
Potentially  causal  associations  between  placental  DNA  methylation  and
schizophrenia and other neuropsychiatric disorders

Ariadna  Cilleros-Portet1,  Corina  Lesseur2,  Sergi  Marí1,  Marta  Cosin-Tomas3,4,5,  Manuel  Lozano6,7,
Amaia  Irizar4,8,9, Amber  Burt10, Iraia  García-Santisteban1,  Diego  Garrido  Martín11,12,  Geòrgia
Escaramís4,13, Alba Hernangomez-Laderas1, Raquel Soler-Blasco4,6,14, Charles E. Breeze15, Bárbara P.
Gonzalez-Garcia1,  Loreto  Santa-Marina4,9,16,  Jia  Chen2,  Sabrina  Llop4,6,  Mariana  F.  Fernández4,17,
Martine  Vrijhed3,4,5,  Jesús  Ibarluzea4,9,16,  Mònica  Guxens3,4,5,18,  Carmen  Marsit10,  Mariona
Bustamante3,4,5, Jose Ramon Bilbao1,19, Nora Fernandez-Jimenez1*

1Department  of  Genetics,  Physical  Anthropology and Animal Physiology,  Biocruces-Bizkaia Health
Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain. 
2Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai,
New York, NY, USA. 
3ISGlobal, Barcelona, Spain. 
4Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud
Carlos III, 28029, Madrid, Spain.
5Universitat Pompeu Fabra, Barcelona, Spain.
6Epidemiology  and  Environmental  Health  Joint  Research  Unit,  FISABIO-Universitat  Jaume  I-
Universitat de València, Valencia, Spain. 
7Preventive  Medicine  and  Public  Health,  Food  Sciences,  Toxicology  and  Forensic  Medicine
Department, Universitat de València, Valencia, Spain.
8Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU),
Leioa, Spain.
9Biodonostia Health Research Institute, 20013, San Sebastian, Spain.
10Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University,
Atlanta, GA, USA. 
11Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona
(UB), 08028 Barcelona, Spain. 
12Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003
Barcelona, Spain.
13Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències,
Universitat de Barcelona, Casanova 143, Barcelona, Spain.
14Department of Nursing, Universitat de València, Valencia, Spain.
15UCL Cancer  Institute,  University  College  London,  72  Huntley  St,  London  WC1E  6DD,  United
Kingdom.
16Department  of  Health  of  the  Basque Government,  Subdirectorate  of  Public  Health  of  Gipuzkoa,
Avenida Navarra 4, 20013, San Sebastian, Spain.
17Biomedical Research Center (CIBM) & Department of Radiology and Physical Medicine, School of
Medicine University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de
Granada (ibs.GRANADA), 18012 Granada, Spain.
18Department  of  Child  and  Adolescent  Psychiatry/Psychology,  Erasmus  MC,  University  Medical
Centre, Rotterdam, The Netherlands.
19CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.07.23286905doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.07.23286905
http://creativecommons.org/licenses/by-nc-nd/4.0/


*Corresponding author:
Nora Fernandez-Jimenez, PhD
Assistant Professor in Medical Genetics
Immunogenetics Research Laboratory (IRLab)
Department of Genetics, Physical Anthropology and Animal Physiology
María Goyri building - lab 2.06
Faculty of Medicine and Nursing - office AM7.2
Biocruces-Bizkaia Health Research Institute
University of the Basque Country - UPV/EHU
nora.fernandez@ehu.eus
tel.: (+34) 94 601 7765 (lab) / 2909 (office)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.07.23286905doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286905
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract
Increasing evidence supports the role of placenta in neurodevelopment and potentially,  in the later
onset  of  neuropsychiatric  disorders.  Recently,  methylation  quantitative  trait  loci  (mQTL)  and
interaction QTL (iQTL) maps have proven useful to understand SNP-genome wide association study
(GWAS) relationships, otherwise missed by conventional expression QTLs. In this context, we propose
that part  of the genetic predisposition to complex neuropsychiatric disorders acts through placental
DNA methylation (DNAm). We constructed the first public placental  cis-mQTL database including
nearly eight million mQTLs calculated in 368 fetal placenta DNA samples from the INMA project, ran
cell type- and gestational age-imQTL models and combined those data with the summary statistics of
the largest GWAS on 10 neuropsychiatric disorders using Summary-based Mendelian Randomization
(SMR)  and  colocalization.  Finally,  we  evaluated  the  influence  of  the  DNAm  sites  identified  on
placental gene expression in the RICHS cohort. We found that placental cis-mQTLs are highly enriched
in  placenta-specific  active  chromatin  regions,  and  useful  to  map  the  etiology  of  neuropsychiatric
disorders at prenatal stages. Specifically, part of the genetic burden for schizophrenia, bipolar disorder
and major depressive disorder confers risk through placental DNAm. The potential causality of several
of the observed associations is reinforced by secondary association signals identified in conditional
analyses,  regional  pleiotropic  methylation  signals  associated  to  the  same  disorder,  and  cell  type-
imQTLs, additionally associated to the expression levels of relevant immune genes in placenta.  In
conclusion, the genetic risk of several neuropsychiatric disorders could operate, at least in part, through
DNAm and associated gene expression in placenta.  
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Introduction
The impact of the intrauterine environment on development and health, both fetal and long-term, has
been known for many years1. In this line, the developmental origins of health and disease (DOHaD)
hypothesis postulates that perinatal and early life environments can impact fetal and later-life health2.
Prenatal  stress  affects  the  quality  of  the  intrauterine  environment,  and  is  highly  related  to
cardiovascular  and metabolic,  as  well  as  behavioral  and neurodevelopmental  disorders3.  Thus,  the
placenta is an ephemeral fetal  organ that is uniquely situated to evaluate prenatal exposures in the
context of DOHaD, because it manages the transport of nutrients, oxygen, waste, and endocrine signals
between mother and fetus4.  Additionally,  the placenta constitutes the interface between mother and
child during pregnancy and is the maximum regulator of the prenatal milieu, having a key role in the
growth and the neurodevelopment of the fetus5. Hence, the placenta has been described as the third
brain  that  links  the  fetal  brain  with  the  mature  maternal  brain,  thus  becoming  the  cornerstone  to
understand  the  prenatal  environmental  effects  on  neurodevelopment6,  and  potentially,  on  the
appearance of neurodevelopmental and neuropsychiatric disorders later in life. 

Particularly  in  the  case  of  schizophrenia  (SCZ),  many  susceptibility  genes  have  been  identified,
demonstrating  a  remarkable  genetic  basis,  but  a  considerable  amount  of  research  suggest  that
environmental  factors may also play a role7.  The neurodevelopmental hypothesis  of SCZ was first
proposed by Daniel Weinberger in 1987 and has been reinforced in the last decades, with increasing
evidence of neurodevelopmental abnormalities contributing to the pathophysiology of the disease8,9,10.
The  central  argument  of  this  hypothesis  states  that  abnormal  fetal  neurodevelopment  creates  a
vulnerability to develop SCZ later in life. In fact,   experimental evidence states that prenatal insults
such as maternal immune activation (MIA) are associated with SCZ in offspring11. MIA occurs when
inflammatory markers rise above the normal range in pregnancy as a result of maternal inflammation
and can be caused by psychosocial stress, infection, or other factors12.

Besides, there are many studies proposing that the intrauterine environment alters the placental function
through epigenetic mechanisms, such as DNA methylation (DNAm)13. It is very important to note that,
while DNAm is bimodally distributed in most tissues and cell types, it follows a trimodal distribution
in the very specific case of placenta, due to its high content of both partially methylated domains and
CpG positions with intermediate methylation levels14. Although a very recent study has pointed out that
DNAm of healthy donors could be highly cell type-specific, with modest impact of either genetics or
other  factors15,  it  is  worth  to  mention  that  DNAm has  been  considered  as  a  bridge  between  the
environment and the genome that at the same time, is under the control of both environmental and
genetic  factors.  The  peculiarity  of  placenta  as  an  ephemeral  organ  that  connects  two  organisms,
together with its very particular methylome that is remarkably enriched in CpG sites with intermediate
methylation levels14, leads us to speculate that the genome-environment interaction and its impact on
DNAm is very likely unique in placenta and deserves further investigation.

