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14 Abstract
15 The medical imaging community has embraced Machine Learning (ML) as 

16 evidenced by the rapid increase in the number of ML models being developed, but 

17 validating and deploying these models in the clinic remains a challenge. The 

18 engineering involved in integrating and assessing the efficacy of ML models within the 

19 clinical workflow is complex. This paper presents a general-purpose, end-to-end, 

20 clinically integrated ML model deployment and validation system implemented at 

21 UCSF. Engineering and usability challenges and results from 3 use cases are 

22 presented.

23 A generalized validation system based on free, open-source software was 

24 implemented, connecting clinical imaging modalities, the Picture Archiving and 

25 Communication System (PACS), and an ML inference server. ML pipelines were 

26 implemented in NVIDIA’s Clara Deploy framework with results and clinician feedback 

27 stored in a customized XNAT instance, linked within PACS. Prospective clinical 

28 validation studies of 3 ML models were conducted, with data routed from multiple 

29 clinical imaging modalities and PACS. Completed validation studies provided expert 

30 clinical feedback on model performance and usability, plus system reliability and 

31 performance metrics.

32 Clinical validation of ML models entails assessing model performance, impact on 

33 clinical infrastructure, robustness, and usability. Study results must be easily 

34 accessible to participating clinicians but remain outside the clinical record. Building a 

35 system that generalizes and scales across multiple ML models takes the concerted 
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36 effort of software engineers, clinicians, data scientists, and system administrators, and 

37 benefits from the use of modular open-source software. The present work provides a 

38 template for institutions looking to translate and clinically validate ML models in the 

39 clinic, together with required resources and expected challenges.

40 Author summary
41 Academic medical centers gather and store vast quantities of digital data, and with 

42 the increase in accessibility of Machine Learning (ML) techniques, there has been an 

43 explosion of ML model development in the medical imaging community. Most of this 

44 work remains in research, though, and connecting ML models to the clinic for testing 

45 on live patient data and integration into the clinical workflow remains a challenge and 

46 impedes clinical impact. We present a general-purpose system, implemented and 

47 deployed at UCSF, for in-clinic validation of ML models and their incorporation into 

48 patient care. This work, based on free and open-source software packages, can serve 

49 as a template for other institutions looking to solve ML’s “last mile” problem and move 

50 their models out of research and into the clinic.

51 Introduction
52 The medical imaging community is embracing Machine Learning (ML) and Artificial 

53 Intelligence (AI) to develop novel predictive models. These models show promise, and 

54 have the potential to transform radiology practice and patient care, in areas ranging 

55 from data acquisition, reconstruction, and quantification, to diagnosis, treatment 
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56 response, and clinical workflow efficiency.[1] While the foundation of this work is model 

57 development using retrospectively acquired datasets[2], translating AI models from 

58 research to the clinic for event-driven, prospective validation is a critical step towards 

59 model deployment for routine use in clinical care. Prospective model validation within 

60 the clinical workflow not only provides an opportunity to capture expert clinical 

61 feedback about a model’s performance, but is also critical for assessing usability, 

62 interpretability, and effectiveness of results, and technical issues related to integration 

63 with clinical information systems. Moving ML models from “proof-of-concept” to 

64 “production” is the critical next-step for medical imaging.[3]

65 The infrastructure and software systems required to clinically integrate models for 

66 validation are extensive and can pose major hurdles to ultimately realizing the clinical 

67 impact of AI in medicine.[4] Solutions range from commercial products to custom in-

68 house applications[5–8], and offer pros and cons for flexibility, engineering effort, cost, 

69 interoperability with clinical systems, support, and usability. The contribution of this 

70 paper is a description of a general-purpose end-to-end ML model validation and 

71 deployment framework, based on NVIDIA’s Clara Medical Imaging[9] software package 

72 and the XNAT[10] imaging study management application, that has been developed 

73 and deployed at UCSF within The Center for Intelligent Imaging[11] (ci2). The present 

74 implementation is built on free, open-source software packages and represents a 

75 template for other sites wishing to translate and deploy clinically integrated ML models. 

76 The overall system architecture is presented together with the benefits and challenges 

77 associated with this design, based on experience implementing 3 separate model 
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78 validation studies, each representing different but commonly occurring clinical use 

79 cases in radiology AI.

