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ABSTRACT (Word Count: 250) 
 
 

Background: Aortic dilation in tetralogy of Fallot (TOF) is primarily attributed to increased 

aortic flow in utero. An alternative hypothesis is abnormal neural crest cell migration, with 

unequal septation of the truncus arteriosus resulting in a larger aorta and inherently hypoplastic 

pulmonary artery (PA). If so, we hypothesize the aorta to PA ratio (Ao:PA) in TOF is stable 

throughout gestation, and the total sum of dimensions of the great arteries is similar to controls. 

Methods: We performed a single-center retrospective study of all fetuses with TOF (2014-2020) 

and gestational age-matched controls. We compared sums of diameters, circumferences, and 

cross-sectional areas of the aorta and PA and evaluated the Ao:PA across gestation in TOF with 

pulmonary stenosis (TOF-PS) and atresia (TOF-PA). We analyzed data with two-tailed t-tests 

and Pearson’s correlation. Results: There were 100 fetuses with TOF (36% TOF-PA) with 

median gestational age of 31 weeks [IQR 26.5, 34.4] and median maternal age of 34 years [IQR 

30, 37]. There were no differences in sums of great artery dimensions between TOF-PS and 

controls. In TOF-PA, sums were significantly lower than controls. The Ao:PA was stable 

throughout gestation. Conclusions: The aorta in fetal TOF is large but grows proportionally 

throughout gestation, with a sum of great artery dimensions similar to controls. TOF-PA appears 

to be distinct from TOF-PS (with overall smaller dimensions), and is a group that warrants 

further investigation. In conclusion, our findings do not support the flow-mediated model of 

aortic dilation in TOF, and instead suggest an intrinsic developmental mechanism.  

 

[Keywords: tetralogy of Fallot, aortic dilation, fetal echocardiogram] 
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Clinical Perspective 

 

What’s New? 

• The aorta in fetal Tetralogy of Fallot (TOF) is large, but grows proportionally throughout 

gestation with a total sum of great artery dimensions similar to controls. 

• Fetuses with TOF with pulmonary atresia have smaller great artery dimensions than TOF 

with pulmonary stenosis; this distinct group warrants further investigation. 

• Our findings suggest that aortic dilation in TOF may be secondary to an intrinsic 

developmental mechanism, rather than from increased flow to the aorta in utero. 

 

What are the clinical implications? 

• The mechanisms of aortic dilation in fetal TOF have not been previously investigated. 

• While aortic dilation is commonly seen in TOF, the degree of its progression over time 

and risk of dissection are not well understood.  

• A better understanding of the etiology of aortic dilation in TOF could help to inform 

management decisions, particularly regarding the need for prophylactic surgical repair. 
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Introduction 

 Aortic root dilation in tetralogy of Fallot (TOF) is a well-described phenomenon, from its 

use as a tool for identification in utero to late persistence following repair1,2. Compared to 

controls, patients with conotruncal defects have enlarged aortic valve and root diameters and 

increased aortic-to-pulmonary valve ratios3,4. Due to these characteristics, initial prenatal 

screening for TOF includes evaluating the relative sizes of the aorta and pulmonary artery5,6. 

There are multiple theories regarding the underlying mechanism of aortic dilation in TOF. The 

prevailing theory is flow-mediated, in which increased aortic flow in utero causes dilation. This 

is supported by data showing an inverse relationship between aortic size and size of the right 

ventricular outflow tract2,7. However, a lack of correlation between pulmonary artery and aortic 

sizes in other studies suggests the great arteries may not respond proportionately to changes in 

flow8. In fact, histologic abnormalities of the aorta (elastic fragmentation, medial necrosis and 

ground substance changes) have been reported in TOF9,10. These imply the aorta in TOF may be 

intrinsically predisposed to dilate, as in aortopathy syndromes11–13. Lastly, there are associations 

between 22q11.2 deletion and risk of aortic dilation in TOF, suggestive of a possible genetic 

predisposition14,15.  Many have stressed the importance of understanding nuanced environmental 

and genetic contributors to congenital heart disease, as opposed to reliance on morphologic and 

hemodynamic models alone16,17. While there have been intentional investigations (with variable 

results) into the flow-mediated hypotheses of other lesions such as hypoplastic left heart 

syndrome, there has yet to be a formal study of such mechanisms in TOF18–23.  

