(FDR<0.1, colored triangles) in pairwise contrasts as determined using DESeq2 statistical software with 
surrogate variable analysis. The number of differentially abundant transcripts associated with each axis 
is shown adjacent to the arrows, which indicate the direction of the change. Gray dots represent RNA 
species that did not differ in abundance based on statistical models. Statistical models included clinical 
outcome, fetal sex, and the first two surrogate variable components as covariates. Abbreviations: 
EOPE, early-onset severe preeclampsia; FGR, fetal growth restriction; PTB, spontaneous idiopathic 
preterm birth; TB, term birth. 
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Figure S2. Overview of differential transcriptional abundance patterns in placental decidua 
basalis (DB) samples. Scatterplots of average transcript expression data following variance stabilizing 
transformation with log2-scaling, showing the overall degree of correlation and differential abundance 
(FDR<0.1, colored triangles) in pairwise contrasts as determined using DESeq2 statistical software with 
surrogate variable analysis. Arrows and numbers indicate the direction and amount of change toward 
either axis. Gray dots represent RNA species that did not differ in abundance based on statistical 
models. Statistical models included clinical outcome, feal sex, and the first two surrogate variable 
components as covariates. Abbreviations: EOPE, early-onset severe preeclampsia; FGR, fetal growth 
restriction; PTB, spontaneous idiopathic preterm birth; TB, term birth. 
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Figure S3. Overview of differential transcriptional abundance patterns in paired placental villous 
tissue (VT) and decidua basalis (DB) samples under each clinical condition. Scatterplots of the 
average transcript expression data after variance stabilizing transformation with log2-scaling, showing 
the overall degree of correlation and differential abundance (FDR<0.1, colored triangles) in pairwise 
contrasts determined using DESeq2 statistical software. The number of differentially abundant 
transcripts corresponding to each axis is shown adjacent to the arrows. Gray dots represent RNA 
species that did not differ in abundance based on pairwise statistical models. Abbreviations: EOPE, 
early-onset severe preeclampsia; FGR, fetal growth restriction. 
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Figure S4. Pathway enrichment for all co-expression modules identified in the villous tissue (VT) 
samples. (A-H) Chord diagrams representing the top10 enriched pathways associated with the 
transcripts (depicted as clustered heatmaps) for the 8 VT network modules, ranked according to p-
value. Note that the Gray Module (unassigned transcripts) was not included in this analysis. Each chord 
represents the connection between an individual module transcript in the heatmap and its presence in a 
given gene set.   
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Figure S5. Pathway enrichment for all co-expression modules identified in the decidua basalis 
(DB) placenta specimens. (A-F) Chord diagrams depicting the top10 enriched pathways associated 
with the transcripts (depicted as clustered heatmaps) of each of the 6 DB correlation network modules, 
ranked according to p-value. The Gray Module (unassigned transcripts) was not included in this 
analysis. Each chord represents the connection between an individual module transcript in the heatmap 
and its presence in a given gene set.   
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Figure S6. Similarity between co-expression networks of villous tissue (VT) and decidua basalis 
(DB). Network diagram representing the degree of transcript overlap among co-expression modules 
identified in each placental region. Node size is proportional to the number of genes within the 
individual module, identified by color code. Edge connections and their relative sizes represent the 
