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Abstract:  15 

Background 16 

The COVID-19 pandemic is the deadliest threat to humankind caused by the SARS-COV-2 17 

virus in recent times. The gold standard for its detection, quantitative Real-Time Polymerase 18 

Chain Reaction (qRT-PCR), has several limitations regarding experimental handling, 19 

expense, and time. While the hematochemical values of routine blood tests have been 20 

reported as a faster and cheaper alternative, the external validity of the model on a diverse 21 

population has yet to be thoroughly investigated. Here we studied the external validity of 22 

machine learning-based prediction scores from hematological parameters recorded in Brazil, 23 

Italy, and Western Europe.  24 

Methods and Findings 25 

The publicly available hematological records (raw sample size (n) = 195554) from hospitals of 26 

three different territories, Brazil, Italy, and Western Europe, were preprocessed to develop the 27 

training, testing, and prediction cohorts for ML models. A total of eight (sub)datasets were 28 

trained on seven different ML classifiers. The XGBoost classifier performed consistently better 29 

on all the datasets producing eight different models. The working models include a set of either 30 

four or fourteen hematological parameters. The internal performances of the XGBoost models 31 

(AUC scores range from 84% to 97%) were superior to the ML models reported in the literature 32 

for a few datasets (AUC scores range from 84% to 87%). The external performance (AUC 33 

score) was 86% when the model was trained and tested on fourteen hematological parameters 34 

obtained from the same country (Brazil) but on independent datasets. However, the external 35 

performances were reduced when tested across the populations; 69% when trained on 36 

datasets from Italy (n=1736) and tested on datasets from Brazil (n=602)) and 65%, when 37 

trained on datasets from Italy and tested on datasets from Western Europe (n=1587)) 38 

respectively.  39 

Conclusion 40 
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For the first time, this report showed that the models trained and tested on the same population 41 

but on separate records produced reasonably accurate results. The study promises the 42 

confidence of these models trained and tested within the same populations and has the 43 

potential application to extend those to other demographic locations. Both four- and fourteen-44 

parameter models are publicly available;  https://covipred.bits-hyderabad.ac.in/home    45 
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Author Summary: 46 

COVID-19 has posed the deadliest threat to the human population in the 21st century. Timely 47 

detection of the disease could save more lives. The RT-PCR test is considered the gold 48 

standard for COVID-19 detection. However, there are several limitations of the technique that 49 

suggests developing an alternate detection protocol that would be efficient, fast, and cheap. 50 

Among several other alternate detection techniques, hematology based Machine-Learning 51 

(ML) prediction is one. All the hematology-based predictions reported so far in the literature 52 

were only internally validated. Considering the need to develop an alternate protocol for rapid, 53 

near-accurate, and cheaper COVID-19 detection techniques, we aim to externally validate the 54 

hematology-based ML prediction. Here external validation indicates use of two independent 55 

datasets for model training and testing, in contrast to internal validation where the same 56 

dataset splits into train and test sets. We have integrated published clinical records from Brazil, 57 

Italy, and West Europe hospitals. Internal ML model performances are superior compared to 58 

those reported in literature. The external model performances were equivalent to the internal 59 

performances when trained and tested on the same population. However, the external 60 

performances were inferior when train and test sets were from different populations. The 61 

results promise the utility of these models on the same populations. However, it also warns to 62 

train the model on one population and test it on another. The outcome of this work has the 63 

potential for an initial screen of COVID-19 based on hematological parameters before qRT-64 

PCR tests.  65 

 66 

 67 

Introduction: 68 

The COVID-19 infection has posed the deadliest threat to the health of the human population 69 

in the 21st century. Likely, the danger is far from over concerning the emerging variants of 70 

COVID-19, such as alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), lambda 71 
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(C.37), and omicron (B.1.1.529) 1, along with other frequently mutating respiratory diseases, 72 

like, influenza virus A (H1N1) 2. Due to the nature of the disease, timely detection of COVID-73 

19 is of utmost importance. Hence, detection techniques play a pivotal role in its diagnosis. 74 

The gold standard of COVID-19 detection is quantitative Real-Time Polymerase-Chain-75 

Reaction (qRT-PCR). This method has several limitations, like manual errors during sample 76 