In  the  past  several  years,  different  works  have  demonstrated  that  placental  DNAm is  sensitive  to
environmental factors surrounding the gestation. In 2021 the Pregnancy and Childhood Epigenetics
(PACE)  consortium conducted  a  meta-analysis  on  1,700  placental  samples  and  found  a  placenta-
specific DNAm signature of maternal smoking during pregnancy, with differentially methylated CpG
sites located in active regions of the placental epigenome, and close to genes involved in the regulation
of inflammatory activity, growth factor signaling, and response to environmental stressors16. One year
later,  the  same  consortium reported  in  the  largest  placental  DNAm study  conducted  to  date  that
maternal pre-pregnancy body mass index also impacts the placental methylome, specifically at CpG
sites  located  close  to  obesity-related  genes  and  altogether,  enriched  in  oxidative-stress  and cancer
pathways17.
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Noting the impact of the genetic background on placental  DNAm, several  studies have reported a
number of  methylation quantitative trait  loci  (mQTL) in  placenta and have used them in different
downstream  applications18,19,20,21.  Among  others,  Tekola-Ayele  and  collaborators  showed  candidate
functional pathways that underpin the genetic regulation of birth weight via placental epigenetic and
transcriptomic mechanisms20. However, the catalogue of mQTLs they provided was limited to birth
weight-related genomic loci. More recently, Casazza reported nearly 50,000 placental cis-mQTLs and
2,489 sex-specific  placental  cis-mQTLs21.  They found out  that  placental  mQTLs were  enriched in
genome-wide association  study (GWAS) loci  for  both growth-  and immune-related traits,  and that
male- and female-specific mQTLs were more abundant than non-sex-specific ones. Another remarkable
discovery is that they found a modest enrichment of placental mQTLs in proportion to the calculated
SNP heritability in the case of neuropsychiatric disorders compared to immune- and growth-related
traits.  However,  they  did  not  rule  out  the  possibility  that  a  part  of  the  genetic  susceptibility  of
neuropsychiatric disorders is conferred through modification of the placenta, and if this was the case, it
would be relevant not only in terms of etiopathology, but also from a clinical viewpoint, due to the
importance of localizing therapeutic targets in the right tissues, contexts and developmental stages. 

In cross-tissue analyses, mQTLs have been highlighted as powerful instruments revealing molecular
links to traits otherwise missed by expression quantitative trait loci (eQTL). In fact, recent work by
Oliva et al.  reported that trait-associated variants are more likely to result in detectable changes in
DNAm rather than gene expression, highlighting the relevance of multi-tissue mQTL maps22. On the
other hand, in 2021, cell type-interacting eQTLs were defined as proxies of cell type-specific eQTLs
and were found not to be covered by standard eQTLs, while they appeared to be highly valuable for
gaining a mechanistic understanding of complex trait associations23. Taken together, placenta-specific
mQTLs as well as placenta cell type interacting mQTLs (imQTLs) can be useful tools in the search for
the etiology of genetic associations. In this sense, it  is of outmost importance to make this type of
resources public and available to the scientific community.

Taking  into  consideration  i)  the  increasing  evidence  supporting  the  role  of  placenta  in
neurodevelopment  and  potentially,  in  the  onset  of  neuropsychiatric  traits  and  disorders,  ii)  the
peculiarity of the placental methylome, and iii) the potential of multi-tissue mQTL and imQTL maps to
clarify the etiology of complex traits, we proposed that part of the genetic predisposition to complex
neuropsychiatric  disorders  acts  through  the  placental  methylome.  Thus,  we  constructed  the  first
publicly available placental cis-mQTL database including nearly 8 million nominal mQTLs calculated
in 368 fetal placenta samples, investigated cell type- and gestational age (GA)-imQTLs and integrated
all these data with summary statistics of the largest GWAS on 10 neuropsychiatric disorders, using
Summary-based  Mendelian  Randomization  (SMR)  and  colocalization  approaches.  Finally,  we
evaluated the functional role of the identified DNAm sites on placental gene expression. We found that
placental  cis-mQTLs are  enriched in  placental  active  genomic  regions,  and are  useful  to  map the
etiology of neuropsychiatric disorders to prenatal stages. Specifically, part of the SCZ, bipolar disorder
(BIP) and major  depressive disorder  (MDD) genetic  risk could act  through placental  DNAm. The
potential  causality  of  several  associations  observed  is  reinforced  by  secondary  association  signals
identified  in  conditional  analyses,  regional  pleiotropic  methylation  signals  associated  to  the  same
disorder, as well as cell type imQTLs involved, that additionally associate to the expression levels of
relevant genes in placenta.
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Results

Placental cis-mQTL characterization 
The nominal mQTL database was calculated in 368 fetal placenta DNA samples from the Gipuzkoa,
Sabadell  and València  cohorts  of  the  Infancia  y  Medio  Ambiente  (INMA) project24,  and  contained
7,921,914  cis-mQTLs  (Pnominal <  5x10-8)  with  110,721  and  1,900,580  unique  CpGs  and  SNPs,
respectively. Briefly, placental DNAm was modeled as a function of genotype in 0.5 Mb windows, with
fetal  sex,  5  genotype  principal  components  (PC)  and  Planet-estimated  cell  types25 as  covariates.
Phenotype data of the donor mothers is summarized in Table 1. The vast majority of the SNP-CpG
pairs in cis-mQTLs were located close to each other with a median distance of 44 kb, indicating that
genetically  modulated DNAm is  typically  close to  the implicated regulatory variant,  as  previously
described by other authors26 (Figure 1A).  The distribution of mQTLs across chromosomes was in line
with chromosome length, except for chromosome 6, where a higher numer of CpG-SNP pairs was
observed  (883,548 CpG-SNP pairs  with  8,173 and 153,743 unique  CpGs and SNPs,  respectively)
(Figure 1B). This was expected due to the complex linkage disequilibrium (LD) structure of the Human
Leucocyte Antigen (HLA) region on this chromosome. Additionally, placental cis-mQTLs presented a
uniform distribution of effect sizes and directions (Figure 1C). 

In general, mQTL-CpGs were depleted from CpG islands and promoters (P < 2.2x10-16 and P < 2.2x10-

16,  respectively),  and  enriched  within  gene  bodies  (P =  1.71x10-8)  and  genomic  features  showing
intermediate methylation values such as open sea, and CpG island shelf and shore regions (P < 2.2x10 -

16, P = 3.83x10-7 and P < 2.2x10-16, respectively) (Figure 1D, E and F, and Supplementary Data 1).
Using eFORGE27,28,29, we were able to detect an enrichment in fetal placenta-specific DNase I hotspots
(Figure 1G) and H3K4me1 broadPeaks (Supplementary Figure 1A and Supplementary Data 2), that
mark accessible chromatin and enhancer regions, respectively. Afterwards, we annotated the mQTL-
CpGs to their  closest  genes,  performed a gene set  enrichment  analysis  with the Disease Ontology
database30, and obtained 140 enriched gene sets, including developmental disorder of mental health
(Benjamini-Hochberg P = 1.41x10-10),  psychotic  disorder (Benjamini-Hochberg P = 1.41x10-10)  and
SCZ (Benjamini-Hochberg P = 1.41x10-10) (Supplementary Data 3 and Supplementary Figure 2).

Apart from the nominal cis-mQTLs, permuted and conditional cis-mQTLs were also calculated in our
368 placenta DNA samples. Both permuted and conditional mQTL databases showed a median SNP-
CpG distance of 7kb, remarkably shorter than in the nominal database. Chromosome 6 was no longer
the one showing the highest absolute number of cis-mQTLs (Supplementary Figures 3 and 4). These
two observations were expected considering that both permuted and conditional mQTL analyses give
as a result a reduced number of SNPs per CpG compared to the nominal approach. Additionally, we
observed enrichments and depletions similar to those reported for the nominal database (Supplementary
Figures 1, 3 and 4, and Supplementary Data 1, 2 and 3). When we compared the cis-mQTLs included
in the three different databases, the vast majority of the mQTLs were common. The nominal database
computes all  the possible mQTLs in the SNP-CpG window. Therefore,  as expected,  it  contained a
much larger number of mQTLs than the two other databases (Supplementary Figure 5). 