Thus, the objective of this study was to begin a preliminary investigation into a potential 

developmental etiology of aortic dilation in TOF. It is well established that the embryologic 

truncus arteriosus forms from neural crest cells and undergoes septation24–26. In TOF, neural 
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crest cell development and migration may be altered27,28. Theoretically, abnormal septation 

causes fewer cells to migrate to the pulmonary artery, thus making it inherently hypoplastic and 

deviating the conal septum anteriorly. In this model, aortic enlargement in TOF results from a 

greater percentage of common truncal cells committing to the aorta than to the pulmonary artery. 

We chose to investigate the dimensional relationship of the great arteries across gestation. We 

hypothesized if the aorta-to-pulmonary artery ratio (Ao:PA) is stable throughout gestation, and 

total dimensions of the two great arteries are similar to gestational-age matched controls, then 

aortic dilation in TOF may be developmental, resulting from the uneven division of the common 

truncus arteriosus (Figure 1A). Conversely, if aortic dilation is primarily due to increased flow, 

longer exposure to increased flow throughout gestation should increase the Ao:PA over time and 

the total great artery dimensions would vary depending on individual flow ratios (Figure 1B).  

 

Methods 

 We performed a single-center retrospective analysis of all fetuses with TOF evaluated 

from December 2014 to December 2020 at the Lucile Packard Children’s Hospital Stanford. A 

control group was randomly selected from a large group of fetuses with normal intracardiac 

anatomy who were matched by equal gestational age (in weeks) and year of study. All fetal 

echocardiograms were stored on our institution’s secure server syngoDynamics (Siemens 

Medical Solutions USA; syngoDynamics Solutions, Ann Arbor, MI) with original images 

acquired by either an American Registry for Diagnostic Medical Sonography certified fetal 

sonographer or by a fetal cardiologist. If a single fetus had more than one echocardiogram 

available for analysis, the first and the last (chronological) studies were included as unique 

entries in the cohort. This was done to incorporate the possibility of changes within a single fetus 
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across gestation. We excluded all fetuses with absent pulmonary valve syndrome, severe 

pulmonary insufficiency, “TOF type” double-outlet right ventricle, TOF-associated with 

atrioventricular canal defects or other forms of congenital heart disease, and those in whom 

essential cardiac structures could not be appropriately visualized. All fetuses had confirmatory 

postnatal imaging solidifying the fetal diagnosis, and studies were excluded when postnatal 

imaging was not available or if the pregnancy was terminated. The final group consisted of 100 

fetuses with TOF and 100 matched controls. Of note, all control echocardiograms came from 

unique fetuses. The reported presence of pulmonary atresia in TOF is 10-20% in the general TOF 

population, but was notably high (36%)  at our institution29,30. We therefore decided to analyze 

TOF in the form of three cohorts, based on severity of right ventricular outflow tract obstruction. 

The first cohort was fetuses with TOF with pulmonary stenosis (TOF-PS) (n = 64), the second 

cohort was fetuses with TOF with pulmonary atresia (TOF-PA) (n =36), and the third cohort was 

all fetuses with TOF, including TOF-PS or TOF-PA (n = 100). 

The primary investigator (MND) made all offline measurements using the 

syngoDynamics workstation with 20% of randomly selected studies independently measured by 

the second author (MAK) for interobserver agreement. The second reader was blinded to initial 

analysis and subsequent interobserver variance was within 10% for all measurements. 