(nasal and oral swab) collection, operational errors, etc. 3. Moreover, the time required for the 77 

experiment and availability of the detection kits at a mass level becomes difficult in a vast 78 

population with a large number of infections. The test is also costly for low-income groups. An 79 

accurate, rapid, and low-cost prediction strategy would supplement the initial screening, 80 

particularly in a country like India, with the second-largest population in the world. 81 

The most common clinical feature of severe COVID-19 is pneumonia with fever, cough, 82 

fatigue, headache, diarrhea, hypoxia, and dyspnoea. The latest variant, omicron, has some 83 

common symptoms with the earlier SARS-COV-2 strains, although with lesser severity due to 84 

mild infection in the lower respiratory tract and reduced probability of hospitalization1. In the 85 

case of mild COVID-19 infection, either no (asymptotic) or only mild pneumonia is observed. 86 

In moderate infection, dyspnoea, hypoxia, and lung injury may occur. In severe infection, 87 

respiratory failure to multi-organ failure occurs. In brief, severe cases of COVID-19 can lead 88 

to a systemic infection affecting almost all of the major organ systems. As a result, patients of 89 

COVID-19 exhibit a wide range of hematologic abnormalities that changes with disease 90 

progression, severity, and mortality 4. For example, the white blood cells sense and respond 91 

to the microbial threats 5; blood platelet expression and platelet counts are altered 6 7 - platelet 92 

hyperactivity was demonstrated as one of the unique features of COVID-19 infection 8. Hence, 93 

a complete blood count (CBC) could serve as a biomarker for COVID-19. Screening the 94 

COVID-19 infection in terms of CBC has been attempted by various research groups 95 

worldwide, 9 10 11 12 13 14.  96 

Some of these research groups used machine learning (ML) approaches to exploit the CBC 97 

parameters from a specific population for disease prediction; the Area Under Curve (AUC) 98 
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performance ranges from 84% to 87% in those models. So far, no report is available to test 99 

the applicability of the hematology-based ML models across different ethnicity and 100 

populations. The combination of CBC parameters varies with ethnicity. However, some blood 101 

parameters alteration, such as lymphocytopenia15 16 leucopenia, and thrombocytopenia 17 18 102 

19, are common due to COVID-19. In this work, we combined different hematological 103 

parameters from various populations to develop the optimal ML models and tested them on 104 

independent datasets obtained from other populations. Standardization across different ML 105 

algorithms yields eXtreme Gradient Boost (XGBoost) as the best-performing model across the 106 

datasets compared to published literature. For the first time, we report the external validity of 107 

the prediction scores trained, tested, and predicted across the populations. The models 108 

performed the best when trained and tested on the same population but on different records 109 

(datasets).   110 

 111 

Method:  112 

Description of clinical datasets for training, validation, and prediction: 113 

Dataset 1: 114 

Dataset-1 was generated based on anonymized patient data publicly available from Hospital 115 

Israelita Albert Einstein, in São Paulo, Brazil https://www.kaggle.com/einsteindata4u/covid19. 116 

The data were recorded from February 26th, 2020, to March 23rd, 2020. The cases and controls 117 

for this dataset include the patients whose samples were collected to perform the SARS-CoV-118 

2 qRT-PCR and additional laboratory tests during a visit to the hospital.  119 

The initial data set consisted of 558 positive and 5086 negative cases of COVID-19. This 120 

dataset was processed to minimize the null-value columns and eliminate the negative 121 

instances with many null values. The value (xi) in each cell was pre-normalized (at the source) 122 

to a mean value (μ) of zero and a unit standard deviation (σ); this was termed as ‘normalized 123 

count’; xi’ = (xi-μ)/σ. The same normalization scheme has been used throughout the 124 
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subsequent datasets. The columns with null values appearing more than 90% were dropped. 125 

The records (rows) showing positive results were retained by default, and the negative records 126 

were maintained only with more than 10% non-null entries.  This processed dataset, termed 127 

dataset 1, contains thirty-seven features and 2004 records, 558 positives and 1446 negatives 128 

