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Abstract

Changes in myelination are a cardinal feature of brain development and the pathophysiology of sev-

eral cerebral diseases, including multiple sclerosis and dementias. Advanced magnetic resonance imaging

(MRI) methods have been developed to probe myelin content through the measurement of myelin water

fraction (MWF). However, the prolonged data acquisition and post-processing times of current MWF map-

ping methods pose substantial hurdles to their clinical implementation. Recently, fast steady-state MRI

sequences have been implemented to produce high spatial resolution whole-brain MWF mapping within ∼

20 min. Despite the subsequent significant advances in the inversion algorithm to derive MWF maps from

steady-state MRI, the high-dimensional nature of such inversion does not permit further reduction of the

acquisition time by data under-sampling. In this work, we present an unprecedented reduction in the compu-

tation (∼ 30 s) and the acquisition time (∼ 7 min) required for whole-brain high-resolution MWF mapping

through a new Neural Network (NN)-based approach, named: Relaxometry of Extremely Under-SamplEd

Data (NN-REUSED). Our analyses demonstrate virtually similar accuracy and precision in derived MWF

values using the NN-REUSED approach as compared to results derived from the fully-sampled reference

method. The reduction in the acquisition and computation times represents a breakthrough toward clinically

practical MWF mapping.
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I. INTRODUCTION

Myelin is paramount for the normal functioning of the central nervous system (CNS), with

loss or damage of the myelin sheets leading to various neurological diseases, including multiple

sclerosis and dementias1–7. As an electrical insulator essential for action potential conduction

and trophic support to the neuronal axons of the CNS8, myelin is crucial to higher-order inte-

grative functions of the brain9. Therefore, probing myelin content and its integrity is critical

to understanding cerebral development, maturation, and degeneration10–12, as well as enhancing

our capacity to identify novel therapeutics for myelin repair13–15. For that, magnetic resonance

imaging (MRI) of myelin water fraction (MWF), a direct proxy of myelin content16,17, has been

developed based on the multicomponent nature of water pools within image voxels. These water

pools exhibit differential nuclear magnetic properties, including relaxation times. The fast relaxing

component corresponds to the water trapped within the myelin sheets, while the moderately and

slowly relaxing components are attributed to intra/extra cellular and cerebrospinal fluid (CSF) wa-

ter compartments, respectively16,17. The signal fraction of the fast relaxing component is defined

as the MWF, which has been histologically validated as a specific measure of myelin content3,4.

The multi-echo spin-echo (MESE) sequence was originally used to measure in vivo MWF

by Mackay et al. 16 , where the nuclear magnetization is excited by a 90◦ radio-frequency pulse

followed by a train of 180◦ refocusing pulses. The signal amplitudes, Si, acquired at the i-th echo

time, ti, follow the form of a sum of several exponential decays through:

Si =
J

∑
j=1

a je−ti/T2, j for i = 1,2, ...,N, (1)

where N is the total number of echoes acquired, and a j is the j-th component of a total of J num-

ber of components with distinct transverse relaxation time T2, j and fraction a j. The decay curve

is conventionally inverted using a nonnegative least-squares (NNLS) optimization to obtain the

short T2 relaxation fraction, i.e., MWF. Despite being the gold standard method for MWF map-

ping, MESE suffers the utmost slow data acquisition and fitting instability. Using fast steady-state

MRI sequences, namely the spoiled gradient recalled echo (SPGR) and balanced steady-state free

precession (bSSFP) sequences, the multicomponent driven equilibrium steady-state observation

of T1 and T2 (mcDESPOT)18–23 has been introduced for whole-brain high spatial resolution MWF

determination within a clinically feasible acquisition time (∼20 min). To improve the accuracy

and precision in derived MWF values, the Bayesian Monte Carlo (BMC) analysis of mcDESPOT
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(BMC-mcDESPOT) was proposed and extensively applied in studies of cerebral maturation and

degeneration12,21,22,24–26.

