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Abstract 

Background: Several lysosomal genes are associated with Parkinson’s disease (PD), yet the 

association between PD and ARSA, which encodes for the enzyme arylsulfatase A, remains 

controversial.  

Objectives: To evaluate the association between rare ARSA variants and PD. 

Methods: To study possible association of rare variants (minor allele frequency<0.01) in ARSA 

with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD 

patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), 

followed by a meta-analysis. 

Results: We found evidence for an association between functional ARSA variants and PD in four 

independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an 

association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the 

meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results 

should be interpreted with caution as no association survived correction for multiple 

comparisons. Additionally, we describe two families with potential co-segregation of the ARSA 

variant p.E384K and PD. 

Conclusions: Rare functional and loss-of-function ARSA variants may be associated with PD. 

Further replication in large case-control cohorts and in familial studies is required to confirm 

these associations. 
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Introduction 

Lysosomal genes play a prominent role in the pathogenesis of Parkinson’s disease (PD).1 

Variants in GBA1 are amongst the most important risk factors of PD,2 and mutations in other 

lysosomal storage disorder genes have also been associated with PD (e.g. ASAH1, GALC, 

SMPD1).3-7 Homozygous or compound heterozygous mutations in ARSA may lead to the 

autosomal recessive lysosomal storage disorder metachromatic leukodystrophy (MLD).8 Located 

on chromosome 22q13.33, the ARSA gene encodes arylsulfatase A, which hydrolyzes sulfatides 

to galactosylceramide and sulfate8 (Figure 1). Consequently, hydrolysis of galactosylceramide 

occurs by the lysosomal enzyme galactosylceramidase, encoded by GALC, which is nominated 

as a PD gene by genome-wide association studies and targeted analyses.6, 7, 9 

The genetic association between ARSA variants and PD remains controversial.10-14 Co-

segregation of pathogenic ARSA variant was reported in one family with two PD patients, and 

two studies suggested potential association between rare ARSA loss-of-function variants and 

PD.10, 12 In the current study, we aimed to evaluate the association between rare ARSA variants 

and PD in six cohorts of 5,801 PD patients and 20,475 controls and in two families with MLD 

and PD. 
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Methods 

Population 

The study population included a total of 5,801 PD patients and 20,475 controls from six cohorts 

(detailed in Supplementary Table 1). Four cohorts have been collected and sequenced at McGill 

University: McGill (Quebec, Canada and Montpellier, France), Columbia University (the SPOT 

study, New York, NY), Sheba Medical Center (Israel) and Pavlov First State Medical university 

and Institute of Human Brain (Pavlov and Human Brain cohort; Saint-Petersburg, Russia). 

Additionally, we analyzed data from the UK Biobank (UKBB) and Accelerating Medicines 

Partnership – Parkinson Disease (AMP-PD) initiatives. The McGill university cohort was 

recruited in Québec, Canada (partially through the Quebec Parkinson Network, QPN)15 and in 

France. The Columbia cohort was collected in NY and is of mixed ancestry (European, 

Ashkenazi Jews [AJ] and a minority of Hispanics and Blacks, described in detail previously)16. 

The Sheba cohort, recruited in Israel, includes only participants with full AJ ancestry (by report). 

Pavlov and Human Brain cohort, recruited in Russia, consist predominantly of patients of 

European ancestry. All PD patients in these cohorts were diagnosed by movement disorder 

specialists according to the UK brain bank criteria17 or the MDS clinical diagnostic criteria.18 

The Accelerating Medicines Partnership – Parkinson Disease (AMP-PD, 2.5 release) initiative 

cohorts were accessed using the Terra platform (https://amp-pd.org/; AMP-PD cohorts detailed 

in Acknowledgments). The UKBB cohort was accessed using Neurohub 

(https://www.mcgill.ca/hbhl/neurohub).  

We contacted 21 families with MLD (homozygous or compound heterozygous carriers of 

pathogenic ARSA variants) or their representatives through Russian Society of Rare (Orphan) 

Diseases and sent them out questionnaire to detect family history of PD. We analyzed ARSA 

mutations using sanger sequencing in two selected families with positive PD history to attempt 

detection of co-segregation of pathogenic variants within PD patients. 
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All participants signed informed consent forms before entering the studies and study 

protocols were approved by the institutional review boards. 