degree of transcript overlap between modules, measured using the Jaccard similarity coefficient. Edges 
were filtered for Jaccard indices <0.032 to clarify the presentation (28 edges omitted). The diagram was 
constructed using the igraph R package and rendered using Cytoscape v3.9.0. 
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Figure S7. Module preservation between placental regions and in previously published datasets. 
Bubble plots displaying module preservation summary Z statistics (Zs) for each network module, with 
data point sizes indicating -log10 values for summary p-values (Ps). Horizontal blue dotted lines indicate 
the demarcation between Zs scores that indicate strong evidence for module preservation (Zs>10) and 
those showing minimal to weak evidence for reproducibility (Zs<10). (A) Degree of preservation for VT 
network modules in DB samples in the present study. (B) Preservation of DB network modules in VT 
specimens in the present study. (C) Preservation of VT network modules in previously published 
datasets: (left) GSE148241 (n=41); (middle) GSE114691 (n=79); and (right) and PRJEB30656 (n=10). 
(D) Preservation of DB network modules in GSE148241 (left), GSE114691 (middle), and PRJEB30656 
(right) datasets. 
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Figure S8. Correlation of individual transcripts with clinical traits for selected co-expression 
network modules in villous tissue (VT) placental specimens. Heatmaps with unsupervised 
hierarchical clustering applied to the individual VT specimen transcripts most positively (n=10) and 
negatively (n=10) correlated with selected clinical variables, as identified through the results of the 
module-trait correlation analysis overall. Pearson correlation coefficients relating gene expression 
patterns to BW, SBP, and DBP are shown on the left side of each panel, while row-normalized relative 
expression data are presented on the right. Color intensity ranges are shown in the keys below the 
individual heatmaps. Blue text indicates known therapeutic targets documented in the Therapeutic 
Target Database. (A) Orange VT module, with expressed genes predominantly correlated with BW. (B) 
Blue VT module, with transcripts chiefly correlated with parental SBP and DBP. (C) Black VT module, 
primarily correlated with SBP and DBP. (D) Turquoise VT module, with gene expression significantly 
correlated with BW and DBP. Abbreviations: BW, birthweight; DBP, diastolic blood pressure; EOPE, 
early-onset severe preeclampsia; FGR, fetal growth restriction; SBP, systolic blood pressure. 
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Figure S9. Correlation of individual transcripts with clinical traits for selected co-expression 
network modules in decidua basalis (DB) placental specimens. Heatmaps with unsupervised 
hierarchical clustering applied to the DB specimen transcripts most positively (n=10) and negatively 
(n=10) correlated with selected clinical variables, guided by the results of module-trait correlation 
analysis overall. Pearson correlation coefficients relating gene expression patterns to BW, SBP, and 
DBP are shown on the left side of each panel, while row-normalized relative expression data are 
presented on the right. Color intensity ranges are shown in the keys below individual heatmaps. Blue 
text indicates known therapeutic targets documented in the Therapeutic Target Database. (A) Mustard 
DB module, with transcript expression patterns principally correlated BW. (B) Tomato DB Module, 
mainly correlated with BW. (C) Magenta DB module, with predominant BW correlation. (D) Brown DB 
module, with significant SBP correlation overall. Abbreviations: BW, birthweight; DBP, diastolic blood 
pressure; EOPE, early-onset severe preeclampsia; FGR, fetal growth restriction; SBP, systolic blood 
pressure.  
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Figure S10. Metagene ratio (MGR) analysis for selected decidua basalis (DB) correlation network 