80 Materials and methods

81 Data flow
82 Fig 1 details the end-to-end AI inference system and networks presented in this 

83 work. Briefly, DICOM[12] images are sent from scanning modalities at time of 

84 acquisition to a DICOM router. The router directs images to the Picture Archiving and 

85 Communication System (PACS)[13] and to specific inference services hosted on a 

86 server running NVIDIA Clara Deploy[14]. Results are exported to an XNAT instance 

87 running on the same host. Clinicians access the results from a PACS workstation or 

88 other UCSF computer by logging into the XNAT web application. Custom buttons in 

89 the Visage[15] client running on PACS workstations link directly to relevant results in 

90 XNAT, where reviewer feedback is captured for use in assessing model performance or 

91 for retraining (Fig 2).

92

93 Fig 1: High-level system architecture and data-flow diagram of clinically integrated 

94 inference validation service. 

95 Fig 2: Workflow for accessing validation studies from the Visage clinical PACS viewer. 

96 From top left, clockwise: 1) Custom buttons in Visage link current study to ML results 

97 and/or validation study assessment in XNAT. 2) AI Hip Fracture Detection results and 
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98 assessment, accessed via Visage link. 3) AI segmentation of the liver (left and right 

99 lobes and vessels) for the Liver Transplant Segmentation validation study, displayed in 

100 XNAT’s OHIF viewer, via Visage link.

101

102 Image Routing and Ingestion
103 All DICOM images are sent from clinical scanning modalities to a DICOM router 

104 (Compass[16] from Laurel Bridge) that is configured with rules for directing data to 

105 various endpoints, including the clinical PACS and the Clara Deploy inference service. 

106 Compass’ routing rules are a set of user-defined mappings based on DICOM tags in 

107 the data. Three rules, corresponding to three proof-of-concept applications, route 

108 images to AI inference pipelines (Table 1). Additionally, the inference pipelines are set 

109 up as export destinations in the clinical PACS, allowing clinicians to manually transmit 

110 images to specific pipelines on-demand. All images are transmitted via DICOM 

111 communication protocols.

112 Table 1: Compass routing rules for the 3 AI inference pipelines described in this work.

Clara Pipeline 
Destination

Called AE 
Title

DICOM 
Tag Name

DICOM Tag 
Group/Elem
ent

DICOM Tag Value

SOP Class 
UID  

(0008,0016) MR Image StorageBrain Tumor 
Segmentation

CI2_CD_BTS

Study 
Description

(0008,1030) “BRAIN*NAV”
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Station 
Name

(0008,1010) A set of pilot scanners

SOP Class 
UID 

(0008,0016) CT Image Storage

Study 
Description

(0008,1030) “ABDOMEN FOR 
LIVER DONOR WITH 
CONTRAST”

Liver 
Transplant 
Segmentation

CI2_CD_LDN

Station 
Name

(0008,1010) A set of pilot scanners

SOP Class 
UID

(0008,0016) CR Image Storage

Study 
Description

(0008,1030) “PELVIS”

Hip Fracture 
Detection

CI2_CD_HIP_
FRAC

Station 
Name

(0008,1010) A set of pilot scanners

113

114 AI inference servers
115 The system is comprised of both production and development inference servers 

116 (Fig 3). These are virtual machines (VMs), running on top of VMware’s vSphere[17] 

117 server virtualization software. The servers run Ubuntu 18.04[18], and each is assigned a 

118 dedicated NVIDIA T4–16c GPU, using NVIDIA Virtual GPU Software’s GPU Pass-

119 Through mode[19]. Table 2 summarizes the server infrastructure.

120 Fig 3: Inference VM internal architecture diagram.

121 Table 2: Inference infrastructure configuration

Physical Server Cisco UCS C240-M5s
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2 x NVIDIA T4 GPUs

NVIDIA GRID software version 11.1 (installed on ESXi host)

8 vCPUs (Intel Xeon Platinum 8168 CPU @ 2.70GHz)

32G RAM (reserved)

PCI Device: NVIDIA GRID vGPU

Virtual Machines

GPU Profile: grid_t4–16c

122

123 AI inference framework
124 The AI inference pipelines running on these VM’s are controlled by and developed 

125 in NVIDIA’s Clara Medical Imaging application framework. Each VM runs Clara Deploy, 

126 a container-based framework for deploying AI workflows. The framework allows 

127 developers to build machine learning pipelines that run inference on NVIDIA GPUs, and 

128 it supports end-to-end services that include: DICOM import/export, user-extensible 

129 pipeline and GPU management, running multiple AI models on GPUs, and interactive 

130 image rendering.

