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Abstract 16 

Electronic health records (EHRs) are often incomplete and inaccurate, reducing the power of 17 
genome-wide association studies (GWAS). Moreover, the variables within these records are 18 
often represented in binary codes, masking variation in disease severity among individuals. For 19 
some diseases, such as knee osteoarthritis (OA), radiographic assessment is the primary means of 20 
diagnosis and can be performed directly from medical images. In this work, we trained a deep 21 
learning model (DL-binary) to ascertain knee OA cases from anteroposterior (AP) dual-energy 22 
absorptiometry (DXA) scans and achieved clinician level performance. Applying this model 23 
across 29,257 individuals from the UK Biobank (UKB), we identified 2,603 (240%) more cases 24 
than currently diagnosed in the ICD-10 record. Individuals diagnosed as cases by DL-binary had 25 
higher rates of self-reported knee pain, knee pain for longer durations and with increased severity 26 
compared to control individuals. We trained another deep learning model to measure the 27 
minimum knee joint space width (mJSW), a quantitative phenotype linked to knee OA severity. 28 
Despite the DL-binary phenotype and mJSW being highly genetically correlated (92%), the 29 
heritability of mJSW was an order of magnitude greater than the ICD-10 code M17 or DL-binary 30 
phenotypes. In a GWAS run on mJSW, we identified 18 genome-wide significant loci, as 31 
opposed to 1 and 6 at the same sample size using either case-control (DL-binary and ICD-10 32 
code M17) phenotype. This improved power also translated to better polygenic risk score (PRS) 33 
prediction for knee OA diagnosis in a holdout dataset of 371,686 individuals. We also show that 34 
reduced mJSW, but neither case-control phenotype is associated with increased risk of adult 35 
fractures, a leading cause of injury-related death in older individuals. For diseases with 36 
radiographic diagnosis, our results demonstrate the enormous potential for using deep learning to 37 
phenotype at biobank scale, both for improving power for gene discovery and for 38 
epidemiological analysis.  39 
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Introduction 40 

For most complex disease traits, clinical endpoints are usually binary (case-control) in 41 
nature. In particular, data on disease outcomes from population scale biobanks are only available 42 
through recorded ICD-10 billing codes or self-reported diagnosis1–3. While these datasets have 43 
provided invaluable insights into the genetic basis of disease, case ascertainment based solely on 44 
information available in the EHR or from self-reports can be biased by a multitude of factors 45 
including differences in how patients were billed4, differential diagnosis due to assessment by 46 
clinicians (non-specialist vs specialist)5, or differences in classification or diagnosis based on 47 
disease severity6. 48 
 49 
 An alternate approach to ascertaining disease status might be to directly perform clinical-50 
grade assessment from a patient's medical images using a consistent diagnosis protocol. 51 
However, this is difficult to achieve at biobank scale where sample sizes can range from 52 
hundreds of thousands if not millions of individuals1. Importantly, for musculoskeletal diseases 53 
such as knee OA, radiography is the routine course of diagnosis in the clinic as well as to assess 54 
important markers associated with disease progression such as sclerosis, osteophytosis (bone 55 
spurs) and narrowing of the space between the femur and tibia, also known as the knee joint 56 
space7. For such radiographically diagnosed diseases, computer vision approaches for automated 57 
phenotyping based on training data from clinicians offer the potential to ascertain both case 58 
status and disease severity at scale. Such approaches have already been used for determining 59 
pneumonia and SARS-CoV-2 cases from chest X-ray images, with reported accuracy even 60 
higher than expert radiologists based on ground truth from molecular information8,9.  61 
 62 

Taking advantage of these developments in computer vision, recent genetic studies have 63 
successfully applied these methods to generate image derived phenotypes (IDPs) of distribution 64 
of body fat, heart structure, liver fat percentage, and brain morphology, and have linked these 65 
novel traits with genome-wide significant loci10–14. While some recent studies on 66 
musculoskeletal disease employ these novel phenotyping approaches15–17, neither these nor the 67 
studies on other traits have specifically investigated how generating quantitative IDPs that 68 
underlie binary disease status could be used to improve power for gene discovery at biobank 69 
scale. 70 