Echocardiographic measurements for this study included diameters of the aortic valve annulus, 

pulmonary valve annulus, ascending aorta, and main pulmonary artery. The ascending aorta was 

measured from both the transverse left ventricular outflow tract view and the sagittal aortic arch 

view, with the larger of the two measurements included for interpretation31. When possible, the 

ascending aorta was measured at approximately the level of the takeoff of the right pulmonary 

artery. The main pulmonary artery measurement was made just distal to the pulmonary valve 
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when visualized. In fetuses with TOF-PA, our investigators still measured a pulmonary valve 

annulus size (at the valve hinge points) and branch pulmonary artery size if any valve tissue or 

branch pulmonary arteries, whether confluent or non-confluent, were appreciated. Patients with 

no appreciable pulmonary valve on fetal imaging were included in the study with a pulmonary 

valve annulus diameter of zero if postnatal imaging also confirmed the lack of pulmonary valve 

tissue. Lastly, the sex, maternal age, gestational age, biometry, and postnatal diagnosis were 

obtained both from the secure server and corroborated with data from the electronic medical 

record. Maternal race/ethnicity was also reported, in the specific categories offered for patients to 

select at our individual institution. 

 Raw data in the form of primary echocardiographic measurements were expressed in 

centimeters (cm). To provide multiple measures of great artery size, we calculated the sums of 

the diameters (cm), circumferences (cm), and cross sectional-areas (cm2) of the aortic and 

pulmonary valves, as well as the ascending aorta and main pulmonary artery. Given the normal 

distribution of data, we used Student two-tailed t-tests with equal population size and variance to 

compare the total great artery parameters between fetuses with TOF and normal controls. This 

analysis was performed for the TOF-PS group (n = 64), the TOF-PA group (n = 36), and then for 

the TOF-PS and TOF-PA combined group (n = 100). A p-value of < 0.05 was considered 

statistically significant to reject the null hypothesis that the total great artery parameters were 

equal. We also calculated the Ao:PA at both the valvar and proximal great artery levels. To 

assess these ratios over gestational age we used the Pearson correlation coefficient (Pearson’s r) 

to measure linear correlation, in which a value of 0 implies no linear dependency between two 

variables. Author MND had full access to all data in the study and attests to its integrity and the 
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data analysis. The protocol for this study was approved by Stanford University’s Institutional 

Review Board Panel on Medical Human Subjects (protocol #50981). 

 

Results 

One hundred fetal TOF echocardiograms and 100 normal fetal echocardiograms met 

inclusion criteria and made up the study cohort. The median gestational age was 31 weeks [IQR 

26.5, 34.4] in both groups. There were no significant differences in baseline sex distribution, 

maternal age, or gestational age between groups (Table 1). Among the 100 TOF studies, there 

were 73 individual fetuses. Sixty-four fetal echocardiograms demonstrated TOF-PS and 36 

demonstrated TOF-PA. 

  Raw data were collected in the form of great artery measurements for all fetuses (Table 

2). As shown in Table 3, there were no differences in the mean sums of the study measurements 

between TOF-PS (n = 64) and controls at the valvar or proximal great artery level. The mean 

sums were significantly lower in TOF-PA (n = 36) compared to controls for the diameters, 

circumferences, and cross-sectional areas at the valvar level, and the mean sums of the diameters 

and circumferences at the proximal great artery level. There was no difference in the mean sums 

of the cross-sectional areas at the proximal great artery level. The analysis for the full TOF 

cohort (n = 100) mirrored the findings of the TOF-PA cohort.  

The Ao:PA in fetuses with TOF did not increase with increasing gestational age, with a 

Pearson correlation coefficient r of 0.08 (Figure 2A). Likewise, the ascending aorta to main 

pulmonary artery ratio in fetuses with TOF did not increase, with a Pearson correlation 

coefficient r of -0.06 (Figure 2B). Those with no pulmonary valve tissue (pulmonary valve = 0 
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cm) and no main pulmonary artery segment (main pulmonary artery = 0 cm) were excluded from 

ratio calculations, to avoid the use of a denominator of zero.  

 

Discussion 

This study represents one of the largest single-center cohorts of fetal TOF to date32. Our 

study sought to investigate a potential developmental etiology of aortic dilation in TOF and has 

three notable findings. There were no significant differences in the sums of the great artery 

dimensions (diameters, circumferences, and cross-sectional areas) between TOF-PS fetuses and 

gestational age-matched controls at the valvar or great artery level. Throughout the observed 

period of gestation, the Ao:PA at both measurement levels did not change. Lastly, when 

evaluating fetuses with TOF-PA as a unique entity, the great artery study parameters were 

significantly smaller than either TOF-PS or normal matched controls. 