131 Pipelines and services are run in Docker[20] containers and deployed using 

132 Kubernetes[21]. AI model inference is run on GPUs using NVIDIA’s Triton Inference 

133 Server[22]. Pipelines are registered to specific DICOM AE Titles, and when the Clara 

134 DICOM Adapter receives a set of images, it looks at the called AE Title and starts 

135 processing the images with the associated pipeline.

136 Delivery of results
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137 Inference pipelines export imaging results (e.g., spatial segmentations) as well as 

138 scalar classifications and derived metrics to an instance of XNAT, an imaging 

139 informatics and study management platform. XNAT was chosen as the mechanism to 

140 store and display inference results because of its a) ability to store both imaging and 

141 derived scalar data together in one application, b) extensibility, which allows 

142 developers to define custom schemas and functionality via its plugin architecture, c) 

143 built-in DICOM support, d) security and user permissions model, e) REST API[23], f) 

144 support for the OHIF image viewer[24], and g) customizable web-based user interface, 

145 which can be tailored to meet the data visualization, feedback capture, and workflow 

146 requirements of each inference pipeline.

147 The XNAT application and its Postgres[25] database are each run inside Docker 

148 containers, and HTTPS communication is proxied through an NGINX[26] container. 

149 XNAT user accounts and authentication are integrated with UCSF’s Active Directory 

150 Service[27], via the LDAP[28] protocol.

151 Inference pipelines
152 AI inference pipelines need to perform a consistent set of tasks. The first step often 

153 involves parsing an imaging exam to find the relevant input series. Next, images 

154 typically require preprocessing, such as intensity normalization, cropping, resampling, 

155 and/or registration. Following inference, additional post-processing operations may be 

156 required, for example computing derived metrics such as segmentation volumes. 

157 Finally, results must be exported to a data management system such as XNAT or a 

158 PACS. In Clara Deploy, each of these tasks are implemented as independent software 
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159 units, called “operators". Pipelines are composed of series of chained operators, each 

160 running as a Docker container. Each operator receives data from its preceding 

161 operator, via shared data mounts, and performs one processing task before passing 

162 output to the next operator. This architecture allows for the reuse of general-purpose 

163 operators and extensibility of other algorithm modules for new pipelines. Fig 4 

164 illustrates a typical image segmentation pipeline archetype.

165

166 Fig 4: Anatomy of an ML inference pipeline. Each box represents a pipeline operator 

167 executing a Docker container, managed by Clara Deploy.

168

169 NVIDIA Clara Deploy operators
170 NVIDIA provides a library[29] of Clara Deploy operators as Docker images that can 

171 be used to compose pipelines, including operators for DICOM reading/writing, exam 

172 parsing, series selection, and deployment of Clara Train developed AI models. NVIDIA 

173 also provides a base Docker image which can be used to develop custom operators 

174 for additional functionality and integration of models developed outside of the Clara 

175 Train framework. The pipelines in this work use a mixture of NVIDIA’s standard Clara 

176 Deploy operators, modified operators that extend standard Clara Deploy operators, 

177 and fully in-house developed operators (Table 3).

178 Table 3: List of Clara Deploy pipeline operators used, with estimate of software 

179 engineering time necessary to develop similar functionality.
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Operator Name Purpose Type Effort

Clara DICOM 
Reader

Ingests a DICOM series and converts 
to MHD[30]/NIfTI[31]

Included

Clara Deploy 
DICOM Parser

Ingests a DICOM exam and parses 
DICOM metadata for use with the 
Series Selector

Included

Clara Deploy Base 
Inference V2

Performs AI model inference with 
Clara Train developed models

Included

Clara Register 
Results

Used to export results to DICOM 
receivers

Included

Clara DICOM Writer Writes AI model results into DICOM 
format; modified to allow for custom 
DICOM tag values

Included

Clara Deploy 
DICOM Parser

Modified to add in additional DICOM 
tags to the parsed metadata, to 
parse/convert x-ray exams with 
multiple instances per series, and to 
continue converting series in an exam 
if there is a failure converting a series 
with unexpected DICOM attributes

Modified ~1 day

Clara Deploy Series 
Selector

Modified to add in regular expression 
parsing, to move selected series to 
output directories, and provide the 
option to select individual x-rays on 
an instance (non-series) level

Modified ~1 day

Clara Deploy 
DICOM 
Segmentation 
Writer

Developed in parallel with NVIDIA, and 
modified with the ability to customize 
DICOM tag values