 71 
Quantitative measurements which provide information about variation in the severity of 72 

progression of the disease are already routinely utilized in predicting an individual's risk for 73 
complex disease in the clinic. For example, LDL cholesterol levels are a quantitative biomarker 74 
measured in blood samples, and are used as a primary biomarker to assess risk for myocardial 75 
infarction, among the leading causes of death worldwide18. Multiple lines of functional evidence 76 
suggest that LDL cholesterol levels are also causally linked to heart disease and lowering LDL 77 
levels over an entire lifetime through the use of statins is the most widely used long term 78 
prescription medication19. In theoretical work, it has been demonstrated that with equal sample 79 
size and when the proportion of cases in a case-control design is equivalent to the prevalence of 80 
the disease in the population, the power of a case-control association study is considerably lower 81 
than that of a quantitative association study. This is in part because key information about 82 
variation in the trait in the sample population is lost when transforming a continuous trait into a 83 
binary one20.  84 
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Building on these foundational ideas, in this work we first trained a binary classification 85 
model to identify knee OA cases at clinical level performance and deployed this at biobank scale 86 
to compare our radiographically obtained results to the ICD-10 record. Second, we trained an 87 
image segmentation algorithm to obtain a quantitative measurement highly correlated with knee 88 
OA severity, mJSW, to examine differences in power between GWAS carried out using 89 
quantitative approaches versus a case-control design. Third, we generate PRS for each phenotype 90 
to evaluate if improvements in statistical power to find novel loci translate to better prediction of 91 
ICD-10 record knee OA (M17) in a hold-out dataset of over 300,000 individuals. Finally, we 92 
examined epidemiological associations to link our IDPs with an outcome of major clinical 93 
relevance. 94 

Results 95 

Dataset, and quality control of DXA imaging and genetic data 96 

To study the genetic basis of knee phenotypes, we jointly analyzed paired DXA imaging 97 
and imputed genome sequence data of 42,284 individuals in the UKB. We first restricted the 98 
dataset to individuals of white British ancestry, applied standard variant and sample QC and 99 
analyzed 12.1 million common bi-allelic SNPs with minor allele frequency > 0.1%1 (Methods: 100 
Genetic QC). Next, as the bulk imaging data from the UKB comprised of DXA images that 101 
reflect scans of different body parts, we used a deep learning approach15 to subset the imaging 102 
dataset to only AP view knee scans. We then removed individuals that had outlier image 103 
resolutions or poor quality DXA scans, and padded images to a standard size for processing (see 104 
Methods: Image segmentation, phenotype measurement and quality control). Post quality-105 
control, we were left with combined imaging and genetic data for a total of 29,257 individuals 106 
aged between 46 to 81 with a median age of 64, and a sex ratio of 0.99, consistent with the 107 
overall distribution in the UKB (Methods: UKB participants and dataset). 108 

Automated phenotyping of knee OA achieves clinician level performance 109 

To perform automated phenotyping for knee OA based on radiography, we used a binary 110 
classification approach based on the Kellgren-Lawrence (KL) grading system21 (usually graded 111 
0-4, where a 4 is considered the most severe case of radiographic OA) to determine case or 112 
control status for each individual reflecting different levels of joint space narrowing, subchondral 113 
sclerosis, and the presence of osteophytes. Cases were considered individuals with a KL grade of 114 
3 or higher - severe enough that annotating clinicians would consider a candidate for joint 115 
replacement surgery in the clinic. Controls were considered individuals who would not be 116 
candidates for joint replacement - a grade 2 or lower (Methods: Binary classification: DXA scan 117 
annotation procedure). To train the deep learning model, we obtained case-control assessment on 118 
546 images based on the annotations of three board-certified orthopedic surgeons who 119 
independently assessed each image. We then split the dataset so that 80% (436 images) of the 120 
data was used for training and 20% (110 images) was used for validation. We next trained a 121 
binary classifier (which we refer to as DL-binary) using transfer learning with the ResNet-101 122 
architecture22 (Methods: Binary classification: Network architecture and model training). The 123 
sensitivity and specificity of our model on validation data (that is not used as part of the training 124 
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process) was within the range of the sensitivity and specificity obtained between two clinicians 125 
grading the same set of images (Clinician sensitivity: 0.92 ± 0.05, DL-binary sensitivity: 0.82 ± 126 
0.07 Clinician specificity: 0.95 ± 0.05, DL-binary specificity: 0.95 ± 0.06.) (Fig. 1c, d). 127 

Fig. 1: A deep learning process for automated phenotyping of radiographic knee OA.128 

129 
a ResNet-101 based classifier for binary classification of knee OA, showing an example of a 130 
typical individual diagnosed as a case compared to a control individual. b Post-classification 131 
analysis using highlighting regions of the knee that are discriminatory for knee OA. We 132 
confirmed joint space narrowing and sclerosis of the bone (important features for case 133 
classification) are present in cases not reported in the ICD-10 record but identified by the model. 134 
c Inter-rater comparison of two clinicians grading a total of 200 AP view knee DXA scans split 135 
roughly equally between cases and controls. d Confusion matrix showing performance of the 136 
DL-binary model on validation data. e Receiver operating characteristic (ROC) curve for DL-137 
binary, showing performance of the model under different classification thresholds. 138 

Image based phenotyping reveals twofold more cases compared with ICD-10 139 
records 140 