(Table 1). The negative to positive sample size ratio, 2.59, is four times less than that in the 129 

published model (11.51)9. Here ‘features’ refer to x-parameters used to train the model; the 130 

definition excludes the y-parameter, SARS-COV2 results (positive or negative). This definition 131 

is consistently used in the subsequent datasets. These thirty-seven features were categorized 132 

into four classes, namely, i) age, ii) severity of the infection, iii) hematological features, and iv) 133 

co-morbidities (Table S1).  134 

 135 

Table 1: Statistics of the datasets 136 

Dataset No. of 

entries 

(P+N) 

No. 

positive 

cases (P) 

No. of 

negative 

cases (N) 

Default 

scale_poswei

ght (=N/P) 

No. of 

features 

used 

1 (i) 2004 558 1446 2.59 37 

1a  602 83 519 6.25 18 

1b 602 83 519 6.25 14 

1c 602 83 519 6.25 4 

2a (ii) 1388 765 623 0.81 31 

2b 1736 816 920 1.13 4 

3a (iii) 5872 1772 4100 2.31 21 

3b 12105 8926 3176 0.356 14 

I. https://www.kaggle.com/einsteindata4u/covid19 137 

II. https://zenodo.org/record/4081318#.X4RWqdD7TIU 138 

III. https://repositoriodatasharingfapesp.uspdigital.usp.br/ 139 

 140 
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Dataset 1a: A subset of dataset 1 was curated with eighteen features – patient age quantile, 141 

three hospitalization conditions, namely, patients admitted to regular ward, semi-ICU, and 142 

ICU, and fourteen hematological parameters. Co-morbidities were excluded from dataset 1a. 143 

The total number of records was 602, with 83 positives and 519 negatives.  144 

Dataset 1b: A subset of dataset 1 was curated based on hematological features only. Other 145 

parameters, namely, co-morbidities, patient age quantile and patient admission status, were 146 

dropped in this dataset. All features with fewer than 90% of non-null values were dropped. All 147 

the records that have 100% null values were dropped. The preprocessing resulted in a dataset 148 

of fourteen hematological features and 602 records, 83 positives, and 519 negatives. Thus, 149 

the negative-to-positive sample size ratio was 6.25.  150 

Dataset 1c: A third subset of dataset 1 (dataset 1c) was curated from dataset 1b based on 151 

four blood count features (Figure 1) that have shown a higher correlation with the qRT-PCR 152 

results. The number of records, positives, and negatives are identical to dataset 1b. These 153 

four blood count features were also reported as significant for SARS-COV-2 infection in 154 

published literature9. 155 

 156 

Dataset 2: 157 

This dataset was obtained from San Raphael Hospital (OSR), Italy11. In the original OSR 158 

dataset, there were 1736 entries with a total of 72 features, and those included 36 159 

hematological features. The samples were collected from patients admitted to OSR from 160 

February to May 2020. Fifty-two percent of the patients were COVID-19 positive.  161 

  162 

Dataset 2a: These 1736 entries were processed such that all rows (records) with more than 163 

66% null values were dropped. The processed dataset contained 1388 records, 765 positives, 164 

and 623 negatives. This dataset includes 31 features: age, sex, a feature for suspicion 165 

(representing subjective analysis of the patient by a physician), and 28 hematological 166 

parameters (Figure 1). The ratio of negative to positive records was 0.81.  167 
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Dataset 2b: A subset of dataset 2 was curated with only four blood count parameters (similar 168 

to dataset 1c). No columns or rows were dropped here, as there were no rows with less than 169 

66% null values. Dataset 2b has 1736 records, 816 positives, and 920 negatives.  170 

 171 

Dataset 3:  172 

Dataset 3 was obtained from the Covid Data Sharing initiative created by a consortium led by 173 

FAPESP (Sao Paulo Research Foundation) and USP (University 174 

 of Sao Paulo, Brazil). The data originated from three prominent private hospitals in Sao Paulo, 175 

Brazil - Fleury Institute, Sírio-Libanês Hospital, and Albert Einstein Hospital, from November 1st, 176 

2019, to  July 1st, 2020 (https://repositoriodatasharingfapesp.uspdigital.usp.br/). The data was 177 

anonymized from patients tested for COVID-19 (serology or RT-PCR).  178 

The raw data obtained from the data sharing initiative had multiple rows (records) 179 

corresponding to individual patients containing different clinical features (“long-form” of the 180 

dataset). The "long form" of the dataset was converted, using an in-house python code, to the 181 