Targeted next generation sequencing 

The ARSA gene was sequenced in the four cohorts collected at McGill University with targeted 

next generation sequencing by molecular inversion probes (MIPs) as previously described.19 All 

MIPs that were used to sequence ARSA are provided (Supplementary Table 2) and the full 

protocol is available at https://github.com/gan-orlab/MIP_protocol. The library was sequenced 

using Illumina NovaSeq 6000 SP PE100 platform at the Genome Quebec Innovation Centre. 

Alignment was performed with Burrows-Wheeler Aligner (hg19)20 and Genome Analysis 

Toolkit (GATK, v3.8) was used for post-alignment quality control and variant calling.21 We 

performed quality control by filtering out variants and samples with reduced quality, using the 

PLINK software v1.9. SNPs were excluded from analysis if missingness was more than 10%. 

Variants with a minor allele frequency (MAF) less than 1% and with a minimum quality score 

(GQ) of 30 were included in the analyses and analyzed at minimal depths of coverage 30x.  

Data quality control and analysis in AMP-PD and UKBB 

Quality control procedures of whole genome sequencing for AMP-PD cohorts were performed 

on individual and variant levels as described by AMP-PD (https://amp-pd.org/whole-genome-

data and detailed elsewhere).22 Quality control of UKBB whole exome sequencing data was 

performed using Genome Analysis Toolkit (GATK, v3.8) with minimum depth of coverage 10x 

and GQ 20 as described previously23 and we removed all multi-allelic sites. 

Alignment of AMP-PD and UKBB data was performed using the human reference 

genome (hg38) and coordinates for the ARSA gene extraction were chr22:50,622,754-

50,628,152. We performed additional filtration procedures using the UKBB and AMP-PD 

cohorts to exclude non-European individuals (UKB field 21000) and filtered by relatedness to 

remove any first and second-degree relatives.  

Annotations and statistical analysis 
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To functionally annotate genetic variants in all cohorts, we utilized ANNOVAR.24 Data on 

variant pathogenicity were predicted using Combined Annotation Dependent Depletion (CADD) 

score and Varsome.25, 26 To analyze rare variants (MAF<0.01), an optimized sequence Kernel 

association test (SKAT-O, R package) was performed.27 We separately analyzed the burden of 

all rare, nonsynonymous and functional variants (nonsynonymous, stop/frameshift and splicing) 

and loss-of-function variants. Lastly, we analyzed variants with a Combined Annotation 

Dependent Depletion (CADD) score of ≥ 20, representing the top 1% of potentially deleterious 

variants. For each of the analyses, we performed a meta-analysis between the cohorts using 

metaSKAT package,28 adjusting for sex, age and ethnicity. We applied false discovery rate 

(FDR) correction to all p-values. All the code used in the current study is available at 

https://github.com/gan-orlab/ARSA   
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Results 

Rare functional and loss-of-function ARSA variants are associated with Parkinson’s disease 

The average coverage across all four cohorts sequenced at McGill was >714X with >98% of the 

nucleotides covered at >30x (detailed in Supplementary Table 3). We identified a total of 96 rare 

variants across all cohorts sequenced at McGill (Supplementary Table 4) and 113 rare variants in 

AMP-PD and UKBB cohorts (Supplementary Table 5).  

Burden analyses, using SKAT-O, demonstrated an association of functional variants with 

PD in four out of six cohorts (McGill, P=0.023, Columbia, P=0.037, Pavlov, P=0.022 and 

UKBB,  P=0.009) and in the meta-analysis (P=0.042; Table 1; Supplementary Table 6). We also 

found an association between rare loss-of-function variants in the UKBB cohort (P=0.005) and 

in the meta-analysis (P=0.049). However, these results should be interpreted with caution as only 

a single loss-of-function variant was reported in the Columbia cohort, two in Pavlov and Human 

brain cohort, three variants in UKBB and two in AMP-PD (Supplementary Tables 4-5) and none 

of the associations survived FDR correction (Supplementary Table 6). 