The  three  complete  placental  cis-mQTL databases  are  publicly  available  online  in  the  following
address: https://smari.shinyapps.io/shi 

Placental cell type- and GA- imQTLs
The  most  abundant  cell  type  in  fetal  placenta  are  syncytiotrophoblasts  (STB).  During  gestation,
undifferentiated trophoblasts (TB) change into fully differentiated STB, a continuous, specialized layer
of epithelial cells31. We estimated the cell-type proportions of our samples by using the reference-based
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method  Planet25.  As  expected,  the  estimated  content  of  STB  was  negatively  correlated  with  the
estimated proportion of TB in our placental samples (P < 2.2x10-16, R2 = -0.89). In turn, STB content
was positively correlated with gestational age (GA) (P < 4.5x10-5, R2 = 0.21) (Figure 2A and 2B). We
calculated STB-, TB- and GA-imQTLs, as proxies for STB-, TB- and GA-specific  cis-mQTLs, and
obtained 202 positive and 728 negative STB-imQTLs, 237 positive and 594 negative TB-imQTLs, and
412 GA-imQTLs (Pinteraction  < 5x10-8) (Supplementary Data 4).  The higher amount of STB-imQTLs,
revealed  a  higher  statistical  power for  the  most  abundant  cell  type,  as  previously  stated  by Kim-
Hellmuth et al23. Out of the 930 STB-imQTLs and 831 TB-imQTLs, 443 were common to both cell
types (Figure 2C). Considering the same allele for both STB and TB, the effect sizes of the shared cell
type-imQTLs were negatively correlated (P < 2.2x10-16, R2 = -0.98) with opposite effect directions as in
the  example  in  Figure  2D,  E  and  F.  Of  note,  most  of  the  overlapping  imQTLs  were  positively
correlated  with  the  STB content,  and  negatively  correlated  with  the  TB abundance  (431/443).  In
contrast,  no overlap was observed with GA-imQTLs (Figure 2C). The effect of GA on the genetic
regulation of placental DNAm seemed to be independent of the cell type composition of each sample
and therefore, rather a matter of time of gestation regardless of the TB to STB transition.

Multi-omics approaches to unravel the placental origin of neuropsychiatric traits and disorders
We selected the largest GWAS for each of the traits analyzed, namely attention deficit and hyperactivity
disorder (ADHD)32, aggressive behavior in children (AGR)33, autism spectrum disorder (ASD)34, BIP35,
internalizing problems (INT)36, MDD37, obsessive-compulsive disorder (OCD)38, panic disorder (PD)39,
suicidal attempt (SA)40 and SCZ41 (Table 2). Most of the studies were carried out in the context of either
the Psychiatric Genomics Consortium (PGC)42 or  the Early Genetics and Lifecourse Epidemiology
(EAGLE)43 consortium. GWAS sample sizes ranged from 6,183 in the case of SA and 500,199 samples
in MDD (Table 2).

We searched for placenta DNAm sites pleiotropically associated with neuropsychiatric disorders using
the SMR and the heterogeneity in dependent instruments (HEIDI) tests included in the SMR software44.
Briefly, SMR was originally developed to test for pleiotropic association between the expression level
of a gene (or the methylation level of a CpG site) and a complex trait of interest using summary-level
data from GWAS and QTL studies. We used the summary statistics of the aforementioned GWAS and
the nominal placental  cis-mQTL database. No significant hits were found for most traits, including
early onset disorders such as ASD and ADHD, and others such as OCD or SA. In turn, multiple SMR
hits  (Bonferroni  PSMR <  0.05 and PHEIDI  > 0.05)  were  identified for  BIP (n=29),  MDD (n=27) and
especially for SCZ (n=188) (Supplementary Data 5). 

To replicate pleiotropic associations from the SMR analyses, we performed a colocalization test with
the same data. The Bayesian colocalization analysis implemented in the coloc R package45 focuses on
finding the intersection between significant variants independently associated with two phenotypes,
comparing the association patterns in the GWAS and QTL analyses across genomic regions, and thus
combining the summary statistics into posterior probabilities for five hypotheses (see Methods for more
information). Colocalization was performed across 64, 102, and 287 genomic regions defined in each
GWAS associated with BIP, MDD and SCZ, respectively. These regions spanned 110,721 placental
DNAm sites from the nominal  cis-mQTL database. In BIP, the posterior probabilities for 47 regions,
involving  488  DNAm  sites  in  537  region-CpG  pairs,  were  supportive  of  a  colocalization  signal
(PPA4>0.8) (Supplementary Data 6). In MDD, the posterior probabilities for 52 regions, involving 284
DNAm  sites  in  295  region-CpG  pairs,  were  supportive  of  a  colocalization  signal  (PPA4>0.8)
(Supplementary Data 6). Finally, in SCZ, the posterior probabilities for 188 regions, involving 2,057
DNAm  sites  in  2,177  region-CpG  pairs,  were  supportive  of  a  colocalization  signal  (PPA4>0.8)
(Supplementary Data 6). When the overlap with SMR hits was assessed, out of the 29 SMR hits in BIP,
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22 DNAm sites (75%) showed evidence of colocalization with BIP. In MDD, from the 27 SMR hits, 13
DNAm sites (48%) showed evidence of colocalization with MDD. And, from the 188 SMR hits in
SCZ, 96 DNAm sites (51%) showed evidence of colocalization with SCZ. 

To provide  more  insights  into  the  functional  relevance  of  our  findings,  we examined associations
between  placental  DNAm  and  placental  gene  expression  for  the  CpGs  from  the  SMR  and
colocalization analyses.  We interrogated expression quantitative trait methylation sites (eQTMs) from
an independent set of 195 fetal placenta samples from the Rhode Island Child Health (RICHS) study46.
Briefly, eQTMs were calculated using linear models in MatrixEQTL, adjusted by fetal sex, 5 gene
expression PCs and Planet-estimated cell types, and considering all the genes in a 0.5 Mb window up
and downstream of each CpG. Among the 29, 27 and 188 SMR-significant DNAm sites identified in
BIP,  MDD  and  SCZ,  we  found  2,  4  and  48  significant  eQTM-genes  (FDR<0.05),  respectively
(Supplementary Data 7), strongly supporting the placental function of the CpGs identified. 

Next,  we  identified the  intersect  between  SMR,  colocalization  and  eQTM  results  for  each  trait
(Supplementary Figure 6). In the case of BIP, two placental DNAm sites that colocalized with two
GWAS loci on chromosomes 3 and 5 showed DNAm levels correlated with the expression of two
nearby genes (ITIH4  and  ZNF592). For MDD, two placental DNAm sites colocalized with a single
MDD-associated genomic locus on chromosome 14, with DNAm levels correlating with the placental
expression of LFRN5. Finally, in SCZ, 28 placental DNAm sites colocalized with 11 SCZ-associated
loci in chromosomes 3, 6, 7, 11, 12, 18, 19 and 22, with DNAm levels that correlated with the placental
expression of  19 nearby genes  (FXR1,  GLB1L3,  HLA-H, IRF3,  NAGA,  PGBD1, PSMG3, RNF39,
SLC6A16,  TOB2P1,  TRIM27,  TXNL4A,  VARS2,  VPS37B,  ZKSCAN4,  ZNF165,  ZNRD1-AS1,
ZSCAN12P1 and ZSCAN23).

One of the overlapping hits in BIP was cg17890764 (Bonferroni PSMR = 0.041) that colocalized with the
BIP-associated region chr3:52214443-53175443 (PPA4 = 0.828). The DNAm levels of this CpG were
negatively correlated with the placental expression of ITIH4 (FDR P = 6.28x10-4, R2 = -0.302), a gene
that  has  been  highlighted  in  an  integrative  analysis  of  BIP GWAS  and  different  regulatory  SNP
annotation datasets, and is known to participate in neuroinflammation47 (Supplementary Figure 7). 

Regarding  MDD,  two  independent,  pleiotropically  associated  CpGs,  cg23217097  and  cg10318063
(Bonferroni PSMR = 0.047 and PSMR = 0.004, respectively), colocalized with the MDD-associated locus
on chr14:41940872-42476274 (PPA4 = 0.977 and PPA4 = 0.974, respectively) (Figure 4). The DNAm
levels of those CpGs correlated with the expression of LRFN5 in placenta (FDR P = 6.08x10-5 and R2 =
-0.342, and FDR P = 1.03x10-13 and R2 = 0.538, respectively). Remarkably, several SNPs in  LRFN5
have  been  found to  be  pleiotropically  associated  with  both  MDD and  chronic  pain,  although  the
effector tissue or cell type have not been fully established48. On the other hand, it is also known that this
gene is  expressed in  TB stem cells,  and therefore could play a role  in placenta49.  Finally,  the two
independent CpGs identified are located in the promoter region of  LRFN5. Altogether, these results
suggest that the reported association is potentially causal, rather than pleiotropic. 