Modified ~1 week

DICOM RTSTRUCT 
Writer

Modified to handle image ordering 
and orientation overlay issues, and 
add the ability to customize DICOM 
tag values

Modified ~1 week
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Hip Fracture 
Detection Inference 
Operator

Used to deploy a non-Clara Train 
image classification model 
(TensorFlow[32] Object Detection[33] 
based)

In-House ~1 week

Clara Deploy XNAT 
ROI Collection 
Exporter

Used to export segmentation results 
to XNAT, and create segmentation 
feedback entries in XNAT

In-House ~1 week

Clara Deploy 
Volume Calculator

Used to calculate segmentation 
volumes and export them to XNAT.

In-House ~1 week

180 Efforts listed are based on estimates for an experienced software developer familiar 

181 with python, medical imaging APIs and containerization technologies, and will vary 

182 based on skill level and experience with requirements, underlying technologies, and 

183 interfaces.

184

185 Modified Clara Deploy operators are derived from reference Clara Deploy 

186 operators, where the application source code has been modified to fit specific pipeline 

187 needs. Modifications were necessary, for example to handle data in unexpected 

188 formats, to support pipeline specific selection of a subset of exam data relevant for 

189 inference, or to read/write DICOM metadata needed for clinical integration.

190 Entirely new operators, written in Python[34], are developed to provide functionality 

191 not present in Clara or integrate non-Clara Train based models. The application code is 

192 built on top of a base Docker image containing the Clara libraries necessary to 

193 integrate with the Clara Deploy framework and other pipeline operators.

194 Management of results
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195 Inference results during validation are stored separately from the clinical record, 

196 using XNAT, which provides a Java[35] plugin architecture[36] to support custom data 

197 schemas and extend functionality. Custom plugins were built for each pipeline to store 

198 non-DICOM output (such as volumetrics and classification results) with the 

199 corresponding images, customize how results are displayed to clinicians, and define 

200 feedback forms to assess model performance and clinical efficacy. The AI model name 

201 and version used to generate the results are stored with all results. Table 4 lists the 

202 plugins used in the present system and indicates which were developed in-house.

203 Table 4: List of XNAT plugins, with estimate of software engineering time necessary to 

204 develop similar functionality.

Plugin Name Purpose Development Effort

XNAT-OHIF 
Viewer Plugin

DICOM image viewer, with 
segmentation and ROI contour 
support[37]

XNAT Team

XNAT LDAP 
Authentication 
Provider Plugin

Integrates XNAT user accounts with 
UCSF’s Active Directory system for 
authentication[38]

XNAT Team

XNAT Container 
Service

Controls processing jobs using 
Docker containers on data stored in 
XNAT[39]

XNAT Team

Hip Fracture 
Datatype

Stores inference results and 
feedback

In-House ~1 week

Brain Tumor 
Segmentation 
Datatype

Stores inference results and 
feedback

In-House ~1 week
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Liver Donor 
Segmentation 
Datatype

Stores inference results and 
feedback

In-House ~1 week

ROI Volume 
Datatype

Stores segmentation volume 
measurements, linked to the 
segmentation, model name, and 
model version

In-House ~ 1 day

DICOM Import 
Identifier

By default, XNAT pulls subject and 
session information from the DICOM 
tags PatientName and PatientID 
when storing images; To integrate 
with clinical data, this plugin sets up 
the DICOM SCP to use the DICOM 
PatientID and AccessionNumber 
tags to define subject/session

In-House ~1 day

205 Effort will depend on skill level and experience with underlying technologies and 

206 interfaces.

207

208 A sample XNAT results page from the Brain Tumor Segmentation pipeline 

209 (described below) is shown in Fig 5. When a clinician views this page, they can see: the 

210 calculated tumor volumes for the patient’s current and prior exams (in table and graph 

211 format); the percent change of each tumor volume, relative to a baseline, and whether 

212 that percent change is above a threshold for tumor progression; the segmentation 

213 overlaid on top of the source DICOM image; and a feedback form. Clinicians can view 

214 the segmentation results, assess tumor progression, and leave feedback on model 

215 performance. They can also edit the model's segmentation and save a corrected copy 

216 back into XNAT. The volume of an edited segmentation is automatically calculated, via 

217 XNAT’s container service[39] and an in-house developed volume calculation container, 
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218 and added back into the displayed tumor volume table and plot (without overwriting 

219 the original inference results).