"wide form," where one row corresponds to all the clinical features of a patient. The "wide 182 

form" of the dataset has 189227 records and 454 features. These 454 features were common, 183 

as there were duplicates in the column headers (due to different reference ranges) for some 184 

features. After deduplication, the feature number was reduced to 104.  185 

Dataset 3a: The non-duplicated features were further filtered by excluding the following 186 

conditions, i) no qRT-PCR results available, ii) all the rows with more than 66% null values, 187 

and iii) the Pearson correlation of that particular feature (for the SARS-COV-2 results) less 188 

than 0.05. A total of twenty-one hematological indices (features) were identified based on the 189 

above cutoff (Figure 1). The final dataset contains 5872 records, 1772 positives, and 4100 190 

negatives. 191 

Dataset 3b: The deduplicated 'wide form' of the data (189227 records and 104 features) were 192 

filtered with the following conditions– a) qRT-PCR results present, b) records with null values 193 
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less than 66%, and c) fourteen hematological parameters present, as in dataset 1b. The total 194 

number of records present in the dataset was 12105 records. 195 

All the processed datasets have a 90:10 split between the training and the test data. 196 

 197 

Description of the clinical dataset for blind prediction: 198 

Western European dataset: 199 

This dataset was obtained from several hospitals in Western Europe (Table S2). The dataset 200 

includes the patients from the first day of hospitalization to nearly five weeks13. This published 201 

data was in the form of twenty separate tables that we merged into a single file comprising 202 

2587 entries and thirty-seven features. According to the source authors13, there are two 203 

stages of the disease, a) early stage, from day zero through three (total of four days), and b) 204 

advanced stage, comprising all the subsequent days. This blind prediction dataset includes 205 

only four hematological parameters consistent with dataset-2b. 206 

 207 

Machine Learning (ML) approaches: 208 

The machine learning (ML) algorithms were implemented in Python (3.7.13) using the 209 

following libraries, Numpy (1.21.6), Pandas (1.3.5), XGBoost (0.90), Scikit-learn (1.0.2), 210 

Seaborn (0.11.2), Matplotlib (3.2.2) and Pickle 4.0 libraries.  211 

Different algorithms: 212 

The algorithm primarily employed was the Extreme Gradient Boost (XGBoost) classifier that 213 

implements gradient-boosted decision trees (with enhanced speed and performance) and 214 

trains a class-weighted (or cost-sensitive) version of imbalanced classification20. XGBoost, a 215 

ternary classifier, considers null entries one of the classes that handle the null-entry values. 216 

Other classifiers tested on these datasets were logistic regression, Fischer linear discriminant 217 

Naïve Bayes, SVM, random forest, and K-Nearest Neighbor (KNN). Logistic regression 218 

predicts the output of a categorical dependent variable by fitting an "S" shaped logistic function 219 

that indicates two maximum values, 0 or 1. Fischer linear discriminant classifier maximizes 220 
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the separation between the projected class means and minimizes the class overlap leading to 221 

well-separated classes. Naive Bayes is a classification technique based on the Bayes theorem 222 

with an assumption of independent predictors; a particular feature is independent of another 223 

feature in a class. The SVM algorithm aims to create the best line or decision boundary to 224 

segregate n-dimensional space into classes to accommodate a new data point. The best 225 

decision boundary, a hyperplane, is made based on the extreme points (vectors). Random 226 

forest is a concept of ensemble learning – a combination of multiple classifiers to solve a 227 

complex problem and improve the model performance. As the name suggests, Random Forest 228 

contains several decision trees on various subsets of the given dataset and takes the average 229 

to improve the predictive accuracy of that dataset. KNN algorithm stores all the available data 230 

and classifies a new data point based on the similarity by placing a new data point in the 231 

nearest category. Thus, new data belongs to an appropriate class.  232 

Hyper-parameter used in XGBoost classifier: 233 

To normalize the imbalance in the number of negative and positive data points in the XGBoost 234 

classifier, hyper-parameter – “scale_pos_weight” 235 

https://xgboost.readthedocs.io/en/stable/parameter.html#parameters-for-tree-booster, was 236 

introduced. The scale_pos_weight value was used to scale the gradient for the positive class. 237 

