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Abstract

Identifying data streams that can consistently improve the accuracy of epidemiological forecast-

ing models is challenging. Using models designed to predict daily state-level hospital admissions

due to COVID-19 in California and Massachusetts, we investigated whether incorporating COVID-

19 case data systematically improved forecast accuracy. Additionally, we considered whether using

case data aggregated by date of test or by date of report from a surveillance system made a dif-

ference to the forecast accuracy. Evaluating forecast accuracy in a test period, after first having

selected the best-performing methods in a validation period, we found that overall the difference

in accuracy between approaches was small, especially at forecast horizons of less than two weeks.

However, forecasts from models using cases aggregated by test date showed lower accuracy at

longer horizons and at key moments in the pandemic, such as the peak of the Omicron wave in

January 2022. Overall, these results highlight the challenge of finding a modeling approach that

can generate accurate forecasts of outbreak trends both during periods of relative stability and

during periods that show rapid growth or decay of transmission rates. While COVID-19 case

counts seem to be a natural choice to help predict COVID-19 hospitalizations, in practice any

benefits we observed were small and inconsistent.

Introduction

During the COVID-19 pandemic, real-time data signals from a variety of sources have provided impor-

tant insights into trends of SARS-CoV-2 transmission for aggregated geospatial units, such as counties

and states in the US. However, identifying which signals can provide reliable, consistent, and accurate

indicators for monitoring epidemics generally poses a challenge, as many types of signals exist. One

class of signals include data such as reported case numbers, hospitalizations, and deaths, that typically

are reported through public health organizations or epidemiological data collection systems led by

academic groups[1, 2]. Other signals include less commonly used sources of information on outbreaks,

such as high-volume surveys on social media platforms, search query data, or data from electronic

health records[3, 4, 5].
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In the US, one of the most important and reliable indicators of SARS-CoV-2 transmission during the

first three years of the pandemic has been the data on hospital admissions that are recorded as part

of the HHS Protect system. These data exist at a daily level for individual facilities, and typically

have a coverage of over 95% of all hospitals in the country each day. These data have been reported

under a mandate from HHS since July 2020, meaning that compliance with reporting for this system

has been high. However, these data are reported directly by facilities, with variance in the data

collection and reporting methodology. These methods include manual data entry and place a burden

on reporting facilities. At the time of writing, this mandate is in place until spring 2024. Additionally,

hospitalizations are a relevant indicator for public health decision-making, as high levels are indicative

of strain on the healthcare system.

Both prior to and during the COVID-19 pandemic, forecasts of public health indicators around out-

breaks have been used as inputs to decision-making [6]. Hospitalization forecasts can provide useful

information for healthcare providers to better allocate medical resources and communicate treatment

plans [7]. There are clear examples of forecasts, in conjunction with other modeling and surveillance

efforts, being used to guide local public health officials to make real-time operational decisions [8].

Accurate forecasts can improve decision making while inaccurate forecasts could negatively impact

public health response. In this paper, we investigate the value added to forecasts of COVID-19 hos-

pitalizations from the use of data measuring the number of COVID-19 cases reported through state

public health surveillance systems.

Models have used a variety of data inputs to predict hospitalizations due to COVID-19. Some of

these data inputs include previous hospitalization data [9, 10], population mobility data [11, 9], real-

time hospital occupancy data [12], trends in genomic variants [13], and internet search queries and

chats from a public-facing Health Bot [14]. Though forecasts of hospitalizations are important, these

forecasts were sometimes inaccurate at different stages of the pandemic due to characteristics of the

data inputs. For example, the utility of mobility data as a predictor of transmission and subsequent

hospitalizations declined as the pandemic evolved and human behavior and response changed over

time[15]. The utility of these data sources in informing disease transmission varies with public health

precautionary policies [11], the capacity of healthcare systems, and missing data [12].

In addition to these data sources, one important data input often used to forecast hospitalizations is

the number of reported cases in a geographic location [16, 11, 12]. Epidemiological intuition suggests

that there should be a lagged relationship between diagnosis of a COVID-19 case and subsequent

hospitalization. However, some cases are confirmed and reported upon a positive test when admitted

to a hospital, suggesting that in some instances hospital admissions may not lag case reports.

Several papers have published models in which cases were used as inputs to forecast hospitalization

metrics [17, 11, 9]. However these efforts do not provide clear evidence that the inclusion of case

data as a “covariate” of the model materially improves forecast accuracy above and beyond including

just data on prior hospitalizations. Also, none of this work includes modeling beyond July 2021 and

therefore does not speak to how the relationship between reported cases and hospitalizations might

have changed during the larger Delta and Omicron waves when at-home rapid antigen testing became

more widespread.