In SCZ, cg03172226 was found to be pleiotropically associated with the disorder (Bonferroni PSMR =
0.032), colocalized with the GWAS peak on chr19:50007909-50252109 (PPA4 = 0.999), and DNAm
levels of the CpG were correlated with placental expression of IRF3 (FDR P = 0.018 and R2 = 0.237)
(Supplementary Figure 8). Importantly, IRF3 is a regulator of type I interferons with a pivotal role in
MIA50. Another example of pleiotropic association with SCZ is cg17805547 (Bonferroni PSMR = 0.032).
This  CpG  colocalized  with  the  SCZ-associated  regions  chr3:179745069-180418069  and
chr3:180475148-181295605  (PPA4  =  0.864  and  0.862,  respectively),  and  its  DNAm  levels  were
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correlated with the expression of FXR1 in placenta (FDR P = 0.027 and R2 = 0.227) (Supplementary
Figure 9). FXR1 promotes TB migration and its mRNA levels have been reported to be decreased in TB
from women with recurrent spontaneous abortions51. Additionally, FXR1 regulation of interneurons in
the prefrontal cortex is critical for SCZ-like behaviors52. 

Finally, we performed a Reactome gene-set analysis53 of the 19 genes at the intersection of the three
approaches in SCZ. We observed an enrichment for 10 gene-sets (Supplementary Data 8), including
immune system pathways such as interferon alpha/beta signaling,  interferon gamma signaling,  and
interferon signaling, supporting the idea of MIA as a link between placenta and SCZ risk. 

Conditional SMR analysis of placental cis-mQTLs, and BIP, MDD and SCZ
The developers of the SMR software designed the HEIDI test assuming a single causal variant in the
cis-mQTL region that affects both DNAm and the trait analyzed44. Under the assumption of pleiotropy,
when there are multiple causal variants in a region, the pleiotropic signal of one causal variant will be
diluted by that of other non-pleiotropic causal variants. We therefore performed a GCTA conditional
analysis54 conditioning for the top associated  cis-mQTL in both the GWAS and mQTL data sets. If
there was a secondary signal, pointed by the presence of heterogeneity (PHEIDI < 0.05) in the cis-mQTL
region, in either the GWAS or the mQTL dataset, we performed another round of conditional analyses
conditioning only on the secondary signal in both the GWAS and mQTL datasets, and then reran the
SMR and HEIDI test at the top  cis-mQTL using the estimates of SNP effects from the conditional
analyses. We applied this approach to those CpGs that passed the SMR test but failed to pass the HEIDI
test. Nevertheless, due to power constrains, only those CpGs that colocalized with one of the three
studied disorders according to coloc were considered.

We discovered a secondary hit in SCZ, in which two independently associated SNPs, i.e. rs3132386
(the  primary  signal)  and  rs16897420  (the  secondary  signal)  had  a  pleiotropic  effect  on  both
cg15026241 and SCZ (Bonferroni PSMR = 0.022 and PSMR = 1.67x10-4, respectively) (Supplementary
Data 5 and 9). This CpG, located in the HLA region, is correlated with the expression of ZSCAN23 in
fetal  placenta  (FDR P = 0.002 and R2 =  -0.282)  (Figure 5 and Supplementary Data  7).  A strictly
intergenic transcript downstream of this gene has already been identified in another SCZ study using a
conditional GWAS/eQTL analysis, but it has not been characterized in detail55. Our results, namely the
presence  of  two  independent  signals  pointing  to  a  single  DNAm  site  that  seems  to  affect  gene
expression  in  fetal  placenta,  together  with  the  fact  that  the  p-values  of  those  SNPs  do  not  reach
genome-wide significance in the original SCZ-GWAS, strongly support causality.

SMR analysis of placental cell type- and GA-imQTLs in BIP, MDD and SCZ
We used SMR to combine imQTLs with the BIP, MDD and SCZ GWAS, and obtained two STB-
imQTLs (one each in BIP and SCZ), five TB-imQTLs (two in BIP, one in MDD and two in SCZ) and
two GA-imQTLs (one each in BIP and SCZ) (Supplementary Data 10 and Supplementary Figure 10).
Remarkably,  we found an  imQTL involving cg27130493 and  rs72743436 (Figure  6).  cg27130493
appeared to be pleiotropically associated with BIP while it changed its methylation levels as a function
of STB proportion, in a rs72743436 genotype-dependent manner. This CpG is located on the gene body
of SMAD3. The placental overexpression of this gene has been described to activate the ability of TB to
form endothelial-like networks, while its defect has been associated with pre-eclampsia56. Additionally,
it is a well-known target for lithium treatment in BIP57.  Finally, rs72743436 is not directly associated
with BIP in the original GWAS, suggesting a possible causal association between placental DNAm and
BIP at this CpG site. Another interesting imQTL-CpG was cg04402684, located on a CTCF binding
region, 32 kb upstream of the HLA-E gene. This CpG was significant in the SMR analyses performed

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.07.23286905doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.07.23286905
http://creativecommons.org/licenses/by-nc-nd/4.0/


with TB-imQTLs in both BIP and SCZ, revealing a common DNAm site associated to both disorders
(Supplementary Figure 10).

Comparison with SMR results for brain mQTLs
Finally,  we  aimed  to  ascertain  the  tissue  specificity  of  our  findings,  and  thus  we  performed  the
abovementioned SMR analyses with fetal brain and brain cis-mQTLs in BIP, MDD and SCZ. The fetal
brain cis-mQTL database was published by Hannon et al. in 201558. Briefly, mQTLs were calculated in
166 human fetal brain samples (56-166 days post-conception). The methylation data was obtained with
the  Infinium HumanMethylation  450K array  from Illumina,  and the  mapping  of  the  mQTLs was
performed with the MatrixEQTL R package59, considering a  cis-window of 0.05 Mb. Only mQTLs
with  a  P <  1.5x10-9 were  made  available,  resulting  in  556,513  fetal  brain  cis-mQTLs  that  were
downloaded from the SMR portal. The second brain  cis-mQTL database was originally from a 2018
publication by Qi et al.60, in which  cis-mQTLs from three different datasets were meta-analyzed: in
particular, 468 brain cortical region samples from the ROSMAP study61, 166 fetal brain samples by
Hannon et al., and 526 frontal cortex region samples62 were included, amounting to a final sample size
of 1,160 brain samples and nearly 6M cis-mQTLs. As in the case of the fetal brain mQTL database, this
dataset was downloaded from the SMR data portal. 

In BIP we obtained 13 and 35 significant SMR hits (Bonferroni PSMR < 0.05 and PHEIDI > 0.05) in the
fetal brain and brain mQTL datasets, respectively (Supplementary Data 11 and Supplementary Figure
11), and with same criteria, we obtained 10 and 23 SMR hits in MDD, and 50 and 188 in SCZ. As
shown in Figure 7, the trait with the largest overlap of pleiotropically associated DNAm sites among
tissues is  SCZ, although the overlap is  very limited in  all  the traits.  In the case of the fetal  brain
database, the smaller sample size limits the number of detected mQTLs and could lead to underestimate
the proportion of the genetic risk that acts through the fetal brain. When we compared our most reliable
hits in placenta (intersection among SMR, coloc and eQTM results) with the brain SMR results, neither
BIP or MDD presented any overlap of DNAm sites,  while there were two common hits  for SCZ.
cg03172226, the placental eQTM for IRF3, was also identified in the brain dataset in combination with
rs7251, the same SNP identified in placenta. On the other hand, cg21745287, the placental eQTM for
VPS37B, overlaps with the fetal brain results, although in combination with a different SNP than in
placenta. Therefore, we cannot rule out that mostly in the case of these non-specific shared DNAm
sites,  the placenta could be mirroring what occurs in the brain without necessarily being the main
effector tissue.
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Discussion
In  this  study,  we  have  constructed  three  different  placental  cis-mQTL databases  in 368  placenta
samples from the INMA project: the nominal placental  cis-mQTL database, in which all SNP-CpG
combinations over a nominal p-value cutoff of 5x10-8  in 0.5 Mb windows have been compiled; the
permuted placental  cis-mQTL database, in which we have corrected for multiple correlated variants
considering all the possible combinations in the same windows as above, and the conditional placental
cis-mQTL database, that uses the permuted mQTLs to perform a stepwise regression procedure that
enables to conditionally map independent cis-mQTLs. Importantly, we have made all results publicly
available both in their raw formats and by means of a user-friendly shiny-based genome browser that
enables to search for the mQTLs of interest by CpG, SNP and/or genomic coordinates. We believe that
this tool will be useful to the scientific community.