For example, the "scale_pos_weight” = 2 indicates twice the weight of the positive class 238 

compared to the negative class. It also overcorrects the misclassification of the positive class. 239 

The loss curve (optimized to get a better model) will be affected differently in case of positive 240 

and negative entry misclassification. However, large scale_pos_weight can help the model 241 

achieve better performance for the positive class prediction (overfitting the positive class) at 242 

the cost of worse performance on the negative or both classes. Hence we have consistently 243 

considered the default scale-pos-weight (the ratio of numbers of negative to positive entries) 244 

throughout this report. 245 

Imputation for other ML models: 246 
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Unlike XGBoost, most ML algorithms cannot handle null values, thus requiring data 247 

imputation. We imputed missing values through the IterativeImputer module in the ScKit-learn 248 

package (https://scikit-learn.org/stable/modules/impute.html#multivariate-feature-imputation), 249 

which imputes values for null data points for each feature iteratively. It does so by fitting a 250 

regressor to the other feature columns (X-parameter) for records with known values of the 251 

target feature (y-parameter) and then predicts missing values of the target feature. 252 

Performance metrics:  253 

The performance metrics used were accuracy, specificity, and sensitivity,  defined by true 254 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) (eq 1-3).  255 

Accuracy = (TP+TN)/(TP+TN+FP+FN)….…….…..Eq.1 256 

Specificity = (TN/TN+FP)……………………………Eq.2 257 

Sensitivity = (TP/TP+FN)……..……………………...Eq.3 258 

The fourth metric was the Area Under the ROC Curve (AUC). The AUC was computed from 259 

prediction scores using the roc_auc_score (https://scikit-260 

learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html) module of the 261 

sklearn—metrics library. A ROC curve (Receiver Operating Characteristic curve) plots the 262 

performance (True Positive Rate (TPR) versus False Positive Rate (FPR)) of a classification 263 

model at all classification thresholds. TPR is synonymous with sensitivity, also known as recall. 264 

FPR is FP/(FP + TN). AUC measures the Area under ROC (as defined by TPR versus FPR) 265 

curve from (0,0) to (1,1) along the x-axis (FPR axis). AUC ranges from 0 to 1; 0 implies a 266 

100% wrong model, and 1 indicates a 100% correct model.  267 

 268 

Design of the web server: 269 

The web server hosted two different models, a four-hematological parameter model and a 270 

fourteen-hematological parameter model. The web server was developed on an HTML 271 

framework, with five working HTML files: a landing page and two pages each for each method, 272 

one for data input and the other for prediction display. The basic skeleton of the HTML files 273 
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was formatted with CSS code, and these files were deployed via the python module, Flask. 274 

Python libraries, like numpy and pandas, were used to collect and process the input, with the 275 

responses generated by the XGBoost models. 276 

 277 

 278 

Results and Discussion: 279 

Clinical datasets exploited for feature selection:  280 

Three independent clinical datasets (dataset 1, dataset 2, and dataset 3) were curated and 281 

processed from hospitals in Brazil and Italy (Figure 2). Hematological features were selected 282 

from these datasets based on the Pearson correlation coefficients computed between the 283 

features and the SARS-COV-2 results (positive or negative) (Figure 3).  284 

For dataset-1, four features (out of thirty-seven) showed higher correlation values (cutoff value 285 

~±0.2) with SARS-COV-2 results. These four features were platelet counts, monocytes, 286 

eosinophils, and leukocytes (all reported in 10^9/L). Only monocytes have shown a significant 287 

increase in their values in SARS-COV-2 patients (positive correlation). The remaining 288 

parameters decreased during infection (negative correlation). Careful observation revealed 289 

that in the case of non-admitted patients, monocyte increase is maximum, suggesting that 290 

innate immunity is handling the infection. On the other hand, platelet volume (MPV) increased, 291 

and platelet counts decreased in the case of regular ward patients, clearly indicating the 292 

increase in platelet size. Thus the immune system will be affected, and the number of immune 293 

cells will decrease, justifying the negative correlation of eosinophil, leukocytes, and platelet 294 

count with SARS-COV-2 disease. The low platelet counts accounted for severe COVID-19 295 

patients, even down in non-survivors compared to the survivors 21. The correlation coefficient 296 

values between SARS-COV-2 results and different features reported elsewhere were similar 297 

to this observations11. Hence, dataset-1c was developed on these four features. 298 