During the first three years of the pandemic in the US, state-level public health agencies reported new

cases due to COVID-19 in ways that changed over time. Some states reported case data recorded by
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the date that a public health agency released data including an individual’s positive test result, which

we refer to throughout this work as the “report date”. This was also the standard method used by

data aggregation teams at Johns Hopkins University Center for Systems Science and Engineering (JHU

CSSE), New York Times, and USAFacts. A small number of states used alternate methods to record

dates associated more closely with the actual onset of symptoms. For example, California makes case

counts available by date (defined as the “episode date”) which is the “earliest of the ... date received,

date of diagnosis, date of symptom onset, specimen collection date, or date of death”[18]. Whereas

Massachusetts makes case counts available by the date of a laboratory test confirming an individual

has COVID-19. Because these methods are similar in that they try to define a date earlier than the

“report date” and closer to symptom onset, we group these two data sources together and refer to them

both as referring to a “test date” in the work that follows. While aggregating counts by report date

has been standard practice during the first three years of the COVID-19 pandemic, counts aggregated

by test date may be seen as more beneficial because they have more epidemiological relevance.

In this paper, we investigate the utility of reported COVID-19 cases as an input to forecasting daily

new hospitalization admissions, using data from October 1, 2020 through July 26, 2022. We used data

from Massachusetts and California, as these states had publicly available case data aggregated by test

date on their Department of Public Health websites. We created multiple distinct time series models

that use different versions of case data (aggregated by report date, aggregated by test date, and no

case data). A subset of models that performed well in a validation period were used to create forecasts

in an out-of-sample test period. The comparative performance of these models can help us assess the

extent to which case data are or are not helpful inputs for predicting hospitalizations and whether case

data by test date are more helpful than case data by report date.

Methods

Data

We used data from Massachusetts and California as the basis for our analysis because the Departments

of Public Health from these states recorded and publicly reported state-level new cases aggregated by

both report date and test date (Table 1 and Figure 1).

We used data on both COVID-19 hospitalization admissions and new cases in our modeling experi-

ments. COVID-19 hospitalization data for both Massachusetts and California were collected in the

Department of Health & Human Services’ Protect Public Data Hub (HHS Protect)[19]. This cen-

tralized source contains time series data for daily hospitalization utilization at the facility and state

level. For our analyses, we focused on the metric of new daily hospital admissions with a confirmed

COVID-19 diagnosis. For some data summaries presented (e.g., Figure 1B and D), we computed a

measure of relative one-week change for a given signal measured on day t as yt

yt−7
.

For both states, test-date case data (daily counts of new confirmed COVID-19 cases, aggregated

by date of test) were collected by the respective Departments of Public Health (CA DPH and MA

DPH)[20, 21]. We downloaded data from these two web sources. Report-date case data (daily counts of

new confirmed COVID-19 cases, aggregated by date on which the case was reported into a surveillance

system) for both locations were collected and reported publicly by JHU CSSE. For California, due to

differences in data aggregation methodologies, report-date case data reported publicly by CA DPH did

not always agree with the same signal from JHU CSSE. We included both signals for completeness,
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Figure 1: Observations and rates of change of case count data and hospitalization admission data.
Panels A and B show observations and growth rates, respectively, for Massachusetts data sources.
Panels C and D show observations and growth rates, respectively, for California data sources. For
California only, the report-date case counts from CA DPH (purple triangles and lines) were different
than those retrieved from JHU CSSE (blue triangles and lines), so both signals are shown. Test-date
case counts reported by MA and CA DPH are shown in green diamonds and lines. Hospitalization
data (orange squares and lines) were observed at roughly an order of magnitude lower than case data.
Hospitalization data in panels A and C were scaled so they could be displayed on the same figure as
case data and separate axes are provided on the right of those panels. The “Relative 1 week change”
shown in panels B and D is computed for every day as yt

yt−7
. In all plots the lines represent moving

averages of the raw data that compute a trailing 1-week average of the current day and the prior six
days of observations.
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Data signal State Source
hospital admissions CA HHS protect [19]

MA HHS protect][19]
report-date cases CA JHU CSSE[1]

CA CA DPH[20]
MA JHU CSSE[1]

test-date cases CA CA DPH[20]
MA MA DPH[21]

Table 1: A list of the data signals used for each state in the analyses presented in this work. Cases
aggregated by date of report, or first appearance in a public reporting system, are called “report-date
cases.” Cases aggregated by date of test are called “test-date cases.”

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.08.23286582doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.08.23286582
http://creativecommons.org/licenses/by/4.0/


1. HospOnly: A reference model that forecasts hospitalizations using only the past reported values

of hospitalizations as an input.

2. ReportCase-CSSE: In addition to past hospitalizations, this model uses report-date cases as

reported by JHU CSSE as an input to forecasting hospitalizations.

3. ReportCase-DPH: In addition to past hospitalizations, this model uses report-date cases as

reported by the state Department of Public Health as an input to forecasting hospitalizations.

This model was only used in California, as the daily DPH and CSSE numbers did not always

agree.

4. TestCase: In addition to past hospitalizations, this model uses test-date cases as an input to

forecasting hospitalizations.

We formulated our research questions about the utility of COVID-19 cases as an input to forecasting

hospitalizations in terms of comparisons of the forecast skill of these models:

1. Are cases helpful for forecasting hospitalizations? This question is addressed with a comparison

of the HospOnly and ReportCase models, and a comparison of the HospOnly and TestCase

models.