We found associations between all rare variants and PD in the McGill cohort (P=0.011), 

Columbia cohort (P=0.005), Pavlov and Human brain institute (P=0.019) and in the UKBB 

cohort (P=0.009). However, there was no association in the meta-analysis (Table 1; 

Supplementary Table 4). Variants with CADD scores ≥20 were associated with PD in the 

Columbia cohort (P=0.009), whereas no association was found in the other cohorts and in the 

meta-analysis. Similarly, all rare nonsynonymous variants in ARSA were associated with PD in 

the McGill cohort (P=0.032) but not in the other cohorts. We did not find the p.L300S ARSA 

variant, which was previously reported as pathogenic in PD,29 yet we found the likely pathogenic 

(based on Varsome annotation) p.L300V variant in two cases and one control in our analysis 

(Supplementary Tables 5-6).  
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Evidence for association of the rare ARSA p.E384K in two families among Parkinson’s 

disease patients 

We describe here two families with history of MLD and PD. In the first family (Figure 2A), the 

proband is a patient with MLD with compound heterozygous nonsynonymous variants, p.Q155H 

and p.E384K. The maternal grandmother of the proband (Figure 2A, II-4), who is a carrier of 

p.E384K, has PD. The patient had early PD onset (<50 years). Other healthy relatives in this 

maternal generation (II) were wildtype for this variant. In the second family, the proband is a 

MLD patient who has compound heterozygous mutations, c.1107+1G>A and p.E384K. There 

were five PD patients in this family from both the paternal and maternal sides (Figure 2B). On 

the paternal side, there were two PD patients, one was deceased, and one was not a carrier of the 

pathogenic variant c.1107+1G>A. On the maternal side, there were three PD patients, all 

deceased. The maternal grandmother was wildtype to this variant. Therefore, the grandfather 

who was a PD patient was likely a carrier of p.E384K.  
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Discussion 

In the current study, we report a possible association between rare functional and loss-of-

function ARSA variants and PD. In four of our cohorts, we also identified a possible association 

between all rare and nonsynonymous variants and PD. We also found a potential segregation of a 

pathogenic variant, p.E384K, with PD in 2 families with family history of PD and MLD, albeit 

we could not confirm this for all affected family members as some of the family members with 

PD have passed away. The negative results previously reported for rare ARSA variants in PD 

could be attributed to sample size or ethnicity (Supplementary Table 7).12-14 Although the 

associations described in the present study do not survive correction for multiple comparisons, 

the fact that there were many nominal associations in independent cohorts may suggest that these 

associations are real. 

A recent large scale burden analysis found an association between rare ARSA loss-of-

function variants and PD.10 While a study from China did not find a statistically significant 

burden of rare ARSA variants in PD,30 they reported higher prevalence of loss-of-function 

variants in late-onset PD (0.25% in PD vs 0% in controls),30 which is in line with our results. 

However, our results should be interpreted with caution as none of our associations survived 

FDR correction and we only discovered a few carriers of private loss-of-function variants across 

all six cohorts. A recent study from Japan suggested that the ARSA p.L300S mutation was likely 

pathogenic in PD due to co-segregation within a family with two PD patients.29 We did not find 

this specific variant in our study. However, it is possible that the variant p.E384K could be 

associated with PD based on the data we gathered from two families with MLD and PD.  

The enzyme encoded by ARSA, arylsulfatase A, has an important role in the lysosomal 

ceramide metabolism pathway. Galactosylceramide is hydrolyzed from sulfatides by 

arylsulfatase A, which is then further hydrolyzed to ceramide by galactosylceramidase,31 

encoded by the putative PD gene GALC.7 Another PD gene, GBA1,1, 32 also plays an important 
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role in ceramide metabolism, by hydrolyzing glucosylceramide to ceramide (Figure 1). ARSA is 

also important for myelin metabolism.33 Several studies suggested a link between ARSA and 

alpha-synuclein accumulation. Alpha-synuclein depositions were found in glial cells and 

microglia of MLD patient,34 and in ARSA knockout cells, the authors reported increased alpha-

synuclein accumulation, secretion and propagation.11 The activity of ARSA was reported to be 

low in the subset of patients with parkinsonism.35 Moreover, plasma ARSA level was reported to 

be higher in early PD as compared to controls or late PD, suggesting possible compensatory 

mechanism.36 Reduced level of sulfatides, substrate of ARSA, was reported in frontal cortex of 