Despite these critical advances for clinically feasible and accurate MWF imaging, the acqui-

sition time remains relatively long, particularly infeasible in investigations involving participants

with limited cooperability or in studies acquiring other imaging modalities within the same scan

session. Further, due to its underlying complex mathematical modeling, BMC-mcDESPOT re-

quires extensive computational power, with several hours needed to generate a single whole-brain

MWF map; this limits real-time evaluation. Most importantly, as clarified in (2)-(4) in the Meth-

ods section below, estimation of the MWF values using BMC-mcDESPOT involves a high dimen-

sional inversion problem, incorporating several unknown parameters requiring, therefore, several

measurements, i.e., several SPGR and bSSFP data at different FAs in this case, for an accurate

determination of MWF. Indeed, estimates of MWF from a limited number of SPGR and bSSFP

images are expected to be inaccurate and even impossible using BMC-mcDESPOT. In this study,

we demonstrate the possibility of extreme data under-sampling in the s-space (referring to the s

domain in Laplace transform) for quantitative MRI acquisition using neural network (NN) estima-

tion of MWF. Specifically, we show that derived MWF maps using our NN method from a limited

number of SPGR and bSSFP images are virtually identical to those derived from the reference

method and a larger number of images.

II. RELATED WORKS

From partial Fourier techniques based on conjugate symmetry, and compressed sensing al-

gorithms based on data sparsity, to the emerging NN aided imaging reconstruction, data under-

sampling is mainly explored in the k-space. Building on the same principle, it is expected that

NN-based algorithms will also exhibit high performance in parameters estimation from under-

sampled data in the s-space, allowing accelerated acquisition for quantitative MRI.

Furthermore, emerging evidence27–36 demonstrates that artificial NN can also drastically

shorten the computational burden in parameters estimation, and was also used to derive MWF

maps from a limited number of images. In recent work, Liu et al. 29 have proposed deep learning

NN models for rapid computation of MWF maps from conventional multiple echo-time images37.

Using advanced NN algorithms, we Khattar et al. 36 and Piredda et al. 32 have recently shown

the possibility of deriving MWF maps from proton density (PD), longitudinal relaxation (T1)
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and transverse relaxation (T2) parameter maps. Furthermore, Jung et al. 35 showed that the ac-

curacy in derived MWF values from multiple gradient-echo images is markedly improved using

NN as compared to the conventional, widely-used, least-squares fitting algorithms. However,

despite these remarkable advances in MWF determination using NN, most of these methods fo-

cused on fast computation or providing MWF with a low spatial or temporal resolution. Building

on this seminal work, in the following, we will provide details on our NN-based approach for

whole-brain high-resolution MWF mapping from steady-state imaging data; namely, SPGR and

bSSFP, within drastically reduced acquisition times as compared to the state-of-the-art method,

BMC-mcDESPOT.

III. METHODS

A. Reference MWF maps generation

1. BMC-mcDESPOT for reference MWF maps

In BMC-mcDESPOT, MWF is estimated from a set of bSSFP and SPGR images. These steady-

state images are acquired at several flip angles (FAs) with very short repetition times (TRs), allow-

ing a substantial reduction in the total acquisition time for whole-brain high-resolution imaging as

compared to the conventional methods. Using the Bayes theorem and Monte Carlo sampling, the

estimate, M̂WF, of the parameter, MWF, belonging to the set of unknown parameters λλλ is given

by:

M̂WF =
∫

MWF P(MWF|SSS) dMWF

=
∫

...
∫

MWF
P(λ−λ−

λ−)L(SSS|λλλ )
P(SSS)

dλλλ

∼=
M

∑
m=1

MWFm
P(λλλ−

m)L(SSS|λλλ m)

P(SSS)
, (2)

where P(MWF|SSS) is the posterior distribution of MWF, SSS = (SSSSPGR,SSSbSSFP) is the ensemble

of the measured SPGR and bSSFP signal vectors at K FAs in the index voxel, m denotes

one of a total of M = 30,000 random sets of parameter combinations sampled from a grid

defining the range of our Monte Carlo integration, P(SSS) =
∫

P(λλλ−)L(SSS|λλλ )dλλλ is a normaliza-

tion constant, and λλλ− is equivalent to λλλ but excludes the parameter of interest, that is, MWF.