In general, the placental  cis-mQTLs in all three databases were depleted in regions that are usually
hypomethylated, such as promoters and CpG islands, very likely due to the fact that lower and more
stable  DNAm  values  will  hardly  correlate  with  the  genotype  or  any  other  variable.  In  turn,  an
enrichment of intermediate DNAm values was observed, usually present in CpG island shelves and
shores, as well as in open sea regions. The genotype-regulated placental DNAm seems highly placenta-
specific  and  interestingly,  is  enriched  in  placenta-specific  active  chromatin  marks,  and  in
developmental disorders of mental health and psychotic disorders, including SCZ. This, together with
the fact that mQTLs have recently been highlighted as powerful instruments to reveal molecular links
to traits otherwise missed by eQTL-GWAS colocalization approaches22, encouraged us to conduct a
multi-omics study to try to unveil the placental contribution on the developmental origins of different
neuropsychiatric disorders.
 
Besides, Kim-Hellmuth et al. described cell type-interacting expression QTLs (ieQTLs) to be enriched
in GWAS signals and to improve GWAS-eQTL matching for the mechanistic understanding of these
loci23. In this context, we wondered whether this could also be true for placental mQTLs and calculated
STB- and TB-imQTLs. STB were considered for several reasons, 1) they are the most abundant cell
type in term placenta63, 2) they cover the entire surface of villous trees in the placenta, and thus are in
direct contact with maternal blood64, 3) they orchestrate the complex biomolecular interactions between
the fetus and the mother, and 4) they act as an important endocrine organ, producing numerous growth
factors and hormones that support and regulate placental and fetal  development and growth65,66,67,68.
Given  that  TB  are  STB  progenitor  cells,  and  that  there  is  a  very  high  correlation  between  the
proportions of these two cell types in our samples, we decided to calculate TB-imQTLs as well. 

We observed higher statistical power for the most abundant cell type and therefore, a larger amount of
STB-imQTLs compared to TB-imQTLs. However,  there was a considerable overlap and 46.3% of
STB-imQTLs were also TB-imQTLs. As expected, the allelic effects in the overlapping imQTLs were
negatively correlated between the two cell type-specific models, with imQTLs positively correlated
with STB content being more common. This could reflect that negative interactions with a given cell
type more likely reflect interactions with another cell population that is decreasing, rather than a truly
negative, genotype-dependent correlation. As TB are known to differentiate into STB throughout the
gestation30, and STB content in term placenta is positively correlated with GA at birth, we wanted to
know whether cell type-imQTLs are equivalent to GA-imQTLs. This was not the case, revealing that
GA has an independent effect on placental DNAm other than the TB to STB differentiation. 

Remarkably, placental DNAm is pleiotropically associated with BIP, MDD, and in particular with SCZ,
while it does not seem to associate with early onset conditions such as ADHD and ASD. These results
could arise from the sample sizes and power constraints of the available GWAS, as well as, from the
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higher heritability of certain disorders, including BIP and SCZ. However, very importantly, a recent
article found out that MDD shows a very high polygenicity compared to other psychiatric disorders;
that is, more genetic variants with weaker effects contribute to the overall genetic signal in MDD, and
make the trait less annotatable69. In contrast, ADHD, BIP and SCZ showed the highest discoverability
and hence a more annotatable genetic signal. Subsequently, the estimated sample size required to reach
90% SNP heritability  was more than  eight  times  larger  for  MDD than for  ADHD, BIP and SCZ.
Therefore,  the lack of signal in ADHD and even more remarkably,  the presence of a considerable
pleiotropy between placental DNAm and MDD, suggest that our findings are guided not only by the
strength  and  annotatability  of  the  genetic  basis  of  the  diseases  studied,  but  rather  by  a  genuine
association with placental  DNAm. In addition,  it  is  well  known that  BIP,  MDD and SCZ share a
common genetic background and therefore, it is plausible that part of the genetic risk could act through
common processes at similar developmental stages70.

It is possible to gain insight into the pathogenesis of complex disorders by defining the environmental,
biological and temporal context in which genes increase disease susceptibility. In 2018, Ursini et al
discovered that when early-life complications are present, the polygenic risk score (PRS)-explained
risk of SCZ is more than five times higher than when they are absent71. SCZ loci that interact with
early-life complications are not only highly expressed in placenta,  but also differentially expressed
between  complicated  and  normal  pregnancies  in  this  organ,  and  enriched  in  response-to-stress
pathways. More recently, these placenta-specific SCZ-PRS have also been shown to interact with both
brain volume and cognitive function, suggesting particular neurodevelopmental trajectories in the path
towards SCZ72. Particularly in the latter work, they also studied the existence of placenta-specific PRS
in  other  neuropsychiatric  disorders,  and  if  present,  whether  they  interacted  with  early
neurodevelopmental outcomes. BIP presented a PRS with a very high enrichment in genes that are
expressed in placenta, although this placenta-specific PRS did not interact with neither brain volume
nor cognition. This makes sense since SCZ and BIP present the highest genetic correlation compared to
any other pair of psychiatric traits73, but with remarkable differences in outcome, due to the fact that
SCZ patients have been described to be more prone to suffer from severe cognitive impairment than
BIP patients74. In conclusion, placental DNAm could be important in BIP although through trajectories
that are different from those characterized by Ursini and colleagues in SCZ. In any case, we believe
that our findings support a novel hypothesis according to which placental DNAm could translate both
the genetic basis and the environmental milieu into fetal genetic programs that could eventually result
in  impaired  neurodevelopmental  trajectories  leading to  SCZ,  and maybe,  to  other  neuropsychiatric
disorders. This hypothesis will need to be supplemented with additional research.

Regarding the genes and pathways affected by placental DNAm pleiotropically associated to SCZ, we
want to highlight that the 19 genes resulting from our multi-omics approach were enriched in immune-
related  terms,  including  interferon  signaling.  HLA-H,  IRF3 and  VPS37B were  some  of  the  most
relevant  genes  with  immune  functions.  This  reinforces  the  idea  of  MIA being  implicated  in  the
neurodevelopmental  origins  of  SCZ.  During  pregnancy,  environmental  insults  such  as  early-life
complications and maternal infections, are hypothesized to program the immune and developmental
epigenetic code in the fetus, thereby influencing the risk to suffer from neurodevelopmental disorders
later  in  life75,76,77.  The  MIA hypothesis  proposes  that  exposure to  a  dysregulated  maternal  immune
milieu in utero affects fetal neurodevelopment78,79. Moreover, in humans, maternal factors implicated in
MIA are associated with epigenetic modifications in placenta80,81.  The placenta plays a pivotal role in
maintaining immune homeostasis in the maternal-fetal interface. However, when a sustained placental
inflammatory response occurs due to maternal environmental factors, the offspring can suffer from
developmental abnormalities82. 
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Taken individually, the hits that are most likely to be causally involved in the different neuropsychiatric
disorders studied were LRFN5 in MDD and ZSCAN23 in SCZ. In the case of LRFN5, several variants
in this  gene  have been found to be  pleiotropically  associated with  both MDD and chronic pain48.
Additionally, it is well known that LRFN5 is involved in the communication among brain cells and is
located in a large and complex genomic niche that is highly conserved in mammals83. Specific locus
structure  of  this  region increases  ASD susceptibility  in  males.  But  what  makes  LRFN5 especially
notable in the context of our study is the fact that we have found regional pleiotropy, that is,  two
independently associated CpGs in its promoter that are correlated with its expression levels in fetal
placenta. These two independent signals, together with the DNAm-expression correlation in our organ
of interest make the association more likely causal.

In the case of ZSCAN23, in a work published in 2019, conditional analyses were performed to partition
the  SCZ  GWAS-associated  brain  eQTLs  to  better  identify  the  downstream  molecular  features  of
genetic risk55. The top GWAS risk variant rs1233578 was associated with a strictly intergenic sequence
downstream of  ZSCAN23, and the authors claimed to have discovered a novel transcript potentially
involved in SCZ through its expression in brain. This is not necessarily contradictory with our results.
The function of ZSCAN23 is unknown, although a recent paper has reported that two CpGs in the gene
could show differentially variable methylation in placenta between asthmatic and control mothers84. In
the present work, two SNPs have been found to independently associate with the same CpG that is
related to the expression of  ZSCAN23  in placenta. Moreover, the GWAS p-values of the association
between  the  two  SNPs  and  SCZ are  not  significant.  This  makes  placental  DNAm and  ZSCAN23
expression potentially causal  in SCZ, although the function of the gene and the pathways through
which it may act remain unknown.