2. In an idealized setting without reporting delays, is the more-epidemiologically-relevant signal of

test date cases more helpful for forecasting hospitalizations than the signal of cases by report

date? This question relates to a comparison of the ReportCase and TestCase models.

Data transformation

We use the notation ct and ht to refer to the observed counts of daily cases and hospitalizations at times

t = 1, . . . , T respectively, after initial data preprocessing steps that were performed in the following

order:

1. In instances where there was a run of one or more consecutive reported zeros, we replaced the

zeros and the value on the following day by the mean of the replaced observations. This occurred

only for report-date cases, and addressed situations where no values were reported on some dates,

followed by catch-up reporting.

2. In some model variations, we smoothed the case data using a 7-day trailing average.

3. We used a fourth-root transformation of both the case data and the hospitalization data to

stabilize the variability of the signal around the local trend.

4. In some model variations, we used initial non-seasonal or seasonal (with a one-week “seasonal

period”) differencing to obtain a stationary series.

We considered four variations for differencing, where the order of non-seasonal and seasonal differencing

(denoted by d and D respectively) could each take values of 0 and 1.

In model variations where differencing was applied, we used recursive differencing[25]
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refer to the time series to be differenced and ỹt be the resulting time series:

d = 0, D = 0 : ỹt = yt

d = 1, D = 0 : ỹt = yt − yt−1

d = 0, D = 1 : ỹt = yt − yt−7

d = 1, D = 1 : ỹt = yt − yt−1 − (yt−7 − yt−8)

Model Specifications

We used seasonal vector autoregressive models to model the case and hospitalizations data jointly,

with weekly (7-day) seasonality to capture day-of-week reporting effects.

Our model specifies that these transformed and possibly differenced counts at time t follow a normal

distribution with a mean that is a linear function of past values of transformed hospitalizations (ht)

and/or transformed cases (ct). To encode the epidemiological understanding that an individual will

generally be infected before they are hospitalized (other than hospital-acquired infections), we allow

hospitalizations to depend on past observed hospitalizations and cases, but cases only depend on past

cases. As with standard autoregressive model notation, the p and P parameters determine the lags

included in the model (with P determining the ‘seasonal’ lag), while the d and D parameters determine

how the data were differenced. The parameters p, d, P and D were fixed to be the same values for

both cases and hospitalizations. All combinations of (p, d, P,D) where p ∈ {0, 1, 2, 3, 4}, d ∈ {0, 1},
P ∈ {0, 1, 2}, D ∈ {0, 1} were considered, except for models where both p and P were zero, leaving 56

valid model specifications per model input specification. The models can be expressed as follows:

ct =

p∑
l=1

βcc
l ct−l +

P∑
L=1

p∑
l=0

βcc
7L+lct−(7L+l) + εct

ht =

p∑
l=1

(
βch
l ct−l + βhh

l ht−l

)
+

P∑
L=1

p∑
l=0

(
βch
7L+lct−(7L+l) + βhh

7L+lht−(7L+l)

)
+ εht

εct
iid∼ Normal(0, σ2

c ), t = 1, . . . , T

εht
iid∼ Normal(0, σ2

h), t = 1, . . . , T

Priors for the model parameters were specified as

βk
iid∼ Normal(0, σ2

β)

σβ , σc, σh
iid∼ half-Cauchy(1)

where βk represents any of the β coefficients in the model definition above. This model specification

assumes that on average, after transformation, new values of cases are linear combinations of prior

values of cases and new values of hospitalizations are linear combinations of a specific set of prior

values of cases and hospitalizations.

We fit the models in a Bayesian framework and obtained forecasts from the posterior predictive dis-
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tribution by iteratively simulating one-step-ahead forecasts of both cases and hospitalizations until 28

days had been forecasted.

Forecast structure and evaluation

Following the forecast format used by several COVID-19 modeling hubs, we generated probabilistic

forecasts in a quantile-based format[24]. A prediction target was defined as a combination of location l,

week in which the forecast was made w, and forecast horizon in days d which indicates how many days

into the future the forecast was made for, relative to the starting point of the forecast. In this structure,

a specific prediction is represented as a set of K = 23 symmetric quantiles (including the median) of a

predictive distribution for a particular target. We denote the observed data as yl,w,d and the quantiles

as ql,w,d,k, for k = 1, . . . ,K. Below, we use kmed to denote the index of the quantiles which corresponds

to the median.

The forecast evaluations presented below primarily focus on three metrics that together assess the

aggregated bias, sharpness and calibration of the predictive distributions generated by the models.