For dataset 2a, eight features (out of twenty-eight) have shown correlation values outside the 299 

cutoff. Those features were i) aspartate aminotransferase, ii) lactate dehydrogenase, iii) 300 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.07.23286949doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286949
http://creativecommons.org/licenses/by/4.0/


 

14 

 

leukocyte (10^9/L), iv) eosinophil (%), v) basophil (%), vi) eosinophil count, vii) lymphocyte 301 

count and viii) basophil count (all the counts in 10^9/L). Two features: Aspartate 302 

aminotransferase and lactate dehydrogenase have increased in COVID-19 patients. The 303 

remaining other hematological features decreased. In datasets 1c and 2a, there are two 304 

features, leukocyte count and eosinophil count, commonly drop with SARS-COV-2 results that 305 

presumably indicate that despite variable immune response in different populations, some 306 

hematological features are common in SARS-COV-2 disease across the populations.  307 

For dataset 3a, four parameters, lactate dehydrogenase, partial oxygen pressure in the artery, 308 

serum ferritin, and serum magnesium, have a higher positive correlation (>0.1) with SARS-309 

COV-2 results. Whereas basophil, eosinophil, leukocyte, and lymphocyte counts have a 310 

higher negative correlation (<-0.1) with SARS-COV-2 results. In datasets 1c, 2a, and 3a, two 311 

clinical features, leukocyte count and eosinophil count, were common.   312 

Comparative performances of seven different ML models on current datasets: 313 

Eight datasets (Figure 2) from three primary datasets, 1, 2, and 3, were derived based on 314 

either higher correlation with SARS-COV-2 results or to make parity (in terms of the number 315 

of features) with other datasets. The overall statistics of these eight datasets are shown (Table 316 

1). Different ML models were trained on these datasets. The performances were measured 317 

using the receiver operating characteristic (ROC) curves (Figure 4). XGBoost outperformed 318 

other methods for all datasets except dataset 1a. The internal evaluation showed that the 319 

XGBoost model outperformed all the datasets when all four performance metrics, namely, 320 

accuracy, sensitivity, specificity, and AUC scores, were considered together (Table S3).  321 

Datasets-1 and 1c have shown optimal performances (AUC scores 0.94 and 0.97, 322 

respectively) in all four metrics. For dataset 1c, sensitivity was observed as 1.0, indicating 323 

100% correct prediction of True Positive (TP) values, presumably, due to overcorrection of the 324 

TP values in a small dataset (n=602) with a low population of positives (n=83), leading to large 325 

scale-pos-weight of 6.25. As mentioned in the method section, large scale-pos-weight 326 

improves the performance of the positive class prediction at the cost of the negative class 327 
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prediction. The XGBoost models, when compared with the other models, in terms of all the 328 

metrics, the notable observation was low sensitivity values for dataset 1 (small sample size, 329 

n=602) and allied subsets (datasets, 1a to 1c) for almost all the models except Naïve Bayes 330 

classifier. The low sensitivity values for datasets 1b and 1c are presumably attributed to the 331 

smaller size and shallow positive populations in those datasets. Most likely, the XGBoost, 332 

being a ternary classifier, can more effectively handle the class imbalance than the imputations 333 

performed in other ML methods. However, the low sensitivity problem was absent in datasets 334 

2a and 2b, as the number of positives and negatives were equivalent (Table 1).  335 

 336 

Comparison of internal performances of the XGBoost model with published reports:  337 

The internal performances of the XGBoost model were compared with reported methods from 338 

the published literature9 11. The results from the XGBoost model outperformed the published 339 

reports (Table 2 and Figure 5).  340 

 341 

Table 2: Internal evaluation of the XGBoost model on different datasets and comparison with 342 

published datasets 343 

Dataset Sensitivity Specificity Accuracy AUC score Published 

AUC score 

1 0.826 0.974 0.940 0.941  

1a 0.875 0.925 0.918 0.967  

1b 0.750 0.887 0.869 0.922 0.87 (ref 8) 