Assuming a bicomponent model with a two-relaxation time components system consisting of
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short, attributed to myelin water, and long, attributed to intra/extra (IE) cellular water, compo-

nents, λλλ = (MWF,T1,MWF,T1,IE,T2,MWF,T2,IE) is the vector of the unknown parameters, P(λλλ−
m) =

1/(T1,MWF,m ×T1,IE,m ×T2,MWF,m ×T2,IE,m) is Jeffrey’s noninformative priors, and L(SSS|λλλ m) is the

likelihood function of SSS given λλλ m and is given by:

L(SSS|λλλ m) ∝
(
(S̃SSbSSFP −M̃MMbSSFP,m)

T (S̃SSbSSFP −M̃MMbSSFP,m)

×(S̃SSSPGR −M̃MMSPGR,m)
T (S̃SSSPGR −M̃MMSPGR,m)

)−K
2 , (3)

where S̃SS and M̃MM are respectively the experimental and theoretical signals normalized by their re-

spective mean values calculated over K SPGR or bSSFP FAs, given by:

M̃k
bSSFP,m = |Mk

a,m + iMk
b,m|, (4)

with

Mk
a, j,m =

√
E2, j,m(1−E1, j,m)sin(βk)sinϕ(

1−E1, j,m cos(βk)
)(

1−E2, j,m cosϕ
)
−E2, j,m

(
E1, j,m − cos(βk)

)(
E2, j,m − cosϕ

),
and

Mk
b, j,m =

√
E2, j,m(1−E1, j,m)sin(βk)(cosϕ −E2, j,m)(

1−E1, j,m cos(βk)
)(

1−E2, j,m cosϕ
)
−E2, j,m

(
E1, j,m − cos(βk)

)(
E2, j,m − cosϕ

),
and

M̃k
SPGR,m = sin(αk)

(
MWFmE2,MWF,m

1−E1,MWF,m

1−E1,MWF,m cos(αk)

+(1−MWFm)E2,IE,m
1−E1,IE,m

1−E1,IE,m cos(αk)

)
,

where ϕ = 2π ·∆ω ·TRbSSFP +ϑ , with ∆ω the off-resonance frequency of the proton pool and ϑ

the phase increment of the applied radio-frequency (RF) pulse. E1, j,m = exp(−TRbSSFP/T1, j,m)

and E2, j,m = exp(−TRbSSFP/T2, j,m), where T1, j and T2, j are, respectively, the spin-lattice and

spin-spin relaxation times of the jth component (i.e., MWF or IE). Further details can be found

in20,21,23.

2. MRI data acquisition

All MRI scans were performed on a 3T whole-body Philips MRI system (Achieva, Best, The

Netherlands) using the internal quadrature body coil for transmission and an eight-channel phased-

array head coil for signal acquisition. Under the approval of the institutional review board, the
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following three sequences were acquired in the mcDESPOT protocol to calculate MWF: 3D SPGR

images were acquired with FAs of [2 4 6 8 10 12 14 16 18 20]◦, echo time (TE) of 1.37 ms and

repetition time (TR) of 5 ms. 3D bSSFP images were acquired with FAs of [2 4 7 11 16 24

32 40 50 60]◦, TE of 2.8 ms, and TR of 5.8 ms. The bSSFP images were acquired twice with

radiofrequency excitation pulse phase cycling of 0 (bSSFP0) and π (bSSFPπ ) to account for off-

resonance effects19. All SPGR and bSSFP images were acquired with an acquisition matrix of

150 × 130 × 94, and a voxel size of 1.6 mm ×1.6 mm × 1.6 mm. To correct for excitation

radiofrequency inhomogeneity, B1, we used the double-angle method (DAM)38 by acquiring two

fast spin-echo images with FAs of 45◦ and 90◦, TE of 102 ms, TR of 3000 ms, and acquisition

voxel size of 2.6 mm × 2.6 mm × 4 mm. All images were acquired with a field of view of 240

mm × 208 mm × 150 mm. The total acquisition time was ∼21 min, in which SPGR, two bSSFP,

and DAM datasets were ∼5 min, ∼12 min, and ∼4 min, respectively.