In this context, the placental DNAm sites that resulted from the SMR analyses confronting the BIP,
MDD and SCZ GWAS, and the STB-, TB-, and GA-imQTLs are worthy of mention. For example, we
found out that cg27130493 is pleiotropically associated with BIP while it changes its methylation levels
as a function of STB proportion, in a rs72743436 genotype-dependent manner. This CpG is located in
the  gene  body  of  SMAD3,  a  gene  with  singular  functions  in  placenta  and  also  in  BIP itself56,57.
Additionally, this SNP is not directly associated with BIP, increasing the likelihood of causality rather
than pleiotropy. The most important limitation of this part of the study is the lack of placental cell type-
specific  expression data  to  ascertain whether  cg27130493 and other DNAm sites identified in this
approach are correlated with the expression of nearby genes in placenta. However, the fact that the
CpG sites change not only depending on the genotype of adjacent SNPs, but also as a function of
estimated placenta-specific cell content, increases the probability of placenta being the effector organ
of those genetic associations.

Lastly, we tried to ascertain the tissue-specificity of our findings by comparing placenta SMR hits to
those from two brain  cis-mQTL databases. We found a limited overlap among the different tissues
studied, suggesting that the majority of our pleiotropically associated DNAm sites could be relatively
specific of placenta (or at least,  not related to brain DNAm). Nevertheless,  IRF3,  one of the most
promising candidates due to its immune function, overlaps with the brain database. We cannot rule out
neither that placenta is mirroring the brain with no effector role,  nor that  IRF3 has a role in SCZ
through different tissues, organs and developmental stages. Finally, it  is important to consider that,
although the SMR approach was executed exactly in the same manner for the three databases, these
were quite different from each other. Especially the fetal brain database was calculated in a limited
number of fetal brain samples, in SNP-CpG windows 10 times smaller than the ones we used (0.05 vs
0.5  Mb),  and  DNAm  was  measured  with  the  Infinium  HumanMethylation  450K  array  (with
approximately  half  the  probes  in  the  Infinium HumanMethylation  EPIC array  used  in  the  present
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study), therefore resulting in half a million cis-mQTLs compared to our nearly 8 million. This suggests
a  more  limited  mapping  potential  with  the  fetal  brain  mQTL  database  and  thus,  a  possible
underestimation of the fetal brain DNAm that is really involved in the disorders studied.

The main limitation of our study is that, as pointed out by Ursini et al in relation to their own work72,
the considerable overlap in cell  biology between brain and placenta does not allow to exclude the
possibility that part of the pleiotropy observed here is related to a more direct effect in the brain exerted
by the same DNAm sites as in placenta. However, we believe that the different pieces of evidence,
including  the  intersection  with  the  placental  eQTMs and  even  the  presence  of  secondary  signals,
support that a part of the genetic risk to suffer from BIP, MDD and very especially SCZ, could act
through placental  DNAm at  specific  genomic loci.  Another  limitation is  that  different  methylation
beadchips  have  been  employed  in  the  INMA and  RICHS  cohorts,  and  thus,  we  are  probably
underestimating the effects of DNAm over placental gene expression.

In  conclusion,  we  find  placental  cis-mQTLs  to  be  highly  placenta-specific,  with  a  remarkable
enrichment in genomic regions active in placenta and neurodevelopment- and mental health-related
pathways. We prove that they are useful to map the etiologic window of neuropsychiatric disorders to
prenatal stages and conclude that part  of the genetic risk of BIP, MDD and in particular SCZ, act
through placental DNAm at specific genomic loci. In fact, some of the observed associations might be
causal  rather  than  pleiotropic  due  to  the  presence  of  secondary  association  signals  in  conditional
analyses, regional pleiotropic DNAm associated to the same disorder, and involvement of cell type-
specific imQTLs, that additionally associate to the expression levels of relevant genes in placenta. It is
of particular interest that SCZ-associated placental DNAm correlates with the expression of immune-
related genes in placenta, providing further support to the hypothesis of the neurodevelopmental origins
of SCZ.
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Methods

Placental biopsies and DNA extraction
In the  INMA24 project,  2,506 mother-fetus  pairs  were  followed until  birth  and a  selection  of  397
placentas were collected, representing the three geographical areas involved in the study. Collected
placentas were stored at -80ºC in a central biobank until processing. Biopsies of approximately 5 cm3

were  obtained  from  the  inner  region  of  the  placenta,  approximately  1.0-1.5  cm  below  the  fetal
membranes, corresponding to the villous parenchyma, and at a distance of ~5 cm from site of cord
insertion. 25 mg of placental tissue was used for DNA extraction, previously rinsed twice during 5
minutes in 0.8 mL of 0.5X PBS in order to remove traces of maternal blood. Genomic DNA from
placenta was isolated using the DNAeasy® Blood and Tissue Kit (Qiagen, CA, USA). DNA quality
was  evaluated  on  a  NanoDrop  spectrophotomer  (Thermo  Scientific,  Waltham,  MA,  USA)  and
additionally, 100 ng of DNA was run on 1.3% agarose gels to confirm that samples did not present
visual signs of degradation. Isolated genomic DNA was stored at -20ºC until further processing.

Genotype data
Genome-wide genotyping was performed using the Illumina GSA Beadchip at the Human Genotyping
Facility (HuGeF), Dept Internal Medicine, Erasmus MC, Rotterdam, the Netherlands, and the Spanish
National  Genotyping  Centre,  CEGEN,  Madrid,  Spain.  Genotype  calling  was  done  using  the
GeneTrain2.0  algorithm  based  on  HapMap  clusters  implemented  in  the  GenomeStudio  software.
Samples were genotyped in four batches. 

The quality control of the genotype data from 397 INMA samples and 509,450 genetic variants was
performed using the PLINK 1.9 software following the standard recommendations85,86,87. All plink files
were initially processed with Will Rayner’s preparation Perl script available from Mark McCarthy’s
Group  as  recommended  in  the  documentation  from  the  Michigan  Imputation  Server,  using  the
Haplotype Reference Consortium (HRC) r1.1 2016 reference panel88. Variants with a call rate below
95%, minor allele frequency (MAF) below 1%, or a p-value from the Hardy-Weinberg Equilibrium
(HWE)  exact  test  below  1x10-6 were  removed.  Samples  with  discordant  sex,  those  with  average
heterozygosity values above or below 4 standard deviations or with more than 3% missing genotype
were filtered out. Identity-by-descent values were calculated with PLINK, and from those sample pairs
that showed PI-HAT estimates above 0.18, the sample with higher proportion of missing genotypes was
removed.
 
The final dataset was imputed with the Michigan Imputation Server88 using the HRC reference panel,
Version r.1.1 201689. Before imputation, data was converted into VCF format. Phasing of haplotypes
was done with Eagle v2.490 and genotype imputation with Minimac491, both implemented in the code
by the Michigan Imputation Server. Finally, we removed variants with an imputation dosage r2 below
0.9, a MAF lower than 5%, a HWE p-value below 0.05 and with more than two alleles, to avoid SNPs
with few or no individuals bearing the minor allele homozygous genotype in our sample set. Only those
samples with paired methylation data were considered in this analysis. The final dataset consisted in
368 samples and 4,171,035 SNPs. 

Methylation data
DNA  methylation  was  assessed  with  the  Infinium  MethylationEPIC  BeadChip  from  Illumina,
following manufacturer’s protocol in the Erasmus Medical Centre core facility. Briefly, 750 ng of DNA
from 397 placental  samples were bisulphite-converted using the EZ 96-DNA methylation kit  from
Zymo Research, following the manufacturer’s standard protocol, and DNA methylation was measured
using  the  Infinium protocol.  Three  technical  duplicates  were  included.  Samples  were  randomized
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taking into account region-of-origin and sex. As the number of samples in each condition was different,
a perfect randomization was not possible. However, all the plates had samples from all three involved
geographical areas, and an equilibrated number of male and female samples.

The quality control of the methylation data, including 865,859 DNAm probes, was performed using the
PACEAnalysis  R  package  (v.0.1.7)92.  Before  starting  the  quality  control  with  PACEAnalysis,  one
sample was discarded for having too many missing values in relevant variables. With the R package,
we discarded  those  samples  with  a  call  rate  below 95%,  sex  inconsistencies,  intentioned  or  non-
intentioned duplicates and exhibiting contamination with DNA from another subject or the mother.
Only those samples with paired genotype data were considered in this study. Probes with a call rate
smaller than 95%, within sexual chromosomes, SNPs (European MAF < 5%) and cross-hybridizing
potential were excluded from the analysis. 

The  methylation  beta  values  were  normalized  in  different  steps.  Dye-bias  and  Noob  background
correction, implemented in minfi R package, were applied93,94, followed by normalization of the data
with the functional normalization method95. Then, to correct for the bias of type-2 probes values the
beta-mixture quantile (BMIQ) normalization was applied96. After that, we explored the clustering of the
data through Principal Component Analysis (PCA) and tested the association of the 12 first PCs with
the main and the technical variables. Array batch effect was controlled with the ComBat method97.
Finally, to correct for the possible outliers, we winzorized the extreme values to the 1% percentile
(0.5% in each side), where percentiles were estimated with the empirical beta-distribution. The final
dataset consisted in 368 samples and 747,486 DNAm probes (CpGs). 