220

221 Fig 5: Brain Tumor ML Segmentation and progression display with feedback capture 

222 webpage in XNAT. Contains form for assessing model results, interactive plot and table 

223 showing the patient’s segmentation volumetrics at each exam time point (top), and 

224 embedded OHIF viewer with editable lesion segmentation (bottom).

225

226 Pipeline development and deployment
227 Operators, pipelines, and XNAT plugins are developed and initially deployed on a 

228 clinical VM dedicated to testing. This test VM runs its own instances of Clara Deploy 

229 and XNAT. Pipeline definitions and XNAT plugins/configurations are pulled from an on-

230 premises Gitlab[40] instance and deployed. Kubernetes and the Docker daemon are 

231 configured to pull Docker images from the Gitlab container registry. Test data cohorts 

232 are manually sent through pipelines via DICOM transfers from PACS, and clinicians 

233 review results in XNAT for feedback on usability, design, and the metrics that should 

234 be captured about AI model performance. Once it’s verified that a pipeline can 

235 successfully ingest a clinical exam, select the correct image/s for processing, and 

236 output the expected inference results, the inference pipeline is deployed on the 

237 production VM in the same manner.
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238 As these inference services are integrated with clinical resources, they reside on 

239 infrastructure maintained by Radiology Clinical IT. This provides a high level of 

240 monitoring and service support, which is necessary for the service up-time required by 

241 clinicians participating in validation studies, including after-hours. This also provides an 

242 added layer of security, as the inference VM’s are isolated behind clinical firewalls. As a 

243 result, only authorized personnel have access to these systems for deployment and 

244 operations.

245 Proof of concept validation projects
246 Three AI models, described below, were chosen to pilot clinical pipeline integration. 

247 Two of the models were developed in Clara Train, using built-in model architectures, 

248 and trained on imaging data acquired at UCSF. The third model was trained and 

249 developed outside of the Clara Train framework, utilizing TensorFlow’s Object 

250 Detection API[33]. The 3 clinical validation studies involved clinicians from different 

251 departments within UCSF (Radiology and Biomedical Imaging, Surgery, and 

252 Emergency Departments), and received institutional review board approvals with 

253 consent waivers. The purpose of these proof-of-concept (POC) projects in the present 

254 work is to assess model deployment and integration. Model development and training 

255 is beyond the present scope and details are provided in references below. 

256 Brain Tumor Segmentation
257 A Clara Train 3D U-Net[41] was trained to segment non-enhancing lesions from 3D 

258 post-surgical MRIs of patients with low grade gliomas (LGG). Segmented volumes are 

259 used to compute tumor volume for the current exam and priors. This was incorporated 
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260 into a deployed pipeline that aimed at detecting volumetric changes from baseline to 

261 monitor for disease progression. A clinical validation study was run to assess whether 

262 AI-based segmentation could be incorporated into patient care to detect non-

263 enhancing glioma progression (Fig 5).[42]

264 Liver Transplant Segmentation
265 The same Clara Train 3D U-Net model architecture was used to develop a liver 

266 segmentation model for use in surgical planning for transplants.[43] A pipeline was 

267 developed to automatically segment both the left and right liver lobes as well as 

268 vessels from CT images and then calculate volumetrics (Fig 2). Surgeons use the 

269 segmentations and the calculated volumes to determine transplant viability and plan 

270 the surgical approach. This project captures timing metrics, of both segmentation 

271 pipeline execution and review of the results, to compare against current manual and 

272 semi-automated segmentation workflows.

273 Hip Fracture Detection
274 A third pipeline utilizes an object detection and classification model to localize the 

275 left and right hip in x-ray images, and classify each as normal, containing a fracture, or 

276 as having surgically implanted hardware.[44] This model was developed by UCSF’s 

277 Musculoskeletal Quantitative Imaging Research group[45], outside of Clara Train, using 

278 the TensorFlow Object Detection model framework. Compass is configured to route 

279 pelvis exams from 2 x-ray scanners in the UCSF Emergency Department to the Clara 

280 Deploy inference server (Table 1). The deployment is being assessed for its ability to 
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281 improve emergency room outcomes by improving hip fracture diagnosis and reducing 

282 a patient’s time to treatment (Fig 2).