 Although aortic dilation is well-described in TOF, its degree of progression and risk of 

aortic dissection are less well understood, with mixed data on progressive aortic changes after 

initial repair1,33–36. Overall, in large population-based studies, the risk of aortic dissection in 

conotruncal defects including TOF is exceedingly rare37,38. While catastrophic dissection in TOF 

is described in case reports and must be taken seriously to enable prevention, a better 

understanding of the etiology of aortic dilation in TOF would be helpful to explain the 

discrepancy in dissection rates from classic aortopathy syndromes, as well as to inform 

management decisions regarding the need for prophylactic surgical repair. Although this has not 

been previously investigated in a TOF cohort, perhaps the closest parallel theories that have been 

formally researched are in hypoplastic left heart syndrome, a lesion in which there are also two 

contrasting theories of underlying pathogenesis. Some animal studies have shown that the 
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intentional reduction of flow across the mitral and aortic valve in fetal life can lead to the 

development of HLHS18–20. However, others have shown that there can be clinically significant 

left ventricular hypoplasia without associated valvar stenosis, more suggestive of a primary 

disturbance of cardiomyocytes mirroring a cardiomyopathy syndrome21–23.  Similar to the 

argument made for understanding HLHS pathology, a stronger grasp of the etiologies of aortic 

dilation in TOF could better guide future investigations. To begin to understand potential 

contributors to aortic dilation in TOF specifically, we chose to use the sum of great artery 

dimensions, which is a novel method of investigating the etiology of aortic dilation in TOF. This 

design stems from the importance of the embryologic truncus arteriosus, which serves as the 

precursor to both the aorta and pulmonary artery (Figure 1A). To our knowledge, ours is the first 

human fetal study investigating the Ao:PA as an indicator of the septation patterns of the truncus 

arteriosus in TOF development. Interestingly, we found no significant differences in great artery 

dimension sums between TOF-PS and controls. While a flow-mediated mechanism would 

produce different dimension sums that vary by individual flow ratio (Figure 1B), our findings 

prompt the question of whether unequal truncal division in TOF may be a determinant of aortic 

dilation. Given this question, there remains a need for more detailed cellular analysis which 

could ultimately impact evidence-based guidelines on the appropriate frequency of monitoring 

aortic dimensions and thresholds for intervention in this cohort.  

 An Ao:PA greater than one is associated with TOF at any stage, but has not been 

previously assessed throughout gestation in such a large cohort. The general finding of enlarged 

aortic root dimensions compared to normal has long been an early marker for fetal diagnosis of 

TOF5,39. More specifically, an Ao:PA greater than one is frequently used for diagnosis of 

conotruncal defects6,40. Our study shows a stable Ao:PA at two defined levels (valvar and above) 
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throughout gestation. If aortic dilation in TOF were purely flow mediated, we would expect that 

longer exposure to increased flow throughout gestation would subsequently increase the Ao:PA 

over time. The results of our study also suggest that if abnormal truncal septation plays a 

potential role in aortic size in TOF, an Ao:PA ratio greater than one should be apparent from 

quite early in gestation (theoretically, as soon as conotruncal division occurs). This second 

important finding again argues against the predominantly accepted flow-mediated mechanism. 

 As we know, TOF-PA represents the most severe form of TOF. Though the typical 

incidence of pulmonary atresia in TOF is 10-20%, as a large referral center for TOF-PA, our 

sample was skewed toward fetuses with pulmonary atresia29,30. Given this atypical distribution, 

we ultimately opted to analyze TOF in three different cohorts, as described above. Somewhat 

surprisingly, when including TOF-PA patients in our analysis, we found that the sums of the 

great artery dimensions were significantly lower than in TOF-PS fetuses and in matched 

controls. This was true for all parameters, with the exception of the sum of the cross-sectional 

areas (at the ascending aorta and main pulmonary artery level only). This unexpected finding in 

one parameter may be due to differences in severity of hypoplasia in the pulmonary valve as 

opposed to the main pulmonary artery, but warrants further consideration. In regards to the 

general fetal development of great arteries, it is well established that cardiac neural crest cells 

play an essential role in the normal development of the embryologic truncus arteriosus and its 

septation into the aorta and pulmonary artery. Animal models have shown that neural crest cell 

ablation and thus interruption of associated signaling during development leads to a broad 

spectrum of outflow tract abnormalities such as TOF41–43. The smaller dimensions seen in TOF-