In this work, we will refer to the mcDESPOT dataset with ten SPGR/bSSFP acquired at dif-

ferent FAs as fully-sampled, while datasets with four FAs as under-sampled. We also consider a

dataset with only two FAs as extremely under-sampled.

3. MWF mapping

For each participant, a whole-brain B1 map was generated from the DAM datasets and extrapo-

lated to the same size as of the bSSFP and SPGR images, and a reference whole-brain MWF map

was generated from the fully-sampled SPGR and bSSFP images and the derived B1 map using

BMC-mcDESPOT21. In comparison to the NN-REUSED approach described below, we also de-

rived MWF maps using BMC-mcDESPOT from the under-sampled and extremely under-sampled

dataset. This is conducted to illustrate the limitation of the BMC-mcDESPOT analysis to generate

accurate MWF maps from under-sampled or extremely under-sampled datasets.

4. Image registration

The calculated B1 and MWF maps were linearly registered to the averaged SPGR image overall

FAs for that corresponding participant using the FSL linear image registration tool (FLIRT)39. The

averaged SPGR image was passed to the FSL brain extraction tool (BET)40 to eliminate non-brain

structures and to calculate the brain mask. Then it was registered to the Montreal Neurological
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Institute (MNI) standard space with 1 mm × 1 mm × 1 mm resolution and matrix size of 182 ×

218 × 182 using the FSL nonlinear image registration tool (FNIRT), and the derived transforma-

tion matrix was then applied to B1 and MWF maps.The same registration process was repeated

for all SPGR, bSSFP, and DAM images. Finally, brain tissues were segmented into white mat-

ter, gray matter, and cerebrospinal fluid using the FSL automated segmentation tool (FAST)39.

Voxels belonging to the CSF compartment were excluded from the subsequent model training.

Indeed, for the training data, this segmentation to exclude CSF was necessary as we observed that

contamination from CSF hinders the convergence of models.

B. NN Relaxometry of Extremely Under-SamplEd Data (NN-REUSED) implementation

1. The NN-REUSED architecture

Our NN Relaxometry of Extremely Under-SamplEd Data (NN-REUSED) approach is based

on the ResNet-like41 fully connected networks. Building blocks of the deep NN-REUSED are

illustrated in Fig.1 (A). Incoming features (In features) were passed through three fully connected

dense layers with BatchNorm42 and LeakyReLu activation in between before being added into the

output features (Out features) if the In features = Out features. Otherwise, the In features was

passed through a fully connected layer to change the size of Out features and then added to the

output features. The addition or skip connection here behaves like an information highway and

helps with gradient flow, enabling stable training of very deep networks41.

For the fully-sampled model, the input features for NN-REUSED are the intensity values of the

SPGR and bSSFP voxels obtained from 30 SPGR and bSSFP images (i.e., 10 SPGR images, 10

bSSFP0 images, and 10 bSSFPπ images) in addition to the B1 map. For the under-sampled model,

only 12 SPGR and bSSFP images (i.e., 4 SPGR images, 4 bSSFP0 images, and 4 bSSFPπ images)

in addition to the B1 map were used as input features. For the extremely under-sampled model,

only 6 SPGR and bSSFP images (i.e., 2 SPGR images, 2 bSSFP0 images, and 2 bSSFPπ images)

in addition to the B1 map were used as input features. For all models (Fig.1 (B)), between the

input and output layers, there are 24 ResNet blocks, with the output features changing size every

four blocks to 64, 128, 256, 512, 1024, and 2048, respectively. The model optimizer is Adam43,

and the loss function is L1 loss. The learning rate is initially set to 0.0001 and decreased ten

folds after each epoch along with gradient clipping setting maximum gradient values to be 0.0001.
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FIG. 1. Schematic sketch of (A) the fully connected ResNet building block, (B) the NN-REUSED archi-

tecture and the illustration of using either fully-sampled datasets or extremely under-sampled datasets to

generate MWF maps.