We next deployed our trained model on the remaining 28,725 images of knee DXA scans 141 
from the dataset. We considered an individual a 'case' if our model predicted the individual to 142 
have knee OA on either the left or the right knee, and a control otherwise in line with the ICD-10 143 
code M17 for knee OA. We then assessed how many cases were determined by our deep 144 
learning based binary classification of radiographic OA as compared to what already exists in the 145 
ICD-10 code M17. We found that after deploying the DL-binary classifier, we determined 2,603 146 
more cases compared with the ICD-10 code for knee OA (ICD-10 code M17 1,085 cases, DL-147 
binary 3,016 cases) (Fig. 1a). To provide additional support for cases reported by DL-binary that 148 
were not already reported in the ICD-10 code M17, our clinical team examined 100 individuals 149 
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manually and confirmed the presence of osteophytes, reduced joint space and in some cases 150 
subchondral sclerosis (Fig. 1b). As these alone may not be diagnostic, we also investigated 151 
associations with three self-reported measures of knee pain in the UKB: knee pain experienced in 152 
the past month (binary), knee pain for 3+ months (binary, and reflecting knee pain experienced 153 
over a long duration) and rating of knee pain in the past three months (scale from 0 - 10). We 154 
found that in individuals who were newly identified as cases, the rate of self-reported knee pain 155 
was significantly higher compared to control individuals (individuals not diagnosed by ICD-10 156 
code M17 or by DL-binary) across all three measures we examined (recent pain reported as knee 157 
pain in the past month: 49.4% in cases and 27.2% in controls, chi-square statistic = 536.6, p = < 158 
2.2 × 10-16, chronic pain as determined by knee pain lasting 3 or more months: 80.4% in cases 159 
and 70.6% in controls, chi-square statistic = 28.29, p = 1.5 × 10-7 and severity of pain reported in 160 
the last 3 months: mean rating of 3.33 in cases and 2.58 in controls, t-test p = 1.45 × 10-15). These 161 
results suggest that knee OA is likely underdiagnosed in the ICD-10 record and that our 162 
approach is capable of identifying additional true cases not already present in the EHR. 163 

Image segmentation to measure joint space width 164 

To examine knee OA severity beyond simple case-control assessment, we developed a 165 
method to obtain a quantitative measurement from knee DXA scans known to be highly 166 
associated with the disease: the minimum inter-bone joint space between the femur and tibia, 167 
which we refer to as mJSW. To perform automated measurement on the UKB dataset, we first 168 
collected training data for 63 DXA scan derived images of the knee (40 training, 23 validation). 169 
On each of these images we labeled the positions of the femur, tibia and fibula at pixel level, 170 
which were then validated by a team of clinicians. We then trained a deep learning model based 171 
on the U-Net architecture23 with a 34-layer ResNet encoder22 to perform semantic segmentation 172 
of the femur, tibia and fibula in each DXA image at pixel-level resolution (Fig. 2a). After quality 173 
control and image normalization (Methods: DXA scan image quality control and 174 
standardization), we computed mJSW by measuring the distance between the femur and tibia 175 
along multiple positions on the medial, lateral and center axes of the joint. We then computed the 176 
average of these distances for each leg (Fig. 2b). The mJSW measurement is defined as the 177 
smallest of the two averages for either leg, returning one phenotype measurement per individual. 178 
If the individual only had a right or left leg DXA scan, this was used as the mJSW measurement 179 
for that individual. To standardize mJSW measurements across image resolutions, we regressed 180 
each of the joint space lengths on the overall height of the individual (Methods: Image 181 
segmentation: Measurement and quality control). 182 

 183 
We evaluated the performance of the segmentation model in several ways. First, the set 184 

accuracy, the correspondence between labeled data and annotation of the trained model on 185 
validation data, was 0.99. Second, the correlation between measurements taken between the right 186 
and left leg was 0.82 (Fig. 2c). Third, the correlation between images taken of the same person 187 
across two imaging visits was 0.88, despite changes in image resolution, scanner, technician and 188 
imaging position, demonstrating that our mJSW measurement process is fairly consistent across 189 
biological replicates (Fig. 2d). We do not expect to see 100% concordance across these 190 
replicates as joint space width often can change in a period of more than 2 years particularly in 191 
older individuals, in part due to possible knee joint cartilage degeneration. Fourth, we examined 192 
the relationship between mJSW and OA status, both using DL-binary and the ICD-10 code M17 193 
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case-control data (Fig. 2e). As expected, mJSW was significantly lower in cases compared to 194 
controls regardless of which case annotation we used (t-test p < 2.2 × 10-16, and p < 2.2 ×10-16 for 195 
DL-binary and ICD-10 code M17 respectively). Finally, we examined the relationships between 196 
mJSW and age - which is known to be highly associated with knee degeneration (Fig. 2f). Again, 197 
as expected, we found that the mJSW decreased significantly with age (linear regression, Beta = 198 
-0.028, p < 2.2 × 10-16). 199 
 200 
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Fig. 2: Deep learning based image segmentation for minimum joint space width (mJSW). 240 