283 Results
284 The system detailed above was used to deploy the 3 POC projects to support 

285 validation studies aimed at characterizing all aspects of pipeline development and 

286 integration from data flow to system performance, extensibility, engineering robustness 

287 and usability. The present section focuses on results related to characterizing the 

288 system’s viability as a general-purpose platform for supporting clinical validation of AI 

289 models for a variety of representative workflows, workloads and use cases. Specific 

290 details pertinent to the clinical use, model performance, and clinical impact of each 

291 model is beyond the scope of this paper and will be presented separately.

292 The Brain Tumor Segmentation (BTS) pipeline initially received 30-40 exams per 

293 week via automatic Compass routing, from 2 clinical MRI scanners (Table 1), for 

294 inference. The imaging protocols that incorporate the sequence used to train the model 

295 last around 40 minutes, and images were routed to our Clara VM over that entire 

296 timeframe, with a typical exam containing about 1GB of data. The BTS pipeline, which 

297 segments LGG tumor and calculates the segmentation volume, takes on average 2.9 

298 minutes to execute per exam, including the time to transfer the results to XNAT, with 

299 90% of cases processing in under 4.5 minutes. This execution time is not only 

300 sufficient for processing automatically routed cases, but also met the requirements of 

301 radiologists participating in the model validation study, who requested a <10-minute 
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302 turnaround time per exam when manually transmitting images from PACS. A 

303 longitudinal analysis to assess tumor progression for a patient over 6 timepoints takes 

304 <18 minutes to process. A clinical neuroradiologist reviewer, logged-in to a PACS 

305 client, was able to search for, transmit, and receive results for 65 current and 

306 retrospective MRI exams, across 10 LGG patients, in a 3.1-hour window. The 

307 segmentation pipeline completed successfully for all cases. Results and findings from 

308 this validation study were reviewed (see Discussion: Governance and Validation 

309 Criteria), and supported adoption of the pipeline for routine clinical use at UCSF.

310 The Liver Transplant Segmentation (LTS) pipelines received 3-5 exams per week via 

311 automatic Compass routing. This study involved blind reading of 3 different 

312 segmentation results from the same exam: expert human reviewer, novice human 

313 reviewer and machine segmentation. Human reviewers require 1-2 hours to produce 

314 the segmentation, whereas AI results can be delivered in less than 10 minutes. Each 

315 segmentation is identified with a unique salted hash that is inserted into the series 

316 description of the DICOM Segmentation Object when it is written. This identifier is than 

317 stored as a text file which is passed to the ROI Collection Exporter and the Volume 

318 Calculator (Table 3) to ensure that the source of the segmentation is retained but 

319 appropriately obscured from the reader. Three different clinicians then reviewed the 

320 segmentation in XNAT via OHIF and provided feedback in forms linked with each 

321 case’s unique hash. Clinicians reported review times of 1-5 minutes per case. 

322 Over 13 weeks, the Hip Fracture Detection (HFD) pipeline processed 200 exams 

323 from 1 emergency department x-ray scanner, sent automatically via Compass routing. 
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324 Exams typically contained five 2D images of 5MB each. The observed transfer time for 

325 a single exam was <1 minute, which defined the patient level time-out for triggering the 

326 pipeline, and the inference pipeline’s average run time was 20 seconds, including 

327 uploading of results to XNAT. The workflow for this pilot study incorporated a “human 

328 in the loop” (HITL) step, where a member of the ci2’s 3DLab[46] assessed the quality 

329 and relevance of each input x-ray image that was processed, before placing the 

330 inference results on the XNAT worklists of the 2 participating clinical readers, who 

331 assessed whether the AI model correctly identified the hip joints in the image and 

332 made their own read on whether each joint contained a fracture, no-fracture, or 

333 hardware. The HITL quality control workflow was implemented in the HFD XNAT plugin 

334 and took the reviewer 1 minute per exam.

335 Discussion
336 Deploying and supporting an ML pipeline in the present framework requires 

337 software development and system engineering on multiple fronts. The model must be 

338 trained, AI inference operator built, and pipeline execution steps designed; pipeline 

339 operators performing additional calculations or data tasks must be built; XNAT plugins 

340 need to be developed to store and display result and capture user feedback; finally, 

341 data ingestion, pipeline execution, and results display must be tested with clinical data, 

342 which will differ from research data in unforeseen ways. Operator and plugin 

343 development efforts are estimated in Tables 3-4, but will vary based on skill level and 

344 experience. Collaboration with the clinical users is critical to define data display and 
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345 data flow requirements. At UCSF, ci2’s Computational Core[47] (i2c2) supports this 

346 effort bridging the gap between scientific research, software engineering and enabling 

347 translation of AI research into the clinic.