modules and associations with clinical diagnoses. (A) Heatmap with unsupervised hierarchical 
clustering applied to MGRs for the DB co-expression network modules indicated. In this representation, 
module MGRs have been converted to their corresponding Z scores (based on the mean and standard 
deviation in each row) to illustrate differences. (B, C) Receiver-operating characteristic (ROC) curves 
for MGRs of selected DB modules in association with (B) early-onset severe preeclampsia (EOPE) and 
(C) fetal growth restriction (FGR), based on clinical criteria proximal to the time of delivery. For each 
ROC curve, sensitivity (true positive rate) is plotted on the y-axis, and 1 - specificity (false positive rate) 
is plotted on the x-axis. ROCs for the DB specimens in the present study (n=27), public datasets 
(GSE148241, GSE114691, and PRJEB30656; n=130), and the aggregated set of all samples (n=157) 
are shown in the leftmost, middle, and rightmost columns of panels B and C, respectively. Each row in 
panels B and C represents the performance characteristics of the MGR from an individual DB module. 
The points where Youden's J is maximized (Jmax) are indicated by circles in each plot in which the area 
under the ROC curve (AUC) is significantly different from 0.5 (p<0.05).  
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Figure S11. Transcriptional signatures define a molecular subphenotype of EOPE in villous 
tissue (VT) samples consistent with a glycolytic metabolic shift. (A-C) Heatmaps with 
unsupervised hierarchical clustering based on: (A) VT Black module transcripts used in the construction 
of the metagene ratio (MGR) construction; (B) transcripts associated with the KEGG pathway hsa00010 
(Glycolysis/Gluconeogenesis); and (C) normalized RNA-seq expression ratios of LDHA/LDHB and 
PDK1/GOT1. (D) Bubble plot comparing the first principal components (PCs) of EOPE±FGR VT 
specimens stratified by the expression of MGR constituent transcripts from the VT Black module (x-
axis) and transcripts mapped to the hsa00010 KEGG pathway (y-axis), both in relation to the 
expression ratios of LDHA/LDHB RNA-seq (indicated by bubble size and color). Two molecular clusters 
could be identified consistently. (E) Matrix displaying Pearson correlation coefficients in pairs 
comprising the PC1 values for VT Black MGR constituent transcripts, the PC1 values for the KEGG 
hsa00010 transcripts, and the RNA-seq expression ratios for LDHA/LDHB and PDK1/GOT1. All 
correlations were statistically significant at p<0.01. (F) Pathway diagrams adapted from the KEGG 
hsa00010 map (with the addition of PDK1 as a critical regulator of the pyruvate dehydrogenase 
complex) showing the expression of EOPE VT specimen transcripts, subdivided by molecular cluster, 
relative to iPTB VT samples. Samples from Cluster 1 (left) showed a pattern consistent with a glycolytic 
metabolic shift toward increased lactate production, while those of Cluster 2 (right) showed expression 
changes consistent with acetyl-CoA production and entry into the citric acid cycle. Abbreviations: 2PG, 
2-phosphoglycerate; 3PG, 3-phosphoglycerate; α-KG, alpha-ketoglutarate; DHAP, dihydroxyacetone 
phosphate; EOPE, early-onset severe preeclampsia; FGR, fetal growth restriction; GA3P, 
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glyceraldehyde 3-phosphate; OAA, oxaloacetic acid; PC, principal component; PEP, 
phosphoenolpyruvate; SucCoA, succinyl coenzyme A; VT, villous tissue. 
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Figure S12. Cross-validation of RNA-seq ratiometric expression by qPCR. (A) Scatterplot showing 
normalized LDHA RNA-seq feature counts in relation to LDHB for VT samples (n=30). Samples with 
molecular evidence for a metabolic shift (Cluster 1 samples in Supplemental Figure S9) are indicated 
with colored labels. Labels in italics were not included in the qPCR cross-validation. The purple arrow 
indicates FGR sample S08, which had an elevated PDK1/GOT1 expression ratio. (B) Correlations 