Let N be the total number of unique combinations of l, w, and d to be evaluated. The mean absolute

error (MAE) is a measure of accuracy of the point estimate (median, or ql,w,d,kmed) of the forecast and

is computed as:

MAE =
1

N

∑
{l,w,d}

|yl,w,d − ql,w,d,kmed |. (1)

The weighted interval score (WIS)[26] is a proper scoring rule[27] that measures the sharpness and

calibration of the entire predictive distribution. For a single observation y and a predictive distribution

represented by quantiles q1:K , the WIS is computed as

WIS(q1:K , y) =
1

K

K∑
k=1

2 · [1{y ≤ qk} − τk] · (qk − y) (2)

where τk is the quantile level (e.g. if qk is the 95th quantile, then τk = 0.95) and 1{y ≤ qk} is the

indicator function such that it equals 1 when y ≤ qk. The mean weighted interval score is defined as

MWIS =
1

N

∑
l,w,d

WIS(ql,w,d,1:K , yl,w,d) (3)

The 95% prediction interval (PI) coverage is the empirical coverage of the nominal 95% prediction

intervals as given by the set of quantiles. Letting (lb0.95l,w,d, ub
0.95
l,w,d) be the quantiles that correspond to

the central 95% prediction interval, we compute the 95% PI coverage as:

PICov0.95 =
1

N

∑
{l,w,d}

1{lb0.95l,w,d ≤ yl,w,d ≤ ub0.95l,w,d}. (4)

Forecast validation and testing periods

We used a two-phase validation and test period approach to guard against overfitting in the models

and provide an out-of-sample evaluation of the modeling approaches. Prior to fitting models, we

established a validation period as running from forecast dates of 2020-12-07 to 2021-06-07 (Figure 1).

We performed extensive exploratory analyses on data from the validation period, including examining
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plots of data, model fitting, model diagnostics and analyses of forecast errors. The test period was

defined to include forecasts made on 2021-06-14 through 2022-05-30.

In California, 224 models were evaluated in the validation period, with 56 different autoregressive spec-

ifications for each of four different input data types (“HospOnly”, “ReportCase-CSSE”, “ReportCase-

DPH”, and “TestCase”). In Massachusetts, 168 models were evaluated in the validation period, with

56 different auto-regressive specifications for each of three different input data types (‘HospOnly”,

“ReportCase-CSSE”, and “TestCase”). When case data were used, they were pre-smoothed using a

trailing 7-day average before being passed to the model fitting algorithms. Results from models using

unsmoothed data are reported in Supplemental File 3. The highest performing models for each of the

input data types in the validation period (3 for MA, 4 for CA) were passed to the test period (Table

2)

We note that one post hoc adjustment was made to the modeling procedure after an initial view of test

period forecasts. Because we had been careful not to look in detail at the data in the test period while

fitting models to data from the validation period, we did not initially realize that systematic patterns

of reporting of zero cases changed meaningfully between the validation and test periods. Starting in

July 2021 for Massachusetts and April 2022 for California, report-date case counts for weekends and

holidays were consistently reported to be zero due to changes in data publication schedules (Figure

1). In the entire validation period, zero counts happened very rarely. This caused models that had

performed well in the validation period to perform substantially worse in the test period, as zero

counts can cause problems in certain model specifications without additional intervention on the raw

data to smooth out these systematic changes in reporting. Therefore, after an initial run of models

in both the validation and test periods, we went back and updated the methods to smooth input

data and re-ran models for the validation period and re-selected models to pass to the test period.

While this procedure goes against standard principles of re-fitting models in the validation phase after

seeing test phase results, we felt that the resulting modifications were (a) simple and (b) something

like what might have been implemented by a modeler in real-time who noticed the systematic changes

in reporting of case data. Nonetheless, this revisting of the underlying data processing pipeline after

“breaking of the seal” on the test phase data introduces the possibility of additional over-fitting to the

data and is a limitation of the current work.

Data and code availability

All data and code for this project are available publicly at

https://github.com/reichlab/covid-hosp-forecasts-with-cases. Models were fit and forecasts

were generated using Python version 3.8.2 and numpyro version 0.7.2; the model is implemented in

the sarix package, available at https://github.com/elray1/sarix. Post-processing and analyses of

forecasts were performed in R version 4.2.0[28].

We followed the EPIFORGE 2020 reporting guidelines for studies with epidemiological forecasting

(Supplemental File 3)[29].

Results

The Results are organized into four discrete sections. First, we discuss results about the degree to

which case counts showed empirical correlations as a leading and lagging indicator of hospitalizations in
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California and Massachusetts. Then we present two moment-in-time case-studies of forecasts generated

for case counts and hospital admissions at key moments during the COVID-19 pandemic. Finally, we

present a retrospective comparison of forecast accuracy for predictions of hospital admissions from

models that both do and do not use case data as inputs.

Cases and hospitalizations are correlated, with inconsistent leading patterns

Over the course of the COVID-19 pandemic from October 2020 through July 2022 in both Mas-

sachusetts and California, finalized case data aggregated by test date or report date did not show

strong evidence of being a leading or lagging indicator for hospitalizations. The raw daily case counts

for all data streams showed substantial variability (Figure 1A and C). Trailing 7-day averages of final

data showed that trends in cases aggregated by test-date led trends of cases aggregated by report-date,

as would be expected due to the lag of typically at least one day between a test being performed and

being reported by a surveillance system.

However, the degree to which either of these signals led hospitalizations appeared to vary across the

pandemic. For example, using a smoothed measure of the relative one week change to indicate whether

a signal was increasing or decreasing, hospitalizations in Massachusetts appeared to increase after both

case signals in the Alpha wave in spring 2021. Nonetheless, in summer 2022, the hospitalizations started

to increase before cases (Figure 1B). In California, hospitalizations appeared to increase before cases

in October 2021, but only increased several weeks after rises in cases were observed in spring 2022

(Figure 1D).