348 Pipeline development efforts
349 Deploying the Clara Deploy framework and linking it with imaging sources requires 

350 knowledge of DICOM protocols, tooling, experience with Python application 

351 development and containerization. Development requires familiarity with multiple 

352 imaging data formats, AI development frameworks and communication with web 

353 services via REST API's. The use of XNAT to create interactive data views entails web 

354 development skills and since the framework integrates with clinical systems, 

355 knowledge of security best-practices is critical.

356 Pipeline deployment considerations
357 Clinical Integration of AI pipelines involves collaboration across multiple 

358 organizational units. i2c2 engineers coordinate with: Clinical IT, to configure image 

359 routing and PACS integration; Clinical Infrastructure, which hosts and maintains the 

360 VM's and networking; data scientists and researchers who develop AI models; and 

361 clinicians, to define image routing rules, develop effective visualizations in XNAT, 

362 gather model feedback, and determine how AI results can integrate with already 

363 complex clinical workflows. Models are increasingly incorporating imaging and non-

364 imaging data, e.g., from Electronic Medical Records (EMRs), further increasing the 

365 complexity of the landscape. UCSF’s APeX Enabled Research (AER) group[48] 
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366 provides a support path for SMART-on-FHIR[49] enabled EMR access for translational 

367 work.

368 Deployment framework flexibility
369 Academic medical centers have diverse sets of research groups, spread across 

370 departments, doing ML model development. Groups will have independently 

371 developed unique model training toolsets, using custom software based on a variety of 

372 ML frameworks. A deployment system needs to support integrating models and their 

373 supporting code from outside of its ecosystem. While Clara Deploy supports running 

374 Clara Train developed models by building a configuration file into the base inference 

375 operator, it was also possible to integrate the HFD TensorFlow Object Detection model 

376 into a pipeline by building a custom inference operator with refactored research code 

377 and the Clara APIs. Engineering teams supporting clinical ML deployment need to 

378 encourage scientific research groups to follow software best-practices. Integrating 

379 research ML models into reliable clinical pipelines requires software to be packaged 

380 into documented, reusable libraries.

381 Deployment framework modularity
382 Deploying our first pipeline (BTS) required modifying 3 Clara Deploy operators and 

383 the development of 2 custom operators (see Fig 4 and Table 3). The LDS pipeline was 

384 able to re-use all of those operators, significantly reducing the engineering effort to 

385 deploy. Many pipelines have similar pre- and post-inference needs, and scaling 

386 functionality across use-cases is integral to supporting the deployment of multiple ML 

387 models.
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388 Deployment framework updates and transitions
389 Leveraging established, well-tested and supported third-party software frameworks 

390 for development offers significant advantages for development cost and product 

391 stability; it does, however, pose risks that may include managing changes to APIs or 

392 dependencies losing maintenance support and which would present substantial 

393 implications for project effort and direction. Choosing to work with open-source 

394 software that has strong, communicative leadership is key to mitigating such risks. 

395 Building on open standards and industry protocols[50] ensures code portability, and 

396 communication within a framework’s community will lead to smoother upgrade cycles. 

397 NVIDIA’s Clara project is transitioning[51] into the Medical Open Network for Artificial 

398 Intelligence (MONAI)[52], and though work will be necessary to move from Clara 

399 Deploy to MONAI Deploy, the 2 projects’ open natures and strong communication 

400 within the MONAI Working Group (which includes NVIDIA)[53] promise a minimally 

401 impactful transition.

402 Access
403 As the primary purpose of the clinical PACS or EMR system is to directly support 

404 patient care by providing physicians access to data, clinical IT teams must prioritize 

405 the stability and performance of clinical use cases. Any new system that plugs into 

406 infrastructure critical to patient care is a potential risk, must be robust and not 

407 negatively impact network infrastructure or IT support teams. Clinical integration of a 

408 translational framework may thus require flexibility to adapt to authorized access 

409 methodologies.
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410 Another design consideration during a validation study is balancing the need to 

411 segregate AI validation data from the clinical record while simultaneously providing 

412 seamless access to AI results for clinical readers within their existing workflow. The 

413 present XNAT-based approach to storing AI-derived results is thus designed to 

414 facilitate prospective clinical validation of AI models, by providing clinicians seamless 

415 access to results from a button in the clinical PACS, while validation results and 

416 feedback are stored separately from clinical information systems (Fig 2). A web-based 

417 approach allows clinicians flexibility in how and when they review cases, but does not 

418 necessarily represent a final solution that fits into a clinical workflow.