These measures greatly stabilized the networks, and models were trained for 200 epochs. All

codes were implemented in PyTorch44 version 1.9.0, and all training and testing were performed

on a Dell precision workstation equipped with Intel® Xeon® gold 6230 CPU @ 2.10 GHz and

NVIDIA Quadro RTX
TM

5000 GPU. Data and codes are available upon request from the first and

last authors.
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2. Model training

MRI datasets of 37 cognitive normal subjects ranging from 22 to 94 years (mean = 56.9, SD

= 23.7) were randomly chosen from the Baltimore Longitudinal Study of Aging (BLSA). After

image registration, all calculated maps and raw images were multiplied by the WM and GM masks

of each participant to retain WM and GM tissues only and exclude CSF. All maps and raw images

were vectorized to create the input features. All reference MWF maps were calculated using the

BMC-mcDESPOT method from the fully-sampled datasets21. There are 78 million final available

pairs of features and labels, while random split ratio between training and validation is 9:1.

3. Model testing

The testing datasets constitute 39 cognitive normal subjects ranging from 24 to 94 years old

(mean = 60.7, SD = 22.7). To test the accuracy and utility of the NN-REUSED approach in

estimating MWF maps from data obtained from participants with neurodegeneration, the model

testing also included three patients with Alzheimer’s disease (AD). We note that our NN-REUSED

models were solely trained on cognitively normal participants. After image registration, the cal-

culated maps and raw images were masked out of CSF and vectorized to create the input features.

Finally, the calculated MWF values using the NN-REUSED models were reshaped to the original

three dimensional size providing corresponding whole-brain MWF maps. Exemplary results from

one 75-year-old male AD patient and one healthy 33-year-old female subject are shown in Fig.2,

3, 4.

C. BMC-mcDESPOT and NN-REUSED methods comparison

1. Absolute error maps

The absolute error (AE) maps were calculated by taking the absolute difference between the

estimated MWF and reference MWF maps. A restricted color scale has been used to highlight the

superior performance of NN-REUSED over BMC-mcDESPOT for under-sampled and extremely

under-sampled datasets.
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2. Bland-Altman plot and linear correlation plot of regions-of-interest

Six WM and GM structures were chosen as regions of interest (ROIs) from the MNI atlas

provided in FSL. These regions were defined from the Johns Hopkins University (JHU) ICM-DTI-

81 atlas. For each participant, all ROIs were eroded to reduce partial volume effects and the mean

MWF values from BMC-mcDESPOT or NN-REUSED were calculated. Bland-Altman plots and

linear correlation plots of 12 ROIs for fully-sampled, under-sampled, or extremely under-sampled

datasets were generated using MATLAB.

D. Structure similarity analysis

Structural similarity index measure (SSIM) between MWF maps generated from the NN-

REUSED and reference maps were calculated for each testing dataset using the MATLAB func-

tion ssim. Results are shown in Fig.5, 6. The mean and standard deviation SSIM values calculated

across all testing participants were also generated. For each testing dataset, results are shown for

the fully-sampled, under-sampled and extremely under-sampled datasets.

IV. RESULTS

A. NN-REUSED derived MWF maps from the fully-sampled datasets

Fig.2 shows examples of MWF maps derived using BMC-mcDESPOT or NN-REUSED from

the fully-sampled datasets of an AD patient and a healthy subject. Visual inspection indicates

excellent agreement between the MWF maps calculated using both approaches for both subjects.

Interestingly, the patterns of demyelination in the AD subject are recovered with excellent fidelity

using NN-REUSED. This further highlights the accuracy and utility of NN-REUSED since the

training was conducted exclusively on datasets acquired from cognitively normal participants.

Further, the very low AE values illustrate the nearly perfect regional determination of MWF val-

ues using NN-REUSED. Corresponding acquisition time (AT) and processing time (PT) for each

method are also provided in the figure to demonstrate the substantial reduction in the PT using

NN-REUSED as compared to BMC-mcDESPOT.
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FIG. 2. Examples of MWF maps derived using BMC-mcDESPOT (first row, Reference map) or NN-

REUSED (second row) from the fully-sampled datasets of an AD patient (A) and a healthy subject (B).

Corresponding absolute error (AE) maps calculated as the absolute difference between the MWF map de-

rived using BMC-mcDESPOT and the MWF map derived using NN-REUSED are also displayed (bottom

row). Results are shown for three representative axial slices. The acquisition time (AT) and processing time

(PT) are labeled in red to show the time accelerations.