Cell  type  proportions  of  six  populations  (STB,  TB,  nucleated  red  blood  cells,  Hofbauer  cells,
endothelial cells, and stromal cells) were estimated from DNAm using the placenta reference panel
from the 3rd trimester implemented in the Planet R package31. 

Placental cis-mQTL analysis
A total amount of 4,171,035 SNPs, 747,486 CpGs and 368 samples with paired genotype and DNAm
data  were  considered  for  the  cis-mQTL analysis  in  TensorQTL98.  TensorQTL nominal  modality
performs  linear  regressions  between  the  genotype  and  the  normalized  DNAm  beta-values,  as
implemented in FastQTL99. The covariates included in the regression model were the sex of the fetuses,
the first five PCs derived from the genotype data (genotype PCs) and the five cell type proportions
derived from the Planet methylation panel. Genotype PCs were included in the model as covariates to
remove the hidden batch effects and other potential confounders in the genotype data. The TensorQTL
cis-region was specified as ±0.5 Mb from each tested CpG position,  consistent with the results  of
previous studies where the distance between the majority  cis-mQTL SNPs and DNAm sites is ≤ 0.5
Mb59,100,101,102. In the final nominal cis-mQTL database we included only those probes with at least one
cis-mQTL at Pnominal  < 5x10-8. This same regression model was used to build two additional cis-mQTL
databases;  permuted  and  conditional.  The  permuted  cis-mQTL database  consists  in  correcting  for
multiple correlated variants tested via a beta approximation which models the permutation outcome
with a beta distribution as it is described in Ongen et al. 201699. Conversely, the conditional database
uses the permuted QTLs to perform a stepwise regression procedure to map conditionally independent
cis-QTLs as described by the GTEx Consortium103. 

Characterization of placental cis-mQTLs
The  separate  characterization  of  the  nominal,  permuted  and  conditional  mQTL  databases  was
performed in different steps. First,  the distribution of both,  the distance between mQTL-CpGs and
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paired mQTL-SNPs, and the mQTLs along the chromosomes was plotted, followed by a volcano plot
to check the uniform distribution of the negative and positive effect sizes. 

Second, using the annotation from IlluminaHumanMethylationEPICanno.ilm10b4.hg19 R package104,
we performed several Chi-Square tests to assess the enrichment and depletion of the UCSC RefGene
and Relation to CpG Island annotations.  We also depicted density  plots  of the methylation values
according to the Relation to CpG Island annotation. Moreover, for the top 10,000 mQTL-CpGs, we
assessed  enrichment  and depletion  of  overlap  with  tissue-specific  and cell-type-specific  regulatory
features including DNase I hypersensitivity sites (DHS), all 15-state chromatin marks, and all five H3
histone  marks  (i.e.,  H3K27me3,  H3K4me1,  H3K4me3,  H3K36me3,  H3K9me3)  from consolidated
ROADMAP Epigenomics  Mapping  Consortium105 using  eFORGE  v2.026,27,28.  The  enrichment  and
depletion with each of the three putative functional elements were tested separately and compared to
the respective data from the consolidated ROADMAP epigenomics reference panel.

Lastly, over-representation analyses of Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and
Genomes  (KEGG)  gene  sets  were  conducted  with  MissMethyl  R  package106,107,108,109.  MissMethyl
performs a hypergeometric  test  taking into account  the  bias  derived from the  differing  number of
probes per gene and the multiple genes annotated per CpG106. Gene set enrichment analyses with the
Disease  Ontology  (DO)  database  were  conducted  with  the  DOSE R  package110.  With  DOSE,  we
performed  the  gene  set  enrichment  analysis  considering  the  genes  annotated  in  the
IllumuminaHumanMethylationEPICanno.ilm10b4.hg19 R package104 as background. 

Placental cis-imQTL analysis
The cell type-imQTLs were computed with the interaction modality from TensorQTL, consisting in
nominal associations for a linear model that includes a genotype per interaction term98. The same initial
SNPs, CpGs and samples from the nominal database were considered for the interaction analysis. The
covariates  used  were  the  sex  of  the  fetuses  and  the  first  five  genotype  PCs.  Following  the
recommendations by Kim-Hellmuth S. et  al.202123,  estimations of STBs and TBs per sample were
defined  separately  as  the  interaction  terms.  In  the  two  final  interaction  cis-mQTL databases,  we
included only probes with at least one cis-mQTL at Pnominal  < 5x10-8. The imQTLs obtained from each
model were categorized as positively and negatively correlated with cell type estimates, or as uncertain
if this was ambiguous. To categorize the imQTLs into these groups, genotype main effects at low (<25 th

percentile) vs high (>75th percentile) cell type proportion were compared. imQTLs with positive cell
type correlation showed an increase of the genotype main effect from low to high cell proportions (
βmQTL low < βmQTL high). imQTLs with negative cell type correlation showed a decrease (βmQTL low >
βmQTLhigh) and the uncertain group contained imQTLs where the sign flipped between low and high
cell type proportions (βmQTL low ≠ βmQTL high). 

Additionally, GA was also considered as interaction term. In this case, the covariates considered were
the sex of the fetuses, the first five genotype PCs and the cell type proportions from Planet. 

Genome Wide Association Studies
The GWAS summary-statistics used in this analysis were the public largest to-date association studies
of  ADHD32,  AGR33,  ASD34,  BIP35,  INT36,  MDD37,  OCD38,  PD39,  SA40,  and  SCZ41  from  EAGLE,
Indonesia  Schizophrenia  Consortium,  International  Obsessive  Compulsive  Disorder  Foundation
Genetics  Collaborative  (IOCDF-GC),  OCD  Collaborative  Genetics  Association  Studies  (OCGAS),
PsychENCODE, Psychiatric Genomics Consortium (PGC),  Psychosis Endophenotypes International
Consortium, UK Biobank (UKB), SynGO Consortium, and 23andMe, among others.
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All the GWAS summary-statistics were harmonized according to the dbSNP build 155 and the INMA
genotype  data  as  a  reference.  The  harmonization  steps  included:  to  change  rsID  to
chromosome:position nomenclatures, to correct the effect allele, the effect size and the allele frequency
according to the reference genotypes if applicable, and to create a .ma format file with the summary-
statistics as indicated in the SMR pipeline44.

Multi-SNP-based Mendelian Randomization analysis
Mendelian Randomization analysis was carried out considering  cis-mQTL SNPs as the instrumental
variables (IVs), CpG methylation as the exposure (X), and the neuropsychiatric traits as the outcome
(Y).  Multi-SNP-based  MR  (SMR-multi)111 analysis  was  performed  by  the  SMR software43.  SMR
integrates GWAS and QTL summary-statistics to test for pleiotropic associations between quantitative
traits, such as methylation or expression, and a complex trait, for instance a disease. More precisely,
SMR-multi includes multiple SNPs at a  cis-mQTL locus in the SMR test to calculate the causative
effect of an exposure on an outcome (bxy). First, SMR-multi selected all SNPs with Pnominal  < 5x10-8 in
the cis region (0.5 Mb of the CpG). Second, it removed SNPs in very high LD with the top associated
SNP (LD r2 > 0.9). Then, the causative effect (bxy) from the exposure on the outcome was estimated at
each of the SNPs and combined in a single test using an approximate set-based test accounting for LD
among SNPs111. Additionally, the HEIDI test was performed. HEIDI uses multiple SNPs in a cis-mQTL
region  to  distinguish  pleiotropy  from  linkage.  As  it  is  described  in  Zhu  et  al.201645,  under  the
hypothesis  of  pleiotropy,  where  DNAm and  a  trait  share  the  same  causal  variant,  the  bxy values
calculated for any SNPs in LD with the causal variant are identical. Therefore, testing against the null
hypothesis that there is a single causal variant is equivalent to testing whether there is heterogeneity in
the bxy values estimated for the SNPs in the cis-mQTL region. For each DNAm probe that passed the
genome-wide significance (Pnominal < 5x10-8) threshold for the SMR test, HEIDI tested the heterogeneity
in the  bxy values estimated for multiple SNPs in the  cis-mQTL region. In this  analysis,  significant
pleiotropic associations between DNAm and the neuropsychiatric diseases were selected as those with
PSMR corrected Bonferroni < 0.05 and PHEIDI > 0.05 (not showing heterogeneity). 