 241 
 242 

a Deep learning based image segmentation labeling the femur, tibia, fibula, and background 243 
based on a U-Net architecture. b Measurement of mJSW between the tibia and the femur taken 244 
by the average of 3 points each in the lateral, center and medial portions of the knee joint. c 245 
Correlation of mJSW between the right and left leg of the same individual (n=29,257). d 246 
Correlation in calculated mJSW between the first and second imaging visit for the same 247 
individual (n=461). e mJSW is narrower in cases compared to controls, using both ICD-10 code 248 
M17 and DL-binary case identification. f Average mJSW decreases significantly with increasing 249 
age (ages 48 - 79, r = 0.88, p-value < 0.0001). Circle size corresponds to the number of 250 
individuals within each age group, with larger diameters equating to higher sample size relative 251 
to smaller circles. 252 
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Genetic associations using image derived phenotypes 253 

 Having obtained IDPs related to knee OA, we performed GWAS to link these phenotypes 254 
to their genetic basis. After generating summary statistics for each genetic association (Fig. 3), 255 
we estimated SNP heritability using LD Score regression24 for the three phenotypes: (1) Knee 256 
OA as determined by the ICD-10 code M17 data from UKB, (2) Knee OA as determined using 257 
DL-binary and (3) mJSW, the quantitative phenotype highly correlated with severity of knee 258 
OA. The heritability of both binary phenotypes was low (ICD-10 code M17: 0.02 ± 0.02 and 259 
DL-binary: 0.04 ± 0.02). In contrast the heritability of the quantitative phenotype mJSW was 260 
0.24 ± 0.02. Genomic inflation for the three phenotypes also confirmed this trend, with lambda 261 
for ICD-10 code M17: 1.0, DL-binary: 1.01, and mJSW: 1.06. Deviations from expectation 262 
across the genome are visualized in the qqplots inserts on Fig. 3. We found 18 independent loci 263 
that reached genome-wide significance in the mJSW GWAS, including one that was also 264 
significant in a previously reported GWAS for knee OA with 62,497 cases and 333,557 265 
controls25 (Fig. 3). We found one locus and six genome-wide significant loci with either binary 266 
phenotype respectively (DL-binary and ICD-10 code M17), though mJSW and DL-binary had a 267 
genetic correlation of -0.92 ± 0.25 (Methods: Heritability and genetic correlation). This suggests 268 
substantial improvements in power from using a continuous, quantitative measure associated 269 
with knee OA disease severity. 270 
 271 
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 9 

Fig. 3 Manhattan plots for GWAS performed using three knee OA phenotyping methods. 299 

 300 
 301 
a ICD-10 code M17 defined knee OA case and control status. b The deep learning based 302 
automated case-control phenotype, DL-binary. c The deep learning based quantitative 303 
endophenotype, mJSW. Loci over the genome-wide significance threshold (p = 5 × 10-8) that are 304 
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in close proximity to only a single gene are annotated. Inset: Quantile-quantile (qq) plot of 305 
deviation of the observed p-value from the theoretical distribution, along with the λ value 306 
quantifying genomic inflation. 307 

Polygenic risk scores for knee joint space are highly predictive of knee OA 308 

         As our GWAS for mJSW identified many more loci of genome-wide significance 309 
compared to DL-binary or ICD-10 code M17, we wanted to assess if this translated to improved 310 
power to predict knee OA in individuals outside of our DXA imaged sample. We computed PRS 311 
using clumping and thresholding (selecting variants below different p-value thresholds ranging 312 
from 1 to 1 × 10-6) from the GWAS of ICD-10 code M17, DL-binary and mJSW, and deployed 313 
these scores on 371,686 individuals in the population who were not included in the GWAS 314 
(Methods: Polygenic Risk Scoring). We carried out logistic regression with binary presence or 315 
absence of ICD-10 code M17 diagnosed knee OA as the outcome, using z-scores generated from 316 
each of the PRSs as the predictor variable, and the first 20 PCs, age, sex, height and BMI as 317 
covariates. After controlling for these variables and performing multiple hypothesis testing 318 
correction at the level of the total number of associations performed, the mJSW PRS remained 319 
independently associated with knee OA diagnosis regardless of p-value threshold, but the DL-320 
binary PRS or the ICD-10 code M17 PRS were only significantly associated with knee OA at 321 
certain thresholds, again reflecting differences in power between the various GWASs (Fig. 4a). 322 
 323 
Fig 4. Genetic and epidemiological analysis of image derived phenotypes 324 

 325 
a Results of performing logistic regression analysis using the PRS generated from each GWAS 326 
to predict ICD-10 M17 diagnosis on a hold-out dataset of 371,686 UKB individuals, showing the 327 
regression estimate obtained at each p-value threshold (and 1 standard error), colored by whether 328 
the test was significant after Bonferroni correction. b Boxplots showing the distribution of 329 
mJSW in patients who experienced a fracture in the past 5 years (n=24,147). mJSW was 330 
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significantly predictive of fractures in logistic regression analysis, asterisks correspond to p-331 
value significance (p < 1.10 × 10-3). 332 