419 Clinical workflows
420 Radiologists are faced with demanding workloads, and validation workflows must 

421 be designed with efficiency in mind, as every additional mouse-click represents an 

422 obstacle to adoption.[54] Any new information that an AI model provides must yield 

423 clear, concrete improvements to patient care or a clinician's workflow. Ideally, new 

424 information would be integrated into an existing tool; however, radiology workflows are 

425 largely built around commercial applications which may or may not offer endpoints or 

426 APIs for an AI pipeline to interact with. Moreover, even when integration points to 

427 hospital wide applications (PACS, EMR) exist, obtaining access approval for 

428 translational work may entail a lengthy and uncertain approval process. AI results 

429 should be stored in standardized, open formats to allow for flexibility in presentation 

430 method within the clinical workflow.[55]
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431 Governance and validation criteria
432 The decision to use AI results in routine patient care and include them in the clinical 

433 record requires careful consideration and a defined governance plan.[56] Ci2’s Clinical 

434 Deployment committee[57] provides governance over such decisions and reviews all 

435 potential AI applications through a structured cost-benefit analysis process. 

436 Application evaluation considers model accuracy, connectivity, and robustness, and 

437 the potential impacts to operations and workflow. Pipelines must seamlessly deliver 

438 consistently interpretable results within a clinical context. Operational cost, mode of 

439 integration, and the benefit and risk to patients and clinicians for reasons ranging from 

440 potential model bias to implications from erroneous results and physician “automation 

441 complacency”[58] are considered. Ultimately, a pipeline needs to provide clear 

442 improvements over the existing standard-of-care.

443 The current platform provides a streamlined mechanism for gathering the real-world 

444 feasibility and performance metrics necessary for a governance body to assess 

445 whether a given model and implementation is a candidate for routine clinical use.

446 Conclusion
447 Implementing a generalized, extensible, and scalable platform for validating and 

448 deploying AI-based pipelines in the clinic takes time and effort from a dedicated 

449 engineering team, in collaboration with clinical end users capable of providing 

450 guidance on usability and requirements. There is a considerable amount of work in 

451 system design, infrastructure setup, and software engineering to ensure high reliability 
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452 and support for a diverse set of workloads and workflows, but the upfront investment 

453 does return significant value. The server and network architecture put in place will 

454 ultimately support any standards-compliant ML model deployment framework used 

455 down the road, should a software transition become necessary, and once connectivity 

456 with clinical systems is operational the same architecture will support additional 

457 servers and pipelines.

458 Similarly, choosing to use a deployment framework designed to be modular and 

459 built on open-source tooling will have benefits for the future. Clara Deploy’s modularity 

460 has meant that after functionality has been developed for one pipeline, it can be re-

461 used in future workflows, dramatically decreasing the time to deploy new AI models 

462 that share similar pre- and post-processing needs. The ability to access and extend 

463 Clara Deploy operator source code was essential to developing pipelines and 

464 operators that can interact with clinical data and resources that always have edge 

465 cases that differ from what a framework’s developers expect. Building on standard, 

466 open-source software tools also ensures a level of portability should deployment 

467 requirements or frameworks evolve.

468 The inclusion of XNAT to store results external to the clinical record was also key in 

469 developing an AI model validation framework. XNAT is valuable not only as a multi-

470 modal data manager, but also for its extensibility, which allows it to act as a 

471 customizable validation study platform. Having a web frontend to AI results also 

472 enables rapid iteration on interactive UIs for presenting model output and generating 

473 final reports on findings.
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474 While commercial ML model deployment options exist, the choice to build an in-

475 house solution preserves flexibility in data routing, infrastructure, ML model framework 

476 choice, and project-specific workflow, visualization, and validation requirements. This 

477 is particularly important for supporting translational work for a broad range of use-

478 cases being developed in a large research institution. Leveraging robust open-source 

479 components significantly reduces development efforts while providing adaptability and 

480 improving resilience. The process and systems outlined above have been 

481 demonstrated to provide a flexible and dependable ML model deployment platform, 

482 that will scale across pipelines and use-case specific requirements and handle the 

483 deployment process from validation study to integration into the clinical workflow.
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