B. NN-REUSED derived MWF maps from the under-sampled or extremely under-sampled

datasets

Fig.3 shows examples of MWF maps derived using the reference method (i.e., BMC-mcDESPOT

from the fully-sampled datasets), NN-REUSED or BMC-mcDESPOT from under-sampled datasets

of an AD patient and a healthy subject. It is readily seen that while BMC-mcDESPOT fails to pro-

duce comparable MWF maps for under-sampled datasets, NN-REUSED derived MWF maps were

visually similar to those derived using the reference method leading to great reductions in the AT

and PT of, respectively, 10 min and 30 s, in comparison to the reference methods which requires

an AT of 21 min and a PT of several hours. The high performance of REUSED is further high-

lighted by the low absolute error values in most brain regions. More interestingly, NN-REUSED

performs nearly identically for extremely under-sampled datasets with marginal error introduced
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FIG. 3. Examples of derived MWF maps using the reference method (i.e., BMC-mcDESPOT from the

fully-sampled datasets, first row), NN-REUSED (second row) or BMC-mcDESPOT (third row) from under-

sampled datasets of an AD patient (A) and a healthy subject (B). Corresponding absolute error (AE) maps

calculated as the absolute difference between the MWF map derived using the references method and the

MWF map derived using either NN-REUSED or BMC-mcDESPOT from under-sampled datasets are also

displayed (bottom rows). Results are shown for three representative axial slices. The acquisition time (AT)

and processing time (PT) are labeled in red to show the time accelerations.

and a further reduction in AT Fig.4. In comparison, the BMC-mcDESPOT method could not

produce meaningful MWF maps from extremely under-sampled datasets.
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FIG. 4. Examples of derived MWF maps using the reference method (i.e., BMC-mcDESPOT from the fully-

sampled datasets, first row), NN-REUSED (second row) or BMC-mcDESPOT (third row) from extremely

under-sampled datasets of an AD patient (A) and a healthy subject (B). Corresponding absolute error (AE)

maps calculated as the absolute difference between the MWF map derived using the references method

and the MWF map derived using either NN-REUSED or BMC-mcDESPOT from extremely under-sampled

datasets are also displayed (bottom rows). Results are shown for three representative axial slices. The

acquisition time (AT) and processing time (PT) are labeled in red to show the time accelerations.

C. Regional analysis of derived MWF values using NN-REUSED

The quantitative analysis of the NN-REUSED derived MWF results were conducted in 12

ROIs for both WM and GM and across all testing datasets. Linear regression plots and Bland-

Altman plots of derived regional MWF values are shown in Fig.5. Here again, it is readily seen
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that derived MWF using REUSED from the fully-sampled, under-sampled or extremely under-

sampled datasets exhibit very strong correlations with those derived using the references method,

with correlation coefficients ranging from 0.97 to 0.99. Although the error in derived MWF values

using REUSED increases with increasing the under-sampling of the datasets, these deviations

remain significantly low, as clearly shown in the corresponding Bland-Altman plots. This analysis

further demonstrates that NN-REUSED allows substantial reductions in both AT and PT with a

minimal trade-off in estimation errors.

D. Structure similarity of derived MWF maps using NN-REUSED

Providing a different metric than regional analysis, the perceived similarity of NN-REUSED

MWF maps to the reference is examined using the structural similarity index (SSIM). Fig.6 dis-

plays the SSIM for each of the 42 testing subjects. The random distribution of the SSIM around

the mean value across all testing datasets reflects the unbiased estimation of MWF maps using the

NN-REUSED approach. Although the SSIM values decrease with increasing the under-sampling

of the data, the values remain remarkably high with values of 0.988 ± 0.003, 0.969 ± 0.006,

0.956±0.008 for the fully-sampled, under-sampled, and extremely under-sampled datasets.