Quantitative phenotyping allows for novel epidemiological associations 333 

In addition to improving power in genetic analysis, we wanted to examine if we could use 334 
the mJSW phenotype to improve statistical power to detect an important epidemiological 335 
outcome in the health record, fractures within the last five years. After controlling for height, 336 
sex, age and body fat percentage, mJSW was significantly predictive of fracture in the last five 337 
years (p = 1.10 × 10-3) in logistic regression analysis, but not with DL-binary (fractures: p = 338 
0.79) or with ICD-10 code M17 (p = 0.171) (Fig. 4b). While previous work on a much smaller 339 
sample size of ~2000 individuals has shown that knee OA is associated with falls26, our results 340 
specifically implicate joint space narrowing with an independent increased risk of fractures, a 341 
known cause of death in individuals 65 and over27. These results emerge only upon examining 342 
our quantitative phenotype mJSW which captures an element of disease severity, revealing knee 343 
OA as an important risk factor for potentially fatal complications from fractures in older adults. 344 

Discussion 345 

 In this study, we demonstrate a deep learning method to directly phenotype OA cases and 346 
controls (DL-binary), as well as joint space narrowing (mJSW), from DXA scan derived AP 347 
view knee radiographs of the UKB. We compared this image derived phenotyping approach with 348 
case-control status already available in the ICD-10 record code M17 on the same set of 349 
individuals, to determine if image-derived phenotyping approaches have an effect on statistical 350 
power in GWAS.  351 
 352 

We find that the case-control phenotyping using the DL-binary classification method 353 
enables us to raise the case count by greater than two fold and circumvents some issues with 354 
sourcing cases from the EHR such as variation in specific definitions of OA or differences in a 355 
clinician’s perception of the disease28. While previous work has shown that the ICD-10 record 356 
can have issues identifying individuals with disease for a variety of reasons, our study carrying 357 
out image based diagnosis at large scale provides evidence of the extent to which the record can 358 
be incomplete. 359 
 360 

Additionally, both case-control methods lack information about disease severity, which 361 
may explain why they are underpowered compared to the quantitative measurement mJSW in the 362 
genetic and epidemiological analyses we investigate. The high genetic correlation between 363 
mJSW and DL-binary (92%) suggests that while the binary case-control phenotype of knee OA 364 
is underpowered compared with mJSW, the genetic relationships found between the two 365 
phenotypes are consistent with one another. 366 

 367 
While computer vision approaches to extract and analyze DXA scan derived phenotypes 368 

are not themselves novel16,17,29,30, this work is amongst the first to use this approach on a disease 369 
for which diagnosis is primarily radiographic, to demonstrate that having a quantitative 370 
endophenotype that captures additional information about variation in disease severity improves 371 
power for genomic and epidemiological analysis. Although not based on the imaging data, two 372 
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novel phenotyping methods leveraging deep learning to impute missing data in the UKB and to 373 
generate disease liability scores from binary case-control data in the EHR have shown significant 374 
boosts in statistical power for genomic studies31,32. Broadly, these and other approaches suggest 375 
that analysis of biobank data could benefit from quantitative refinement of disease phenotypes 376 
using alternative approaches. 377 

 378 
One potential limitation of our study is that knee joint space narrowing is both causal and 379 

symptomatic in knee OA progression. As arthritis progresses, the joint space narrows due to the 380 
breakdown of cartilage, causing a resulting increase in pain and difficulty with movement. This 381 
narrowing of the joint space can also cause further damage, due to increased contact pressure at 382 
the affected joint. This makes it difficult to understand the root cause of knee OA with respect to 383 
the mJSW endophenotype, because joint space narrowing can both be a result of OA and a 384 
contributing cause to the progression of the condition. While the DL-binary method discovered 385 
two-fold more cases than what is annotated in the ICD-10 record, it is still likely to be an 386 
undercount due to our choice to use a particular instantiation of the model to limit the false 387 
positive rate as much as possible (Fig. 1e,f). Thus, despite improving the case-control ratio in the 388 
dataset, there may still be additional cases undetected by either method which could further 389 
improve statistical power in GWAS. Third, all GWAS in this work were restricted to individuals 390 
with European ancestry. Thus, the transferability of the specific findings in this genetic analysis 391 
(i.e. loci discovered from mJSW GWAS, trait heritability, and genetic correlation) across 392 
ancestries is not warranted without follow-up analyses. 393 

 394 
Taken together, our study provides a proof-of-concept for the utility of quantitative 395 

phenotyping in biobank scale settings where a direct measurement of disease severity for a 396 
complex disease phenotype is possible. The results of this work suggest that this concept extends 397 
not only to other musculoskeletal diseases in which radiography is one of the primary methods 398 
for diagnosis (for example, directly measuring spinal curvature as opposed to scoliosis 399 
diagnosis), but to other analyses in which one can derive a quantitative alternative to case-control 400 
disease phenotyping.  401 
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Methods 402 

UKB participants and dataset 403 

All analyses were conducted with data from the UKB unless otherwise stated. The UKB 404 
is a richly phenotyped, prospective, population-based cohort that recruited 500,000 individuals 405 
aged 40–69 (mean 58) in the UK via mailers from 2006 to 20101 406 
(https://www.nature.com/articles/s41586-018-0579-z). In total, we analyzed data from 402,000 407 
participants with genetic data of self-identified white British ancestry who had not withdrawn 408 
consent as of February 22, 2022. Of this genotyped cohort, 42,284 had available DXA imaging 409 
data. Access was provided under application number 65439.  410 