1c 1.000 0.906 0.918 0.939 0.87 (ref 8) 

2a 0.830 0.843 0.835 0.906 0.84 (ref 10) 

2b 0.845 0.733 0.787 0.842  

3a 0.719 0.799 0.776 0.835  

3b 0.784 0.733 0.746 0.842  

 344 
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Selection of working XGBoost models for external evaluation across the populations: 345 

As per the results, the XGBoost model performed the best on dataset 1c, having four 346 

hematological parameters. However, the performance of the XGBoost model on dataset 1b, 347 

having fourteen hematological parameters, was comparable to that of dataset 1c, with a 348 

slightly lower AUC Score (0.94 versus 0.92). Based on these observations, we hypothesize 349 

both four-parameter and fourteen-parameter models as the working ML models for COVID-19 350 

testing and blind predictions across different populations. Although the internal performances 351 

were the best with datasets 1a and 1c, the overfitting of the data due to small sample sizes 352 

was an issue, as discussed above. Hence, we selected two other XGBoost models with four 353 

and fourteen parameters obtained from datasets 2b (Italy) and 3b (Brazil), albeit with a slightly 354 

lowered AUC score of 0.842 in both cases. These two were the final working models (training 355 

dataset) for external evaluation. 356 

 357 

External evaluation of XGBoost models with four hematological parameters across Italian and 358 

Brazilian populations: 359 

External evaluation for the four-parameter model was performed on the test dataset 1c from 360 

Brazil. Note that the training dataset 2b was from Italy. The sensitivity was 0.81 with a lower 361 

specificity value; the AUC score was 0.69 (Table 3a). For the first time, an ML model was 362 

trained on one ethnic group and tested on another ethnic group with reasonably good 363 

performance.  364 

 365 

Table 3: External evaluation of XGBoost algorithm based on a) 4- hematological features and 366 

b) 14-hematological features trained and tested across different datasets.  367 

a) 368 

Training set/test 

set 

Sensitivity Specificity Accuracy AUC Score 
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Dataset 2b 

(Italian) / 

dataset 1c 

(Brazilian) 

0.81 

 

0.45 

 

0.50 

 

0.69 

 

 369 

b) 370 

Training 

set/test set 

Sensitivity Specificity Accuracy AUC Score 

Dataset 3b 

(Brazilian) / 

dataset 1b 

(Brazilian) 

 

0.55 0.90 0.85 0.86 

 371 

External evaluation of XGBoost models with fourteen hematological parameters within the 372 

Brazilian populations: 373 

The fourteen-parameter XGBoost model was trained on dataset 3b (n=12105) and tested on 374 

dataset 1b (n=602), both from Brazilian populations. However, the samples in these two 375 

datasets were from different time points; hence those can be considered independent data 376 

sources. The AUC score for this prediction was 0.86 (Table 3b). These results were better 377 

than the performance for the four-feature XGBoost model across the populations. There could 378 

be multiple reasons for the better performance of the fourteen-feature model over the four-379 

feature model, a) the larger size of the training dataset, b) training and prediction data obtained 380 

from the same demographic location, that is, Brazil, and c) combination of more number of 381 

features with a larger dataset, presumably, yields to a better result.  382 

 383 
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Blind prediction of XGBoost models with four hematological parameters on West European 384 

populations: 385 

To further validate the efficacy of the working models, we have considered one more dataset 386 

from published literature with thirty-seven features, including the data points along different 387 

stages (time points) of COVID-1913. The dataset was from the literature without preprocessing 388 

(no feature, records, or data points removed). According to the source authors, two distinct 389 

stages of COVID-19 patients, W.E.-early and W.E.-advanced.  Distributions of four 390 

hematological parameters across the datasets, 1c, 2b, W.E.-early, and W.E.-advanced, were 391 

compared (Figure 6). The distributions were almost the same across all the datasets for 392 

Leukocytes and platelets. For eosinophils and monocytes, the distributions for datasets 2b 393 

and W.E.-early are very similar. Moreover, distributions across datasets 1c and W.E.-394 

advanced were similar for the same features. The external performance of the model on W.E.-395 

early dataset (0.65) was high compared to that on W.E.-advanced dataset (0.52) (Table 4). 396 