PA as compared to TOF-PS and normal controls is a new finding and perhaps represents a 

different underlying pathology altogether. Though we did not assay neural crest cell numbers in 
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this study, one might theorize an underlying deficiency in the initial neural crest cell population 

that composes the common truncus in TOF-PA. If so, the common truncus may never grow to 

the same initial dimensions in a pulmonary atresia cohort. Since this remains theoretical, more 

targeted investigations are needed to better understand the molecular genetics of pulmonary 

atresia. However, our findings do prompt the question of whether TOF-PA may be a unique 

entity with a different developmental pattern from TOF with some component of antegrade flow. 

 There are several limitations to our study, including that it is a retrospective analysis from 

a single-center institution. A number of fetal studies were excluded due to poor image quality or 

lack of available postnatal imaging to confirm diagnosis. Standards of fetal biometry 

characterization also changed over the course of our study period, and data were not always 

available in a consistent manner from year-to-year. As a result, prior to 2016, gestational age is 

based on reported dates as opposed to those after 2016 which were calculated primarily on 

biometry; there can be significant differences between these methods of estimating age. Based on 

the capabilities of fetal echocardiogram, it is important to note that we were only able to assess 

data past approximately 18 weeks of gestation and cannot comment on changes in great artery 

size or ratio in earlier stages of embryologic development. In the absence of reviewing serial 

fetal echocardiograms for all cases in the cohort, we were also unable to specifically assess the 

progression of great artery sizes and ratios within each individual fetus. Other than 

differentiating between fetuses with and without pulmonary atresia, we did not evaluate other 

factors that may impact TOF physiology and variability of aortic dilation, such as streaming 

tendencies, degree of aortic override, or genetic conditions. Lastly, we did not evaluate post-natal 

outcomes or ongoing changes in great artery size in response to interventions on the right 

ventricular outflow tract. Several of the above limitations could be improved upon or further 
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investigated in future versions of this study, perhaps involving serial non-invasive imaging and 

histology to confirm our suggested hypotheses (particularly in the postnatal period). 

In conclusion, aortic dilation in TOF is well-described, but its etiology remains poorly 

understood with a prevailing theory of flow-mediated growth.  We used a novel methodology to 

assess sums of great artery dimensions in utero, and found no significant differences in the sums 

of great artery dimensions between TOF-PS and matched controls. The Ao:PA at multiple levels 

also did not change throughout gestation. These findings suggest there may be a developmental 

component of aortic dilation in TOF, and this theory warrants further investigation. 
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A. B.  

Figure 1. A) A schematic in which a common truncus arteriosus divides equally into the 

pulmonary artery and aorta in a normal fetus, and unequally in a fetus with Tetralogy of Fallot. 

The total cross-sectional area remains the same in both scenarios. B) A schematic depicting the 

expected aortic size in a flow-mediated mechanism of aortic dilation, where Qp represents blood 

flow through the pulmonary artery and Qs represents blood flow through the aorta. The total 

cross-sectional area varies with the Qp to Qs ratio. 
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A.  

B.  

Figure 2. Scatter plots and associated Pearson correlation coefficients for the A) aortic valve to 

pulmonary valve ratio (r = 0.08) and B) ascending aorta to main pulmonary artery ratio (r = 0.06) 

throughout gestation in Tetralogy of Fallot. 
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Table 1: Baseline demographics. 

Variable Tetralogy of Fallot (%) Control (%) 

No. of Studies 100 100 

Fetal Male Sex  56 (56) 52 (52) 

Maternal Race/Ethnicity 
  

    White/Caucasian 49 (49) 32 (32) 

    Asian 25 (25) 23 (23) 

    Hispanic/Latino 25 (25) 40 (40) 

    Hawaiian Native/Pacific Islander 1 (1) 0 (10) 

    Black/African American                   0 (0)                          3 (3) 

    Other/Unknown 0 (0) 2 (2) 

Maternal Age (years) 34 [30, 37]* 33 [28.8, 36]* 

Gestational Age (weeks)         31 [26.5, 34.4]*     31 [26.5, 34.4]* 

 
Table 1 Baseline demographics. Values for categorical variables are reported as number 

(percentage). *For continuous variables, values are reported as median [interquartile range].   
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Table 2: Great artery measurements. 