Dual-energy X-ray Absorptiometry (DXA) Imaging 411 

The UKB has released DXA imaging data for a total of 50,000 participants as part of a 412 
bulk data field ID. The DXA images were collected using a Lunar iDXA instrument1 (GE 413 
healthcare) in DICOM format. A series of 8 images were taken for each patient: two whole body 414 
images - one of the skeleton and one of the adipose tissue, the lumbar spine, the lateral spine 415 
from L4 to T4, each knee, and each hip. Dual-energy X-ray absorptiometry (DXA) images were 416 
downloaded from the UKB bulk data. The bulk download resulted in 42,284 zip files, each 417 
corresponding to a specific identifier otherwise known as each subject’s EID. The uncompressed 418 
directories corresponding to each imaged subject contained several DXA images of the 419 
individual as described above. For this analysis, only images of the right and left knees from the 420 
AP view were used. It is important to note that all subjects in this analysis were instructed to lay 421 
flat on the DXA scanner machine during imaging, so that all resulting images are non-weight 422 
bearing.  423 

Phenotype and clinical data acquisition 424 

The binary classification of patient disease phenotypes was obtained from a combination 425 
of primary and secondary ICD-10 codes. ICD-10 codes were truncated to only be the initial three 426 
characters. Patients received a "one" if a disease code appeared in their hospital records, and a 427 
"zero" otherwise. Reports of a fracture within the last 5 years of any visit (instance 0 to 3) was 428 
considered a case. Our classification of fractures increases case counts while excluding any 429 
childhood incidence. 430 

 431 
Computing infrastructure 432 
 433 
 We carried out all training using the Python programming language (www.python.org, 434 
version 3.7.7) with the PyTorch33 and Fastai version 134 (https://github.com/fastai/fastai1) 435 
libraries on NVIDIA 1080-TI GPUs on the Maverick2 system and NVIDIA Quadro RTX 5000 436 
GPUs on the Frontera system of the Texas Advanced Computing Cluster using the CUDA 11.1 437 
toolkit. 438 
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DXA scan image quality control and standardization 439 

DXA images in DICOM format were first organized by anatomy following the manifest 440 
files located in each directory output by the imaging machine. DXA scans were subject to further 441 
quality control following the methods described in Kun et al., 202215. Following initial data 442 
cleaning, AP view knee DXA scans were converted from DICOM to JPG format using the 443 
pydicom library35. To prepare a uniform set of images for segmentation, the numpy36 and 444 
opencv-python37 libraries was used to pad images to a standard width and height (800 ×1000 445 
pixels), and outlier images that had resolutions outside of this standardized range were removed 446 
from all downstream analyses. Padded images were subject to further image resizing during 447 
training of the U-net architecture23 for segmentation (using a progressive resizing technique), but 448 
not during training of the classification model. 449 

Binary classification: DXA scan annotation procedure 450 

546 images were sampled from the UKB for orthopedic surgeons to annotate. Images 451 
were sampled with reference to the ICD-10 code M17 to create a balanced dataset for training 452 
and validation. The KL grade21 based phenotype (DL-binary) was defined taking the following 453 
observations as input: presence or absence of osteophytosis, visible sclerosis of bone, and 454 
narrowing of the inter-bone joint space between the femur and tibia). Participating surgeons were 455 
instructed to annotate images as 0 or 1 based on whether or not each image qualified as KL grade 456 
3 or greater, meaning that based on the radiographic evidence of knee OA the individual would 457 
be a candidate for joint replacement surgery. We considered 0 to be a control (but not necessarily 458 
devoid of any radiographic OA symptoms) and 1 to be a case (KL grade 3 or 4) warranting joint 459 
replacement. Surgeons went through a series of two rounds of independent grading on two 460 
datasets. Following a review of inter-rater reliability, the three annotating physicians went 461 
through a series of consensus grading, resulting in the final DL-binary dataset used for training 462 
and validation. For the DL-binary classification model, 80% of the data was reserved for training 463 
and 20% was reserved for validation.  464 

Binary classification: Normalization and data augmentation 465 

Prior to performing binary classification, images were scaled to 224 × 224 pixels and 466 
normalized using ImageNet statistics. The ResNet-101 convolutional neural network (CNN) 467 
weights were initialized using the Kaiming normal method22. While training, multiple 468 
transformations were applied to the input images to regularize the model. These included a 469 
padding process as described above, as well as other transformations such as vertical flipping of 470 
the image, random rotation, zooming, warping, light and contrast change. This data 471 
augmentation was performed to improve the model's ability to generalize in its predictions 472 
relative to variation in contrast and other image artifacts common to DXA scanning38. 473 