PD patients.37 Therefore, there is biochemical, functional, and genetic evidence for the 

involvement of ARSA in neurodegeneration and potentially PD, further emphasizing the 

importance of the lysosomal ceramide metabolism pathway in PD (Figure 2). The link between 

ARSA and PD is not as strong as between GBA1 and PD and only evident in large scale burden 

analysis (Supplementary Table 7). Potentially, it could be due to rarity of ARSA variants that 

associated with PD and could depend on the ethnicity.  

Our study has several limitations. In some of our cohorts, patients and controls were not 

matched for sex and age, which was therefore adjusted in the statistical analysis. Quality control 

procedures were performed independently for targeted sequencing, whole exome and whole 

genome sequencing data using different thresholds for depth of coverage and quality control. 

This could potentially lead to discrepancy in enrichment in variants between different cohorts. 

Another limitation of our study is the inclusion of mainly individuals of European ancestry. 

To conclude, rare functional and loss of function ARSA variants may be associated with 

PD, yet the results here cannot be considered as conclusive. Further replications in other cohorts 

are required to confirm our findings along with additional functional studies to understand the 

potential mechanism. 
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AT: 1C, 2C, 3B 

AE: 1C, 2C, 3B 

EZ: 1B, 1C, 2C, 3B 

RNA: 1A, 1C, 2C, 3B 

SP: 1B, 1C, 2C, 3B 

ZGO: 1A, 1B, 2A, 2C, 3A, 3B  
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Table 1. Burden analysis of rare ARSA variants 

Cohort N 

cases 

N controls All rare 

variants, 

P 

All non- 

synonymous 

variants, P 

Functional 

variants, P 

Loss of 

function, 

P 

CADD > 20, 

P 

Columbia cohort 917 486 0.005 0.060 0.037 0.313 0.009 

Sheba cohort 683 553 0.195 0.745 0.095 - 0.664 

McGill cohort 761 549 0.011 0.032 0.023 - 0.081 

Pavlov and 
Human brain 
cohort 

497 401 
0.019 0.106 0.022 0.467 0.082 

UKBB 602 15,000 0.009 0.686 0.009 0.005 0.539 

AMP-PD 2,341 3,486 0.820 0.673 0.602 0.107 0.705 

Meta-analysis of 

all cohorts 

5,801 20,475 0.826 0.420 0.042 0.049 0.431 

N, number; P, p value; UKBB, UK biobank; AMP-PD, Accelerating Medicines Partnership – 

Parkinson Disease; CADD, Combined Annotation Dependent Depletion score.  

p-value presented without FDR adjustment, as no p-values survived after correction. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.08.23286773doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286773
http://creativecommons.org/licenses/by/4.0/


Figure legends 

Figure 1. The role of ARSA and GBA1 in sphingolipid metabolism. GluCer- glucosylceramide; 

GalCer- galactosyleramide; ARSA- arylsulfatase A; GALC- galactosylceramidase; GBA1- 

galactosylceramidase 

 

Figure 2. Family trees of two families with Metachromatic leukodystrophy and Parkinson’s 

disease in history. Square – male; circle – female; open symbol – healthy; grey– Parkinson’s 

disease; filled black symbol – Metachromatic leukodystrophy; PD – Parkinson’s disease; MLD – 

Metachromatic leukodystrophy; crossed line – deceased subject; wt – wild-type.  
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Supplementary Tables 

Supplementary Table 1 Study population 

Supplementary Table 2 Detailed information on the ARSA molecular inversion probes 

Supplementary Table 3 Coverage details for ARSA 

Supplementary Table 4 Rare ARSA variants for cohorts sequenced at McGill 

Supplementary Table 5 Rare ARSA variants for UKBB and AMP-PD cohorts 

Supplementary Table 6 Burden analysis 

Supplementary Table 7 Previous rare variants analysis of ARSA in PD 
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