  Control (n = 100) All TOF (n = 100) TOF-PS (n = 64) TOF-PA (n=36) 
Aortic Valve Size (cm) 0.54 ± 0.13 0.70 ± 0.17 0.66 ± 0.17 0.77 ± 0.15 
Pulmonary Valve Size (cm) 0.68 ± 0.17 0.31 ± 0.21 0.44 ± 0.11 0.07 ± 0.13 
Ascending Aorta Size (cm) 0.59 ± 0.12 0.77 ± 0.19 0.71 ± 0.18 0.87 ± 0.16 
Main PA Size (cm) 0.71 ± 0.18 0.40 ± 0.20 0.47 ± 0.15 0.23 ± 0.19 

     
Table 2 Great artery measurements. Values are reported as mean ± standard deviation.  
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Table 3: Sums of great artery parameters.  

Tetralogy of Fallot with Pulmonary Stenosis (n=64)      
    

Outcome Control (Mean ± SD) TOF -PS (Mean ± SD) P-Value 
Aortic Valve/Pulmonary Valve    

Sum of Diameters (cm) 1.17 ± 0.28 1.09 ± 0.26 0.11 
Sum of Circumferences (cm) 3.68 ± 0.87 3.43 ± 0.82 0.11 

Sum of Cross-Sectional Areas (cm2) 0.57 ± 0.25 0.52 ± 0.23 0.20 
    

Ascending Aorta/Main PA    
Sum of Diameters (cm) 1.24 ± 0.29 1.19 ± 0.30 0.30 

Sum of Circumferences (cm) 3.91 ± 0.90 3.74 ± 0.95 0.30 
Sum of Cross-Sectional Areas (cm2) 0.64 ± 0.28 0.62 ± 0.29 0.60 

    
Tetralogy of Fallot with Pulmonary Atresia (n=36)    
    

Outcome Control (Mean ± SD) TOF -PA (Mean ± SD) P-Value 
Aortic Valve/Pulmonary Valve    

Sum of Diameters (cm) 1.36 ± 0.28 0.84 ± 0.19 < 0.01* 
Sum of Circumferences (cm) 4.27 ± 0.87 2.64 ± 0.61 < 0.01* 

Sum of Cross-Sectional Areas (cm2) 0.76 ± 0.29 0.50 ± 0.18 < 0.01* 

    
Ascending Aorta/Main PA    

Sum of Diameters (cm) 1.39 ± 0.27 1.10 ± 0.26 < 0.01* 
Sum of Circumferences (cm) 4.28 ± 0.86 3.45 ± 0.82 < 0.01* 

Sum of Cross-Sectional Areas (cm2) 0.80 ± 0.30 0.68 ± 0.23 0.08 
    

Tetralogy of Fallot with Pulmonary Stenosis or Pulmonary Atresia (n=100)  
    

Outcome Control (Mean ± SD) All TOF (Mean ± SD) P-Value 

    
Aortic Valve/Pulmonary Valve    

Sum of Diameters (cm) 1.24 ± 0.29 1.01 ± 0.27 < 0.01* 
Sum of Circumferences (cm) 3.88 ± 0.91 3.17 ± 0.84 < 0.01* 

Sum of Cross-Sectional Areas (cm2) 0.64 ± 0.28 0.51 ± 0.21 < 0.01* 
    

Ascending Aorta/Main PA    
Sum of Diameters (cm) 1.29 ± 0.29 1.16 ± 0.29 < 0.01* 

Sum of Circumferences (cm) 4.05 ± 0.90 3.65 ± 0.92 < 0.01* 
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Sum of Cross-Sectional Areas (cm2) 0.70 ± 0.29 0.64 ± 0.28 0.17 

    
Table 3 Sums of great artery parameters. Values are reported as mean ± standard deviation. A p-

value of < 0.05 was considered statistically significant to reject the null hypothesis. 
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