between the log-transformed LDHA/LDHB expression ratios from RNA-seq and qPCR experiments 
were evaluated using Pearson's product-moment correlation (r=0.698, p<0.001, n=28; samples S16 
and S25 were not cross-validated by qPCR due to unavailability of sufficient material). (C) Scatterplot 
showing normalized RNA-seq feature counts for PDK1 and GOT1 in VT samples (n=30). Sample 
labeling is as in panel A. (D) Correlations between the log-transformed PDK1/GOT1 expression ratios 
from RNA-seq and qPCR experiments were assessed using Pearson's product-moment correlation 
(r=0.562, p<0.002, n=28). Abbreviations: Relative quantification (RQ); VT, villous tissue. 
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Figure S13. Comparison of the LDHA/LDHB and PDK1/GOT1 RNA-seq gene expression ratios in 
paired VT and DB specimens. (A) Correlogram showing the Pearson's product-moment correlation 
coefficients among the LDHA/LDHB and PDK1/GOT1 RNA-seq ratios for the VT and DB anatomical 
placental regions in paired specimens (n=27). All comparisons were statistically significant (p<0.01). 
The within-region ratio correlations (i.e., DB LDHA/LDHB vs. DB PDK1/GOT1; VT LDHA/LDHB vs. VT 
PDK1/GOT1) were stronger than the between-region correlations (i.e., VT LDHA/LDHB vs. DB 
LDHA/LDHB; VT PDK1/GOT1 vs. DB PDK1/GOT1). Note that the correlation coefficient for the VT 
LDHA/LDHB vs. VT PDK1/GOT1 comparison differs from that in Figure S11E since the latter contains 
additional VT samples, S01, S02, and S03, for which paired DB samples were unavailable. (B) 
Heatmap showing the distribution of samples following unsupervised hierarchical clustering based on 
the combined dataset comprising the LDHA/LDHB (panel C) and PDK1/GOT1 normalized RNA-seq 
ratios for the VT and DB placental anatomical regions. (C, D) Scatterplots showing the sample 
distribution obtained when comparing the normalized LDHA/LDHB (panel C) and PDK1/GOT1 (panel 
D) RNA-seq ratios between the VT and DB placental regions. Abbreviations: DB, basal plate decidual 
basalis; VT, villous tissue.   
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Figure S14. Relationships between the transcriptional signatures suggestive of a glycolytic 
metabolic shift and those associated with molecular subtypes of PE and FGR identified in prior 
studies. Heatmaps, aligned by columns, showing the transcriptional expression patterns in individual 
VT samples from each of the four studies (the present study and the 3 previously published datasets, 
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n=160). The 14 gene panel was abstracted from the supplementary materials in Leavey et al. 
(Hypertension 2016;68:137-47) and consisted of candidate transcripts used in the initial evaluation of a 
qPCR-based molecular classification strategy for PE (ENG, FLT1, FSTL3, LIMCH1, MAN1C1, 
METTL18, MORN3, MT1F, PIK3CB, SNX10, SQOR, TAP1, TPBG, and VPS54). The 3 genes used for 
the qPCR-based classification algorithm in Gibbs et al. (Am J Obstet Gynecol 2019;220:110.e1-
110.e21) comprised a subset of this larger panel. The same data have been arranged by unsupervised 
hierarchical clustering based on: (A) the expression ratios of LDHA/LDHB and PDK1/GOT1; and (B) the 
3 gene panel from the Gibbs et al. publication (FLT1, LIMCH1, and TAP1). These arrangements are 
intended to illustrate the relationships between the molecular subtypes of PE and FGR identified 
previously (emphasized in panel B) and the samples exhibiting evidence of a metabolic shift in the 
present study (emphasized by the arrangement in panel A). Expression patterns that approximately 
correlate with clusters 2 and 3 as described in Leavey et al. (Hypertension 2016;68:137-47) and Gibbs 
et al. (Am J Obstet Gynecol 2019;220:110.e1-110.e21) are indicated in panel B. Abbreviations: EOPE, 
early-onset severe preeclampsia; FGR, fetal growth restriction; VT, villous tissue. 
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Major Resources Table 