Binary classification: Network architecture and model training  474 

We constructed a ResNet-101 CNN22 for our binary DXA image classifier, implementing 475 
transfer learning to reduce the amount of training time and resources for our classification task, 476 
using a pre-trained model obtained from training on the ImageNet39 (image-net.org) dataset and 477 
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transferring the weights from this model to earlier layers of the network. We applied batch 478 
normalization and ReLU after each layer of the CNN to reduce overfitting and provide additional 479 
regularization using the Fastai version 134 and PyTorch33 default parameters, and dropout was 480 
applied to the fully connected portion of the network. The output of the model is a binary 481 
classification for each DXA scan derived image passed in, a one-dimensional tensor containing 482 
values of 0 or 1 (control and case status), produced from passing the final layer of the network 483 
(the classification head) through the sigmoid and argmax activation functions. The batch size for 484 
all models was 64. We first plotted cross entropy loss as a function of learning rate in order to 485 
select the optimal hyperparameters. We trained the model for 42 epochs with discriminative 486 
learning rates ranging from 1 × 10-3 to 1 × 10-6. 487 

Image segmentation: DXA scan annotation procedure 488 

 We collected human generated annotations of each anatomical structure present in 63 489 
DXA scans of the knee (40 training, 23 validation). Annotations were produced at the pixel level 490 
for each of the following segments of an AP knee DXA scan the: (1) femur, (2) tibia and (3) 491 
fibula. All annotations were reviewed by an orthopedic surgeon prior to training. 492 

Image segmentation: Network architecture and model training  493 

We trained a U-net architecture23 with a 34-layer ResNet encoder22 to perform semantic 494 
segmentation of the knee joint, annotating the femur, tibia, and fibula coded as 1, 2 and 3 495 
respectively at pixel-level resolution. We used a batch size of 4 for the segmentation model. We 496 
used the same transfer learning approach with the ImageNet dataset as described for the binary 497 
classifier, as well as a progressive upsampling strategy during training. First we down sampled 498 
masks to half their size, trained for 28 epochs, saved the model, then restarted the kernel and 499 
trained the saved model on regular now upsampled mask. This training procedure was used to 500 
efficiently utilize memory and reduce the model's time to convergence. As described previously, 501 
we plotted cross entropy loss as a function of learning rate in order to select the optimal 502 
hyperparameters.  503 

Image segmentation: Measurement and quality control  504 

After performing segmentation, we computed the minimum inter-bone knee joint space 505 
distance in pixels (of either leg), abbreviated as mJSW.  Segmentation masks were processed 506 
using software developed for this analysis, written in python using the numpy36 and opencv-507 
python37 libraries (https://github.com/briannaflynn/UKB_knee_segmentation). Labeled polygons 508 
within each segmentation mask were processed independently, converted to an identity matrix of 509 
ones and zeros (ones being the polygon processed, for example the femur, tibia or fibula). From 510 
this identity matrix, two matrices were produced from indexes produced and along the x and y 511 
axes. These indexes were used in the computation of basic features of the polygon such as 512 
maximum width, and maximum height. Indices were saved from this process and were later used 513 
to compute measurements of joint space width between the femur and tibia. 514 

 515 
A major issue in combining our analysis across input pixel ratios was that these pixel 516 

ratios represented different resolution scalings due to variable distance between the scanner and 517 
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the patient as a function of DXA scanner type and the size of the patient. To control for this 518 
scaling issue and to standardize the images, we chose to regress our mJSW measurements across 519 
all image resolutions with height obtained from the UKB. The estimates obtained from this 520 
regression were used to obtain a scaling factor for each image resolution that were then used for 521 
measurement normalization. We validated this regression and normalization procedure by 522 
comparing measurements taken on individuals who had DXA scans taken at two imaging 523 
assessments at different resolutions. 524 

Genetic QC 525 

For all genome-wide association analyses, we filtered the participants to Caucasian 526 
individuals (FID 22006) from the white, British population as determined by genetic PCA (FID 527 
21000) and participant surveys. We removed individuals whose reported sex (FID 31) did not 528 
match genetic sex (FID 22001), had evidence of aneuploidy on the sex chromosomes (FID 529 
222019), were outliers of heterozygosity or genotype missingness rates as determined by UKB 530 
quality control of sample processing and preparation of DNA for genotyping (FID 22027), or 531 
had more than nine third-degree relatives or any of unknown kinship (FID 220021). In total 532 
402,233 individuals remained. We further filtered to imaged participants (FID 20158) with 533 
complete DXA measurements (FID 12254); 33,475 remained. 534 

 535 
Imputed genetic data for 487,253 individuals was downloaded from UKB for 536 

chromosomes 1 through 22 (FID 22828) then filtered to the quality-controlled subset using 537 
PLINK240. All duplicate single nucleotide polymorphisms (SNPs) were excluded (--rm-dup 538 
'exclude-all') and restricted to only biallelic sites (--snps-only 'just-acgt') with a maximum of 2 539 
alleles (--max-alleles 2), a minor allele frequency of 0.1% (--maf 0.001), an individual 540 
missingness rates no more than 2.5% (FID 22005), and genotype missingness of no more than 541 
5% (--maxMissingPerSnp 0.05). In total 14,846,570 SNPs remained in the imputed dataset. Non-542 
imputed genetic data did not contain duplicate or multiallelic SNPs but were filtered to the 543 
quality-controlled subset; 703,993 SNPs remained. 544 