Aggregated measures of correlation across the entire time period included in our analysis (October

2020 through July 2022) support the conclusion that there is not strong evidence of any case data

stream consistently leading or lagging hospitalizations over the course of the first two and a half years

of the pandemic. Cross-correlations were computed for each daily lag from -25 to +25 days between

hospitalizations and report-date and test-date case signals. We observed high correlations (greater

than approximately 0.75) between hospitalizations and any case signal at lags of +/- 7 days (Figure

2).

Test-date cases in both states achieved a maximum correlation with hospitalizations by being aligned

as a leading indicator of hospitalizations, although correlations with some positive lag values were also

high. New hospitalizations at the current day showed the highest correlation with test-date cases from

three days earlier in Massachusetts and four days earlier in California. These correlations reach a level

of 0.87 and 0.81 for Massachusetts and California, respectively. With report-date cases, the maximum

correlation is achieved at 0 days in both Massachusetts (r=0.87) and 0 or a 1 day lag in California (for

DPH or JHU report-date cases, respectively, r=0.82 and 0.81).

Case Study 1: California, July 2021 – the start of the Delta wave

As one case-study, we examine in detail the data and forecasts from California on Monday, July 12,

2021 (Figure 3). At that time, hospitalization admissions and case counts had shown a steady decline

since early January 2021. However, as of early July 2021, both of these signals show clear upward

trends in the finalized case counts. We note that real-time data also showed upward trends, although

the test-date case count signal would eventually be revised to show a more pronounced increasing trend

(Supplemental File 1).
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Figure 2: Cross-correlations between hospitalization and case data, by case data source and state. The
height of the lines represents the observed of correlation between the time-series of two data sources
that are offset by the value on the x-axis. For example, when the lag is zero days (x=0) the cross-
correlation value is the correlation between the two time-series. When the lag is -3 days (x=-3), the
value of the line reflects the correlation of the hospitalization counts at time t and the case counts at
time t− 3. Test-date cases were observed to have the highest correlation with hospitalizations at lags
of -3 days in Massachusetts and -4 days in California. Report-date case counts from JHU CSSE were
observed to have the highest correlation with hospitalizations at lags of 0 days in Massachusetts and
1 day in California. Report-date case counts from DPH were observed to have the highest correlation
with hospitalizations at a lag of 0 days in California (DPH and JHU CSSE data were identical in
Massachusetts). Correlations were above 0.75 for both states and nearly all sources for +/- 7 days of
lag.
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Figure 3: Case data and forecasts (top panel) and hospitalization data and forecasts (bottom panel)
from California on July 12, 2021. Finalized case data aggregated by test-date (top panel, solid green
diamonds) were slightly higher at this time than the report-date cases (top panel, solid blue triangles).
Forecasts of test-date cases (open green diamonds) better reflected the rise in trends over the subsequent
four weeks than forecasts of report-date cases (open blue triangles). Similarly, the accompanying
forecasts of hospitalizations from the TestCase model that used test-date cases (open green squares)
were higher and more accurate than those using cases aggregated by report-date from the ReportCase-
CSSE model (open blue squares). The forecasts of hospitalizations (bottom panel) were more accurate
on this date for the TestCase model than from any of the other models. Observed hospitalization
admission counts (bottom panel) are shown in solid orange squares, and forecasts from the model
that only used these data as inputs are shown as open orange squares. Forecasts were similar for the
ReportCase-CSSE model (open blue triangles and squares) and ReportCase-DPH model (not shown).
Shaded regions around forecasts indicate 80% prediction intervals.

Test-date case forecasts more clearly detected the increasing trend, with a median prediction of over

11,343 test-date cases per day for Monday, August 9th, 2021 (80% PI: 4,029 - 31,412). On this day,

the 7-day trailing average case count was 12,840. However, report-date case forecasts did not foresee

this steep increase as clearly, predicting 3,602 report-date cases per day for August 9th (80% PI: 966

- 10,853), with the eventual observation being 12,137, landing between the 90th and 95th quantile of

the predictive distribution of cases.

The more accurate test-date case forecasts subsequently translated into more accurate forecasts of

hospitalizations for this time-period as well, although at horizons beyond two weeks all models under-

predicted the eventual observations. The TestCase hospitalization forecast model predicted 699 new

admissions on Monday August 9th (80% PI: 358 - 1313) and the ReportCase-CSSE model predicted

319 (80% PI: 156 - 633). The HospOnly forecasts were slightly higher than those from ReportCase-

CSSE, with 458 predicted hospitalizations on August 9th (80% PI: 174 - 989). The eventual observed

hospital admissions for this day was 976.
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Case Study 2: Massachusetts, January 2022 – nearing the peak of the Omi-

cron wave

As a second case-study, we look in detail at the data and forecasts from Massachusetts on Monday,

January 3, 2022 (Figure 4). Hospitalization admissions and case counts had been rising steeply since

early November 2021, and they would reach their peak values by the end of the second week of

January 2022. Forecasts near the peak of COVID-19 waves have been shown to be unreliable[30, 31],

and the forecasts here follow that pattern. The real-time data available at this time showed steady

increases, with a slight flattening in the recent trailing averages of counts. The report-date cases were

fully reported on this date, and the test-date cases from MA DPH were slightly lagged in reporting

(Supplemental File 1).