V. DISCUSSION

In this work, we introduced a new NN model, REUSED, for the estimation of MWF, a sur-

rogate of myelin content, from steady-state images, namely, SPGR and bSSFP, as incorporated

in the BMC-mcDESPOT method21. Our results showed that NN-REUSED provides high ac-

curacy and precision in derived MWF values. Indeed, the calculated MWF maps and regional

values using NN-REUSED were virtually identical to those derived using the reference BMC-

mcDESPOT approach. Importantly, NN-REUSED permitted estimation of MWF from under-

sampled and extremely under-sampled SPGR and bSSFP datasets, leading to a remarkable re-

duction in the total acquisition times with whole-brain high-resolution MWF map could now be

generated within 7 min using NN-REUSED instead of 21 min as required by the reference method,

BMC-mcDESPOT. Visual assessment of derived maps and quantitative analyses demonstrated the

robustness of NN-REUSED to generate MWF values with high fidelity, accuracy and precision.

In contrast, estimating MWF using the reference BMC-mcDESPOT approach with such limited
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FIG. 5. (A) Linear correlation plots between derived regional MWF values using REUSED and the refer-

ence method calculated across 12 WM and GM ROIs and across all testing datasets. (B) Corresponding

Bland-Altman plots. Results are shown for the fully-sampled datasets (upper row), the under-sampled

datasets (middle row), and the extremely under-sampled datasets (lower row).
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FIG. 6. The structure similarity index measure (SSIM) calculated between derived MWF map using NN-

REUSED and the reference MWF map for each testing subject. Mean and standard deviation of SSIMs

calculated across all testing subjects are labeled using the dashed lines and error bars, respectively, for the

fully-sampled (blue), under-sampled (orange), and extremely under-sampled (purple) datasets.

datasets is not reliable, given the underdetermined nature of the fitting problem in this particular

case. A higher number of SPGR and bSSFP images would be required for the large number of the

unknown parameters to be jointly estimated in the BMC-mcDESPOT signal model21. We note that

the total acquisition time could be further reduced using other methods for B1
+ mapping such as

steady-state double angle method45 or Bloch-Siegert shift46. These techniques are able to generate

whole-brain B1
+ maps within ∼1 min in contrast to ∼4 min using DAM; this will represent an ad-

ditional substantial improvement of the temporal resolution for whole-brain high-resolution MWF

mapping using NN-REUSED within 4 min. Another critical advantage of NN-REUSED is the

computational speed. In fact, a whole-brain MWF map can be generated within a few seconds in

contrast to ∼30 hours required for the BMC-mcDESPOT or the original mcDESPOT approaches.

This drastic improvement in processing speed has several applications, including facilitating near

real-time evaluation of the results as well as processing large datasets within a very short period

of time without the need for expensive computational power.

Interestingly, NN-REUSED was able to generate virtually similar MWF maps, from either the

fully-sampled, the under-sampled or the extremely under-sampled datasets, to those obtained us-
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ing the reference method from the AD patient. We note that NN-REUSED was trained solely on

datasets obtained from the brains of cognitively unimpaired participants. This further demonstrates

the robustness and the applicability of this approach to a wide range of clinical investigations, in-

cluding studies of the etiology and sequelae of myelin breakdown in neurodegeneration17,47–49.

We conjecture that training these NN models on datasets that include patients suffering from de-

myelinating neuropathologies would further increase the accuracy and precision of NN-REUSED

for MWF determination. Unfortunately, the lack of such datasets from our study cohort refrained

us from conducting further analysis. However, this represents one of the future directions of this

work.

Beyond the robustness and the substantial reduction in both the acquisition and computational

times, NN-REUSED will allow conducting of complementary analyses of previous investigations

where only a limited number of SPGR and bSSFP images were acquired. Indeed, the SPGR and

bSSFP images acquired at a limited number of FAs can be used to generate MWF maps and, there-

fore, to derive further insights into the myelination patterns of the previously studied condition.

Further, in numerous precedent mcDESPOT or BMC-mcDESPOT investigations12,21,25,26,50,51,

several datasets were excluded from the underlying analyses due to motion artifacts in certain

SPGR and bSSFP images. Using NN-REUSED, these datasets could potentially be incorporated

to derive corresponding MWF maps from the remaining SPGR and bSSFP images that are free of

motion artifacts. The incorporation of such datasets is likely to improve the statistical power of

those underlying analyses.