To note, W.E.-early and W.E.-advanced datasets contain information only from COVID-19 397 

patients and no negative controls. Hence, only the sensitivity metric was reported (Table 4).  398 

 399 

Table 4: Blind prediction of XGBoost model trained on dataset 2b and tested on W.E.-early 400 

and W.E.-advanced datasets. The early and advanced datasets contain only COVID-19-401 

positive patient results; no negatives were available. Hence, only sensitivity values reported 402 

Training set/test set Sensitivity 

Dataset 2b/ W.E.-early 0.65 

Dataset 2b/W.E.-advanced 0.52 

 403 

Deployment of Prediction server: 404 

We deployed a web server where two sets of inputs are acceptable for binary COVID-19 405 

prediction, i) four hematological parameters (leukocyte, monocyte, eosinophil, and platelet 406 

count) and ii) fourteen-parameter models in the following URL link, https://covipred.bits-407 
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hyderabad.ac.in/home. Different pages on the webserver are shown (Figure 7). The server 408 

outputs the COVID-9 results, either positive or negative, with the COVID-19 probability 409 

reported in percentage. 410 

Conclusion: 411 

Considering the need to develop an alternate protocol for rapid, near-accurate, and cheaper 412 

COVID-19 detection techniques, we aimed to externally validate the hematology-based ML 413 

prediction reported in the literature with internal evaluation only. We have integrated published 414 

clinical records from Brazil, Italy, and West Europe hospitals. The data from Brazil and Italy 415 

were classified into eight datasets and trained on seven different ML methods; the XGBoost 416 

algorithm was the best. The internal performances of the XGBoost models were better than 417 

the published reports on the same datasets. Four and fourteen-parameter XGBoost models 418 

were selected for external evaluations. The external performance of the fourteen-parameter 419 

XGBoost model trained and tested on the Brazilian dataset was similar to that of the internal 420 

performance. However, the external performances of the four-parameter XGBoost model 421 

trained on the Italian dataset and tested on a) Brazilian and b) West European datasets were 422 

poorer than the previous one. The results promise the utility of these models when trained and 423 

tested on the same populations. However, it also warns to use the model, with caution, trained 424 

on one population and test on another. The outcome of this work has the potential for an initial 425 

screen of COVID-19 based on hematological parameters before qRT-PCR tests. In future 426 

work, we aim to train and test those on the Indian population to use at the healthcare centers 427 

of India. 428 

 429 
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 Figure 1: Haematological features used in different datasets. The green colour indicated the 522 

presence of a particular feature in a dataset and the red colour indicated its absence.  523 

 524 
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 525 

 526 

Figure 2: Description of data sources used for training and prediction of different ML-models 527 

based on haematological features for COVID-19 characterization 528 

 529 
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  530 

 531 

Figure 3: Pearson correlation coefficients between SARS-COV-2 results and individual 532 

features for a) dataset 1 b) dataset 2a and c) dataset 3a. Parameters with higher 533 

correlation (>~±0.2) are shown in blue, remaining values in black, with an exception for 534 

dataset 3a (correlation cut off ±0.1).  535 

a)  
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b) 
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c)

 

 536 

 537 

Figure 4: Receiver Operating Characteristics Curves (ROC) across different ML models for a) 538 

Dataset 1 b) Dataset 1a, c) Dataset 1b, d) Dataset 1c, e) Dataset 2a, f) Dataset 2b, g) Dataset 539 

3a and h) Dataset 3b 540 
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Figure 5: Comparative performances of different datasets trained on XGBoost model. The 544 

datasets with published AUC scores are shown in brown bars for the following datasets (1b 545 

and 1c)9 and 2a11.  546 

 547 

 548 

Figure 6: Distributions of four hematological parameters across four different datasets (two 549 

training datasets – Dataset 1c and Dataset 2b and two test datasets –early and advance). The 550 

hematological parameters are – a) platelet, b) leukocyte c) eosinophil and d) monocyte. These 551 

distributions indicate the proximity of the individual test datasets to the training datasets  552 

 553 
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Figure 7: COVID-19 prediction server based on hematological parameters, a) home page b) 554 

4-parameter prediction model and c) 14-parameter prediction model 555 

a)                                          b)                                                         c) 556 

  557 
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