The forecasts made on January 3rd, 2022 extended 28 days until January 31st. The number of test-date

cases in Massachusetts on January 3rd (based on a 7-day trailing average) was 18,031, up from 4,461

just three weeks earlier. This count peaked on January 8th at 23,204 and on January 31st had dropped

to 4,726. Test-date case forecasts made using the data through January 3rd were more aggressively

pessimistic, with a median prediction of over 83,520 test-date cases per day for Monday, January 31st,

2022 (80% PI: 52,472 - 138,315). However, report-date case forecasts essentially forecasted a flat line

(with a very slight increase) from the most recent observation, predicting 20,243 report-date cases per

day for January 31st (80% PI: 11,381 - 34,626).

The number of new hospital admissions in Massachusetts on January 3rd was 339. This count peaked

on January 13th at 495 and on January 31st had dropped to 198. The patterns observed in the case

forecasts were passed through to the hospitalization forecasts, with all forecasts over-predicting at a 28-

day horizon and only the TestCase model overpredicting at all horizons. The TestCase hospitalization

forecast model predicted 1,559 new admissions for Monday, January 31st (80% PI: 1,032 - 2,423)

and the ReportCase-CSSE model predicted 433 (80% PI: 268 - 691). The HospOnly predictions were

similar to ReportCase-CSSE with 441 predicted hospitalizations on January 31st (80% PI: 258 - 703).

Comparative forecast model results using different case data

When aggregated across all horizons and dates in the test period, forecasts from the HospOnly and

ReportCase-CSSE models were similarly accurate according to weighted interval score (WIS), and

TestCase-DPH models were the least accurate (Table 2). The chosen specifications for the ReportCase

models in both California and Massachusetts was (p=4,d=1,P=0,D=0), suggesting that trends in

only the last 5 days of report-case data were needed in this modeling setup to generate optimal

predictions. The most accurate HospOnly model in the validation period for both states included a

P = 1 parameter, indicating that observations from prior weeks were also used. TestCase-DPH models

showed the highest accuracy (lowest WIS score) of the selected models in the validation period but

then had slightly lower accuracy in the test period than the other selected models.

However, the selected TestCase-DPH models consistently performed similarly or better than HospOnly

and ReportCase models in specific settings, with dramatically worse performance around the peak

hospitalizations in January 2022 that dragged down the overall performance metrics. In Massachusetts

for example, forecasts from the selected TestCase-DPH model were more accurate than forecasts from

the other models in all but two weeks during a 15 week span from November 2021 through February

2022 (Figure 5). But in the two weeks where the TestCase-DPH forecasts had larger error, the errors
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Figure 4: Case data and forecasts (top panel) and hospitalization data and forecasts (bottom panel)
from Massachusetts on January 3, 2022. Finalized case data aggregated by test-date (top panel, solid
green diamonds) were slightly higher at this time than report-date case counts (solid blue triangles).
However, the Omicron wave was near the peak. The forecasts of test-date cases (open green diamonds),
which predicted a continued rise, were less accurate than those for cases aggregated by report-date
(open blue triangles). The accompanying forecasts of hospitalization admission data (solid orange
squares, bottom panel) were less accurate on this date when coming from models that used test-
date cases (TestCase model, open green squares) than from models that used only hospitalization
data (HospOnly, open orange squares) or report-date case data (ReportCase-CSSE model, open blue
squares), as they predicted a continued increase and did not anticipate the peak of the Omicron wave
that occurred in mid-January. Forecasts were similar for the ReportCase-CSSE model (open blue
triangles and squares) and ReportCase-DPH model (not shown). Shaded regions around forecasts
indicate 80% prediction intervals.
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were dramatically higher, at a critically important turning point of the epidemic. These large errors

were due to TestCase-DPH forecasts predicting a continued increase into early February 2022 when in

fact the case counts had just peaked (Figure 4, Supplemental File 2). Looking at aggregate errors by

forecast horizon in both states, the errors for the TestCase-DPH forecasts are similar at horizons less

than 14 days, and notably larger at horizons beyond 21 days (Figure 6).

Prediction intervals were conservatively wide during the validation period and showed a moderate

lack of calibration in the test period (Table 2). The 95% prediction intervals for each of the selected

models in the validation phase had empirical coverage ranging from 97% to just under 100%, averaged

across all horizons and all dates. In the test period, all empirical coverage rates were under 95%,

but never lower than 89%, indicating a fairly good calibration. There were not clear patterns across

both locations, with one model type consistently showing better or worse calibration than others. For

example, the TestCase models covered the truth 89% of the time in California (the lowest of any model

in that state) but showed 93% calibration overall in Massachusetts.