In order to allow validation and replication of experiments, all essential research materials listed in the Methods should be included 

in the Major Resources Table below. Authors are encouraged to use public repositories for protocols, data, code, and other 

materials and provide persistent identifiers and/or links to repositories when available. Authors may add or delete rows as needed. 

qPCR Probe Sets 

Target 
transcript 

Vendor 
or 

Source 

Catalog 
# 

Assay ID Lot # 
(preferred 

but not 
required) 

Persistent ID / URL 

LDHA Thermo 
Fisher 
Scientific 

4331182 Hs01378790_g1  https://www.thermofisher.com/taqman-gene-
expression/product/Hs01378790_g1?CID=&ICID=&subtype= 

LDHB Thermo 
Fisher 
Scientific 

4331182 Hs00600794_mH  https://www.thermofisher.com/taqman-gene-
expression/product/Hs00600794_mH?CID=&ICID=&subtype= 

PDK1 Thermo 
Fisher 
Scientific 

4331182 Hs00176853_m1  https://www.thermofisher.com/taqman-gene-
expression/product/Hs00176853_m1?CID=&ICID=&subtype= 

GOT1 Thermo 
Fisher 
Scientific 

4331182 Hs00157798_m1  https://www.thermofisher.com/taqman-gene-
expression/product/Hs00157798_m1?CID=&ICID=&subtype= 

B2M Thermo 
Fisher 
Scientific 

4331182 Hs99999907_m1  https://www.thermofisher.com/taqman-gene-
expression/product/Hs99999907_m1?CID=&ICID=&subtype= 

RPL30 Thermo 
Fisher 
Scientific 

4331182 Hs00265497_m1  https://www.thermofisher.com/taqman-gene-
expression/product/Hs00265497_m1?CID=&ICID=&subtype= 

 

Data & Code Availability 

Description Source / 
Repository 

Persistent ID / URL 

Supplemental Tables S1-S5 INDIGO (University 
of Illinois-Chicago) 

DOI Pending. For review purposes, see: 
https://uofi.box.com/s/h1fraq80bydl8dvq9rui7x21rahjoi2r 

   

   

 

Datasets Used 

Description Source / 
Repository 

Persistent ID / URL 

GSE203507 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203507 

GSE148241 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148241 

GSE114691 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114691 

PRJEB30656 ENA https://www.ebi.ac.uk/ena/browser/view/PRJEB30656 

 

Open-Source Software Packages Used 
Package Version Reference Persistent ID / URL 

Cytoscape V3.9.0 Shannon P, Markiel A, Ozier O, 
Baliga NS, Wang JT, Ramage D, 
Amin N, Schwikowski B, Ideker T. 
Cytoscape: A software environment 
for integrated models of 
biomolecular interaction networks. 
Genome Res. 2003;13:2498-2504. 

https://cytoscape.org/ 
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FastQC v0.11.8 Andrews S. FastQC: A quality 
control tool for high throughput 
sequence data. 2010. 

https://www.bioinformatics.babraham.ac.uk/p
rojects/fastqc/ 

HTseq v0.11.2 Anders S, Pyl PT, Huber W. HTSeq--
a python framework to work with 
high-throughput sequencing data. 
Bioinformatics. 2015;31:166-169. 

https://pypi.org/project/HTSeq/ 

TopHat2 v2.0.14 Kim D, Pertea G, Trapnell C, 
Pimentel H, Kelley R, Salzberg SL. 
TopHat2: Accurate alignment of 
transcriptomes in the presence of 
insertions, deletions and gene 
fusions. Genome Biol. 2013;14:R36-
r36. 

https://github.com/infphilo/tophat 

Trimmomatic v0.39 Bolger AM, Lohse M, Usadel B. 
Trimmomatic: A flexible trimmer 
for illumina sequence data. 
Bioinformatics. 2014;30:2114-2120. 

https://github.com/timflutre/trimmomatic 

R Packages 

Package Version Reference Persistent ID / URL 

AnnotationDbi v1.60.0 Pagès H, Carlson M, Falcon S, Li N. 
AnnotationDbi: Manipulation of 
SQLite-based annotations in 
Bioconductor.  
https://www.bioconductor.org/pac
kages/release/bioc/html/Annotatio
nDbi.html 

https://bioconductor.org/packages/Annotation
Dbi 

circlize v0.4.15 Gu Z, Gu L, Eils R, Schlesner M, 
Brors B. Circlize implements and 
enhances circular visualization in R. 
Bioinformatics. 2014;30:2811-2812. 

https://CRAN.R-project.org/package=circlize 

clusterProfiler v4.6.0 Yu G, Wang LG, Han Y, He QY. 
clusterProfiler: An R package for 
comparing biological themes 
among gene clusters. OMICS. 
2012;16:284-287. 

https://bioconductor.org/packages/release/bio
c/html/clusterProfiler.html 

ComplexHeatmap v 2.14.0 Gu Z. Complex heatmap 
visualization. Imeta. 2022;1:e43. 