GWAS 545 

GWAS was carried out using PLINK2, with a minor allele frequency of 0.001, a 546 
missingness per SNP of 5%, and a missingness per individual of 2.5%. Covariates were the first 547 
20 genetic principal components provided by UKB (FID 22009), sex (FID 31), age (FID 21022), 548 
BMI (FID 21001) and standing height taken at the imaging assessment, instance 2 (FID 50). The 549 
final population size for all GWAS after both genetic and imaging QC was 29,257, and all 550 
GWASs had the same number of SNPs: 12,129,706. SNPs in each resulting GWAS were 551 
clumped using --clump with a significance threshold of 5.0 × 10-8, a secondary significance 552 
threshold of 1.0 × 10-4 for clumped SNPs, an r2 threshold of 0.1, and a 250 kb threshold of 553 
physical distance. SNPs were assigned to genes with --clump-verbose --clump-range glist-hg19. 554 

Heritability and genetic correlation 555 

LD Score v1.0.1 was used to compute linkage disequilibrium regression scores per 556 
chromosome with a window size of 1 cM24 with the non-imputed genetic data. The heritability of 557 
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each phenotype was then assessed using LD score regression24 with the same covariates as the 558 
GWAS. We examined the pairwise genetic correlation of the DL-binary and mJSW using GCTA 559 
version 1.93.2 beta for Linux41. We created the genetic relationship matrix for our quality-560 
controlled subset with a minor allele frequency of 0.001, and then ran GCTA, using the first 20 561 
genetic principal components provided by UKB (FID 22009), sex, age, BMI and standing height 562 
as covariates. 563 

Polygenic Risk Scoring 564 

PRSs were computed with the IDP GWAS summary statistics in PLINK (v1.9) using the 565 
clumping and thresholding method. GWAS were clumped using an r2 threshold of 0.1 and a 250 566 
kb threshold of physical distance for clumping. Significance thresholds of 1, 0.1, 1 × 10-2, 1 × 10-567 
3, 1 × 10-4, 1 × 10-5, and 1 × 10-6 were used to compute PRSs for all three phenotypes run in 568 
GWAS. We then regressed ICD-10 code diagnosis of knee OA on the z-scores generated from 569 
each PRS obtained for each phenotype in all genotyped non-imaged individuals of white British 570 
ancestry (who had also undergone genetic QC), n = 371,723. In our logistic regressions we also 571 
controlled for age, sex, height, BMI and the first 20 principal components as covariates for all 572 
phenotypes. 573 

Transcriptome Analysis 574 

 To connect the genetics of joint space with the biology underlying synovial membrane 575 
differences in individuals with knee OA, as synovial fluid is functionally important in OA 576 
progression and inflammation42,43. We looked for enrichment of genes associated with our 577 
mJSW GWAS in gene expression data obtained from synovial tissues in 12 knee OA patients44. 578 
A set of inflamed as well normal synovial tissue was obtained from each patient for a set of 24 579 
data points. This microarray gene expression data was obtained from the GEO data repository 580 
GSE46750, and the data were quantile normalized and log-transformed. Gene level p-values for 581 
our skeletal phenotype GWAS were first calculated using the positional mapping tool with 582 
default settings in SNP2GENE (version 1.3.7)45. We then performed gene property analysis in 583 
MAGMA (version 1.10)46 to determine associations between genes implicated in our mJSW 584 
GWAS and genes expressed in normal as well as inflamed synovial tissue. We found enrichment 585 
in our mJSW genes for gene expression from both normal and synovial tissue obtained from 586 
knee OA patients but no difference in enrichment from differential expression of normal and 587 
inflamed tissue Table 1. 588 
 589 

VARIABLE ESTIMATE ESTIMATE_STD SE P-VALUE 

normal_avg 0.017 0.029 0.004 2.84E-05 

inflammatory_avg 0.017 0.029 0.004 3.05E-05 
 590 
Table 1. Results of enrichment analysis for genes significantly associated with the mJSW 591 
phenotype from gene expression data obtained from normal (normal_avg) and inflamed 592 
(inflammatory_avg) synovial tissue. The statistics are produced from a one-sided association test 593 
between the phenotype and the 12 normal and 12 inflammatory data points. 594 
  595 
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Data availability 596 
 597 

Deep learning and image processing tools can be found at tools can be found at 598 
https://github.com/briannaflynn/UKB_knee_segmentation and 599 
https://github.com/briannaflynn/dxaconv/. GWAS summary statistics are available at 600 
https://utexas.box.com/s/8stbz74t9hrx7fdbgl0gcqi66miodl92. Individual level information of 601 
image derived phenotypes has been reported back to the UKB and will be available upon 602 
publication. 603 
 604 
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