In California, where we compared models with two different report-case data inputs, little difference

was observed in the validation period between the two models and a modest difference was observed in

the test period (Table 2). In the validation period, the ReportCase-CSSE and ReportCase-DPH models

showed virtually identical metrics, with a less than 1% difference in WIS, MAE and PI coverage. In

the test period, the ReportCase-CSSE forecasts showed slightly higher error, due largely to one week

in early January 2022 with a forecast that did not anticipate the rapid decline (Figure 5).

test period validation period
case type (p,d,P,D) MWIS MAE PIcov0.95 MWIS MAE PIcov0.95 rank

California
HospOnly (1,1,1,0) 130.0 196.1 0.94 124.8 203.7 0.99 18/224
ReportCase-CSSE (4,1,0,0) 130.2 192.7 0.92 114.1 172.8 1.00 6/224
ReportCase-DPH (4,1,0,0) 139.3 204.9 0.92 115.4 171.9 0.99 8/224
TestCase (2,0,0,1) 141.3 206.2 0.89 104.8 159.4 0.98 1/224

Massachusetts
ReportCase-CSSE (4,1,0,0) 24.1 37.6 0.94 18.6 27.4 0.98 8/168
HospOnly (1,0,1,1) 26.4 40.7 0.91 19.6 28.7 0.97 16/168
TestCase (1,0,1,1) 29.2 41.8 0.93 17.2 26.5 0.99 1/168

Table 2: Test and validation period accuracy metrics for forecasts of California and Massachusetts
hospital admissions. The models shown include the best individual autoregressive models from the
training phase that used test-date data (TestCase), report-date data (ReportCase) and no case data
(HospOnly) as inputs. The mean weighted interval score (MWIS), mean absolute error (MAE) and
95% prediction interval coverage (PIcov0.95) scores are shown for each model with the best scores
in the test and validation periods highlighted. Within each state, the models are sorted by highest
accuracy (lowest MWIS) scores at the top. The model parameters for the auto-regressive model are
also provided in the (p,d,P,D) column. The TestCase model was the most accurate (lowest MWIS) in
the validation period for both states, but also was the least accurate in the test period.

Discussion

In this work we investigate whether COVID-19 case counts, as reported by state departments of public

health, are useful as indicators and predictors of future trends in hospitalizations. Overall, trends in

case counts (whether aggregated by date of report or date of test) were only marginally “ahead of”

trends in hospitalizations, and we were unable to find a model that was able to show consistent im-
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Figure 5: Mean WIS (MWIS) by forecast date in test period. Each point represents, for a given model
and forecast date, the mean WIS of all the forecasts made on the given forecast date, averaging across
all of the 1 through 28 day-ahead forecast horizons. Lower WIS scores indicate higher probabilistic
accuracy. In Massachusetts (top panel), forecasts from the TestCase-DPH model (green diamonds)
tended to have lower error during the Omicron wave except for two weeks where forecasts from this
model had much higher error than other models.In California (bottom panel), WIS scores for all models
were similar, although during the Omicron wave of December 2021 through February 2022, the scores
were higher and showed greater variability.
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Figure 6: Mean WIS (MWIS) by forecast horizon in test period. Each point represents, for a given
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provement in forecast accuracy by including recent case data. These results were consistent across two

states (California and Massachusetts) with different public health surveillance systems and reporting

processes.

Earlier in the paper, we posed two questions, and we summarize our answers below.

1. Are cases helpful for forecasting hospitalizations? The answer is mixed. In general,

forecasts that only used hospitalization data (the HospOnly model) and forecasts that used

report-date cases (the ReportCase model) showed little difference. This suggests that using

report-date cases does not significantly impact forecasts of hospitalizations one way or another.

However, using test-date cases does impact forecasts of hospitalizations, but in ways that are

sometimes helpful and sometimes not. Forecasts that used test-date cases (from TestCase model)

showed lower accuracy overall than forecasts that used only hospitalization data (the HospOnly

model). Despite having consistently higher accuracy in many weeks, the forecasts that used

test-date cases had several weeks with substantially lower accuracy and this drove the overall

accuracy down.

2. Are test-date cases more helpful for forecasting hospitalizations than report-date

cases? Again the answer is mixed. In general, the differences between forecasts that used

test-date cases (from TestCase models) and those that used report-date cases (from ReportCase

models) followed similar patterns to those discussed above. Forecasts using test-date cases showed

higher overall error in the test period, mostly reflecting substantially worse performance in several

weeks where the forecasts were too pessimistic at the peak of the Omicron wave, despite showing

higher accuracy for many other weeks.

Finding leading indicators that can improve predictive outbreak modeling is a challenging endeavor.

Indicators that can be used to improve predictive models must be both strongly correlated with the

main signal of interest and have similar dynamics that occur reliably earlier than the main signal.

Any temporal relationship between the main signal and a potential indicator must remain consistent

over time so that a model has sufficient data to first see and fit the relationship and then have that

relationship persist into the future.