https://www.bioconductor.org/packages/relea
se/bioc/html/ComplexHeatmap.html 

corrplot v0.92 Wei T, Simko V. R package 
'corrplot': Visualization of a 
Correlation Matrix. https://cran.r-
project.org/web/packages/corrplot
/index.html 

https://github.com/taiyun/corrplot 

DESeq2 v1.32.0 Love MI, Huber W, Anders S. 
Moderated estimation of fold 
change and dispersion for RNA-seq 
data with DESeq2. Genome Biol. 
2014;15:550-8. 

https://bioconductor.org/packages/release/bio
c/html/DESeq2.html 

dynamicTreeCut v1.63-1 Langfelder P, Zhang B, Horvath S. 
Defining clusters from a 
hierarchical cluster tree: The 

https://cran.r-
project.org/web/packages/dynamicTreeCut/ind
ex.html 
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dynamic tree cut package for R. 
Bioinformatics. 2008;24:719-720. 

geometry v0.4.6.1 Habel K, Grasman R, Gramacy RB, 
Mozharovskyi P, Sterratt DC. 
Geometry: Mesh generation and 
surface tessellation. https://cran.r-
project.org/web/packages/geomet
ry/index.html 

https://CRAN.R-project.org/package=geometry 

HGNChelper v0.8.1 Oh S, Abdelnabi J, Al-Dulaimi R, 
Aggarwal A, Ramos M, Davis S, 
Riester M, Waldron L. HGNChelper: 
Identification and correction of 
invalid gene symbols for human 
and mouse. F1000 research. 
2020;9:1493. 

https://CRAN.R-
project.org/package=HGNChelper 

igraph v.1.3.5 Nepusz T (maintainer), see authors 
file (https://cran.r-
project.org/web/packages/igraph/
AUTHORS). igraph: Network 
Analysis and Visualization. 
https://CRAN.R-
project.org/package=igraph 

https://igraph.org/ 

limma v3.54.1 Ritchie ME, Phipson B, Wu D, Hu Y, 
Law CW, Shi W, Smyth GK. Limma 
powers differential expression 
analyses for RNA-sequencing and 
microarray studies. Nucleic Acids 
Res. 2015;43:e47. 

https://bioconductor.org/packages/release/bio
c/html/limma.html 

pheatmap v1.0.12 Kolde R. Pheatmap: pretty 
heatmaps. https://cran.r-
project.org/web/packages/pheatm
ap/index.html 

https://CRAN.R-project.org/package=pheatmap 

sva v3.40.0 Leek JT, Storey JD. Capturing 
heterogeneity in gene expression 
studies by surrogate variable 
analysis. PLoS Genet. 2007;3:1724-
1735. 

https://bioconductor.org/packages/release/bio
c/html/sva.html 

WGCNA v1.72-1 Langfelder P, Horvath S. WGCNA: 
An R package for weighted 
correlation network analysis. BMC 
Bioinformatics. 2008;9:559-559. 

https://CRAN.R-project.org/package=WGCNA 

 
Databases Used 

Name Reference Persistent ID / URL 

Comparative 
Toxicogenomics Database 
(CTD) 

Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-
Richards C, Sciaky D, King BL, Wiegers TC, Mattingly 
CJ. The Comparative Toxicogenomics Database's 
10th year anniversary: Update 2015. Nucleic Acids 
Res. 2015;43:914. 

http://ctdbase.org/ 

Molecular Signatures 
Database (MSigDB) 

Liberzon A, Subramanian A, Pinchback R, 
Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular 

http://www.gsea-
msigdb.org/gsea/msigdb/ 
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signatures database (MSigDB) 3.0. Bioinformatics. 
2011;27:1739-1740. 

Therapeutic Target 
Database (TTD) 

Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, Qiu Y, 
Chen Y. Therapeutic target database update 2022: 
Facilitating drug discovery with enriched 
comparative data of targeted agents. Nucleic Acids 
Res. 2021. 

https://db.idrblab.net/ttd/ 
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