We have also successfully implemented and tested various other NN models, including conven-

tional CNN, U-Net52 and cGAN53,54, but faced several limitations. One of these major drawbacks

was the prolonged time for the training; this is due to the much larger number of calculations

needed for the convolution operations. In fact, several days were required for the convergence

of CNN, cGAN, and U-Net in order to produce reasonable results. This is in contrast to only a

few hours for the fully connected NN models. Further, and more importantly, derived MWF maps

using the CNN and U-Net models exhibited substantial blurring, especially around tissue edges

and small structures (data not shown). Therefore, despite its simplicity, the fully connected resid-

ual NN model provided superior results; this is likely due to a large number of available training

features (∼78 million).

This work comes with limitations. Despite the accuracy of the NN-REUSED approach in-

troduced here to robustly estimate MWF from data of normal or AD subjects, further testing is
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required using a larger dataset that includes various degrees of demyelination or neuropatholo-

gies. Furthermore, as with all machine learning-based algorithms, a training dataset is initially

required; this can represent an actual challenge, especially when the expertise or infrastructure is

lacking to construct this training dataset. However, for the case of the BMC-mcDESPOT analysis,

our training dataset and algorithms are available and readily applicable to other studies. Finally,

NN-REUSED was tested on steady-state imaging only. Further analyses are required to test this

proof-of-principle on other imaging modalities of MWF, including those based on multi-spin echo

or multi-gradient echo MR sequences37,55,56.
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NeuroImage 63, 533 (2012).

38 R. Stollberger and P. Wach, Magn. Reson. Med. 35, 246 (1996).

39 M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, NeuroImage 62, 782

(2012).

40 S. M. Smith, Hum. Brain Mapp. 17, 143 (2002).

41 K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE conference on computer vision and

pattern recognition (2016) pp. 770–778.

42 S. Ioffe and C. Szegedy, in International conference on machine learning (PMLR, 2015) pp. 448–456.

43 D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

44 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala, Adv. Neural Inf. Process. Syst. 32 (2019).

45 M. Bouhrara and R. G. Spencer, Magn. Reson. Med. 82, 189 (2019).

46 L. I. Sacolick, F. Wiesinger, I. Hancu, and M. W. Vogel, Magn. Reson. Med. 63, 1315 (2010).

47 M. Mancini, A. Karakuzu, J. Cohen-Adad, M. Cercignani, T. E. Nichols, and N. Stikov, eLife 9, e61523

(2020).

20

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.23286946doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286946


48 S. Kolind, L. Matthews, H. Johansen-Berg, M. I. Leite, S. C. Williams, S. Deoni, and J. Palace, Neu-

roImage 60, 263 (2012).

49 D. C. Dean, S. A. Hurley, S. R. Kecskemeti, J. P. O’Grady, C. Canda, N. J. Davenport-Sis, C. M.

Carlsson, H. Zetterberg, K. Blennow, S. Asthana, et al., JAMA Neurol. 74, 41 (2017).

50 M. Bouhrara, N. Khattar, R. Kim, W. Qian, J. Alisch, L. Ferrucci, S. Resnick, and R. Spencer, Innov.

Aging 4, 767 (2020).

51 M. Bouhrara, R. W. Kim, N. Khattar, W. Qian, C. M. Bergeron, D. Melvin, L. M. Zukley, L. Ferrucci,

S. M. Resnick, and R. G. Spencer, Hum. Brain Mapp. 42, 2362 (2021).

52 O. Ronneberger, P. Fischer, and T. Brox, in International Conference on Medical image computing and

computer-assisted intervention (Springer, 2015) pp. 234–241.

53 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-

gio, Adv. Neural Inf. Process. Syst. 27 (2014).

54 M. Mirza and S. Osindero, arXiv preprint arXiv:1411.1784 (2014).

55 K. P. Whittall and A. L. MacKay, J. Magn. Reson. (1969) 84, 134 (1989).

56 D. Hwang, D.-H. Kim, and Y. P. Du, NeuroImage 52, 198 (2010).

21

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.07.23286946doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286946