In the specific setting of using reported COVID-19 case counts to predict hospitalizations, there are

several obstacles that may make the relationship between these two signals difficult to model. First,

case reports occur at various times during an individual’s course of infection. Some cases may be

diagnosed near to onset of symptoms and days before admission to a hospital because of severe COVID-

19 symptoms. But other cases may be diagnosed in asymptomatic individuals who are hospitalized

for other reasons and happen to also be infected with COVID-19. Additionally, case diagnoses may

take several days to be reported into the public health surveillance system, with lags that may vary

depending on how burdened the healthcare system is at a given time. These different ways of having

reportable cases arise lead to variation in the difference between the time of case diagnosis and the time

of hospitalization, which thus leads to variation in how reliably the case signal precedes hospitalizations.

Second, the ways in which cases have been diagnosed has varied over the course of the pandemic and

the period studied. For example, with the advent of widespread at-home rapid diagnostic tests for

COVID-19 in 2021 and 2022, care-seeking behaviors changed along with the patterns by which cases

are reported into the surveillance system.
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An additional important factor in considering real-time outbreak forecasting experiments that are

conducted in retrospect is the vintage of the data that was used in the experiments. In our experiments,

the models were provided with “finalized” data (that is, data as they were reported on July 26, 2022),

not with the data as they were available in real-time. This creates an idealized forecasting experiment,

as all of the data signals in question (hospitalizations, along with test-date and report-date case counts)

are subject to varying levels of revision after an initial report. The degree and nature of the revisions

depend on the location and the signal (see Supplemental File 3). Our results therefore illustrate how

models would perform in an idealized setting, where the “finalized” data were available immediately,

which is rarely the case with public health data. The fact that models were unable, even with the

advantage of seeing the final data, to improve on hospitalization forecasts by using final case data,

indicates that trying to use such a signal in real-time would be even more difficult. We also note that

this may impact the sources of case data differently, for example test-date cases are more impacted and

thus might experience a larger decay in forecast performance if real-time data were used to construct

forecasts. Furthermore, reporting systems in different states or countries may show fundamentally

different delays, which could lead to differences in performance than what was observed here.

There are several other limitations with the current study. The presented results may be dependent on

specific modeling structures or choices. For example, in the large-scale comparisons of forecast accuracy

that have been enabled by the COVID-19 Forecast Hub efforts, many models have failed to see rapid

changes in trend at the onset and peak of pandemic waves[30, 31]. It is possible that additional model

structure could ameliorate the problem of dramatic over-prediction near the peak, and that traditional

autoregressive time-series approaches require alterations to be able to make probabilistically accurate

forecasts in systems, like outbreaks, that experience exponential growth or decay. We also have made

specific assumptions about model structure, such as the choice of autoregressive linear models plus

the requirement that the choice of (p, d, P,D) parameterization be the same for both models for cases

and hospitalizations. That said, we believe that the general conclusions from this work, namely that

using COVID-19 case counts as a predictor of hospitalizations is not an “easy win” to improve forecast

accuracy, would hold up over a wide range of different modeling choices. The generalizability of these

results to other pathogens and outbreak settings would depend on the time-scales of the generation

time of the pathogen in question, as well as time-to-onset of severe disease.

Finally, we note that “test-date” cases were defined slightly differently in Massachusetts and California.

The main difference is that in California, some “episode dates” would have preceded the “test date”

as defined in the Massachusetts data, making it closer to the date of symptom onset and perhaps

more epidemiologically relevant. We think, however, that this would have only made the California

test-date data stream more of a leading indicator, and would have biased the results in favor of seeing

improvement in forecast accuracy. Since that is not the case, we think this distinction has limited

impact on the results of the paper as stated.

Increasingly, models are used as one input to public health decisions. During the COVID-19 pandemic,

forecasts and scenario projections were used to assist with decision-making at local, state and federal

levels[6]. This work highlights how careful consideration of key data signals can provide important

real-time insight, both through close monitoring of different representations of a signal (e.g. considering

different aggregation approaches for case counts, and looking at both raw and smoothed counts) and

through studying outputs from forecast models. In short, additional research is needed to continue

to advance our understanding of which data streams can be used by models to improve prediction of
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public health indicators.
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Supplementary File 1: A booklet of figures showing report-date case signals from JHU CSSE (blue

triangles) and test-date case signals from CA and MA DPH (green diamonds). Each page of the booklet

shows data for one state and one date. The plots show open shapes for the “finalized” observations as

of July 26, 2022 and solid shapes as vintages of data specific to every Monday date from January 4,

2021 through July 26, 2022. The solid and dashed lines shows a trailing 7-day average for the real-time

vintages of data and the finalized data, respectively. The shaded region highlights how the last 3 (for

MA) or 7 (for CA) days of data, especially for the test-date cases, tend to be under-reported.

Supplementary File 2: A booklet of figures showing data and forecasts for both cases and hospital-

izations in Massachusetts and California. Each page shows one week’s data and forecasts for a given

state. The top panel on each page shows finalized case data (solid triangles for report-date cases,

solid diamonds for test-date cases), a 7-day trailing average of the observations (thin lines), and the

forecasts for each data source (open shapes, with 80% prediction interval shown as a shaded region).

Bottom panels show hospital admission observations (orange squares) and forecasts from the three

selected models (open squares), including an 80% prediction interval.

Supplemental File 3: A file containing additional figures and analyses not included in the main

manuscript.
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