Colocalization analyses
Recalling the definition of  cis-mQTLs in our analysis, all DNAm sites with at least one significant
mQTL  (Pnominal  <  5x10-8)  and  located  within  0.5  Mb  of  the  regions  defined  in  the  original
neuropsychiatric  GWAS  were  tested.  Colocalization  analysis  was  performed  as  described  in
Giambartolomei C. et al.2014 with the R  coloc package45. In total 17,341, 5,466, and 4,643 mQTL-
CpGs were tested for BIP (n = 63 autosomal regions), MDD (n = 98 autosomal regions) and SCZ (n =
279  autosomal  regions),  respectively.  In  both  the  GWAS  data  and  our  mQTLs  we  imputed  the
regression coefficients, their variances and the SNP minor allele frequencies, and the prior probabilities
were left as their default values. This methodology quantifies the support across the results of each
GWAS for five hypotheses by calculating the posterior probabilities, denoted as PPi for hypothesis Hi. 
H0: there exist no causal variants for either trait; 
H1: there exists a causal variant for one trait only, GWAS; 
H2: there exists a causal variant for one trait only, DNA methylation; 
H3: there exist two distinct causal variants, one for each trait; 
H4: there exist a single causal variant common to both traits.

Conditional analyses
We performed a GCTA conditional analysis112,113 conditioning on the top cis-mQTL of those probes that
passed SMR (PSMR Bonferroni < 0.05) but failed to pass the HEIDI test (PHEIDI < 0.05), due to the fact
that  heterogeneity  may  sometimes  be  driven  by  real  secondary  signals.  We  also  performed  the
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conditional analysis  using GWAS summary data of the same set of SNPs (SNPs in the  cis-mQTL
region conditioning on the top cis-mQTL) for each of the three phenotypes (BP, MDD, SCZ). For any
of these regions where there was evidence of a secondary signal (Pconditional < 5x10-8), in either mQTL or
GWAS data, we reran the conditional analyses in both mQTL and GWAS data conditioning on the
secondary  signal  and  then  used  the  conditional  results  for  SMR  and  HEIDI  tests.  In  this  step,
significant secondary pleiotropic associations between DNAm and the neuropsychiatric diseases were
selected as those with Bonferroni-corrected PSMR  < 0.05 and PHEIDI > 0.05 (not showing heterogeneity). 

RICHS eQTMs
RICHS recruited mother and infant pairs from March 2009 to May 2013 following delivery at the
Women and Infants Hospital of Rhode Island. RICHS selected infants both small for GA, large for GA
and controls born appropriate for GA matched on sex, GA (±3 days), and maternal age (±2 years). The
study protocol was approved by the Institutional Review Boards of Brown University and Women and
Infants Hospital of Rhode Island. Placental RNA-seq data from a subset of samples (n = 200) were
obtained using the Illumina Hi-Seq 2500 platform, aligned to the human reference genome and RNA
transcript abundance was quantified using Salmon114. About 20 million single-end RNA-seq reads were
generated  on  each  sample115.  Placental  DNAm  data  (n  =  220)  were  obtained  using  the  Illumina
Infinium HumanMethylation450 BeadChip, preprocessed, and normalized with the minfi R package116.
eQTMs were calculated by implementing linear models in MatrixEQTL, considering  cis-windows of
0.5 Mb up and downstream of each CpG in a total of 195 placenta samples. Linear regressions were
adjusted by sex, 5 PCs of expression and the Planet estimated cell types. Results were corrected with
FDR.

The gene set enrichment analysis of the eQTM-genes associated to SCZ according to our SMR and
colocalization  approaches  was performed using  the Reactome gene list  analysis53,  with the  default
settings recommended by the developers in the Reactome database release 83 and the pathway browser
version 3.7. 

Code availability
The  code  for  the  genotype  and  methylation  QC,  as  well  as  the  TensorQTL nominal  mapping  is
available  in  this  GitHub  repository  link:  https://github.com/ariadnacilleros/Cis-mQTL-mapping-
protocol-for-methylome.  The  rest  of  the  analysis  is  available  in  this  GitHub  repository
link:https://github.com/ariadnacilleros/Cilleros-PortetA.etal. 

Data availability
The  three  complete  placental  cis-mQTL databases  are  publicly  available  online  in  the  following
address: https://smari.shinyapps.io/shi. To be uploaded to a repository. 
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Tables

Table 1. Distribution of maternal smoking during pregnancy, demographic variables, birth outcomes 
and covariates of the INMA cohort. SD = Standard Deviation. 

Variable Category
INMA (n = 368)

N Mean ± SD or % N missing
Maternal

smoking during
pregnancy

Yes 52 14.13%
5No

311 84.51%

Maternal age
(continuous)

Mean (SD)
368 30.85 ± 3.95 0

Parity
0 208 56.52%

0
≥1 160 43.47%

Maternal
education

Primary or 
without 
education

68 18.47%
0

Secondary 172 46.73%
University 128 34.78%

Birth weight (g) Mean (SD) 368 3,278 ± 440.55 0
Gestational age

(weeks)
Mean (SD)

368 39.71 ± 1.30 0

Preterm birth
(<37 weeks)

Yes 10 2.71%
0

No 358 97.28%

Ancestry
White 347 94.29%

5
Non-white 16 4.34%

Sex of child
Female 189 51.35%

0
Male 179 48.64%

Socioeconomic
status

I+II 130 35.32%
0III 100 27.17%

IV+V 138 37.50%

Table 2. Overview of the neuropsychiatric traits and disorders included in this study.

Trait Abbreviation N PubMed ID Original nº of SNPs
Attention deficit and hyperactivity disorder ADHD 55,374 30478444 8,094,094
Aggression AGR 18,988 26087016 2,188,528
Autism spectrum disorder ASD 46,351 28540026 9,112,386
Bipolar disorder BIP 413,466 34002096 7,608,183
Internalizing problems INT 64,561 35378236 5,445,594
Major depression disorder MDD 500,199 30718901 8,483,301
Obsessive-compulsive disorder OCD 9,725 28761083 8,409,517
Panic disorder PD 9,907 31712720 10,151,624
Suicidal attempt SA 6,183 34737426 11,823,118
Schizophrenia SCZ 320,404 35396580 7,583,660
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Figures

Figure 1. Characterization of the placental cis-mQTLs from the nominal database. The distance
between the SNP-CpG pair participating in the reported  cis-mQTLs is displayed as  a  density plot,
where the X-axis represents the distance in Mb. The red line represents the median distance of 44 kb.
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The distribution of the reported cis-mQTLs along the chromosomes is shown in the b barplot, where
the X-axis represents the autosomal chromosomes. The uniform distribution of the effect size from the
reported cis-mQTLs is pictured in the c volcano plot, where the Y-axis illustrates the -log10 nominal p-
value, and the X-axis the effect size. The blue and the red dots represent the mQTLs with a negative
and  positive  effect,  respectively.  The  distribution  of  the  EPIC array  probes  (inner  circle)  and  the
nominal  mQTL-CpGs  (outer  circle)  considering  the  Relation  To  Island  and  the  UCSC  RefGene
annotation is displayed in the d  and  e  piecharts, respectively. The methylation beta values, ranging
from 0 to 1, of the participating mQTL-CpGs stratified by the Relation To Island annotation is shown
in the f density plot, where the methylation values are found in the X-axis. The eFORGE enrichment of
DNase I hotspots considering the top 10,000 nominal mQTL-CpGs is shown in the g plot. The Y-axis
represents the -log10 binomial p-value of the enrichment, and the X-axis to the tissue. False Discovery
Rate (FDR) corrected q-values below 0.01 and 0.05 are represented by red and pink dots, respectively,
while blue dots show q-values >0.05.
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Figure 2. STB-, TB- and GA-imQTLs. The correlation between STB and TB cell types (N=368) is
shown in a, the X-axis representing the STB proportion in the sample set, and the Y-axis showing the
estimated TB proportion. The intersection between STB-, TB- and GA-imQTLs is represented in the b
Venn diagram. The correlation between STB and GA (N=368) is shown in c, the X-axis representing
the STB proportion in the sample set,  and the Y-axis showing the GA. The standard cg03616988-
rs57688017 mQTL, as well as the TB- and STB- imQTLs, are displayed in the  d,  e and  f dotplots,
respectively. In all three, the Y-axes represent the cg03616988 DNAm beta values, ranging from 0 to 1.
In d, the X-axis displays the genotype of rs57688017, while in e and f, the X-axes show the TB and
STB proportion, respectively. 
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Figure 3. Manhattan plot of BIP, MDD and SCZ GWAS highlighting the SMR and coloc results.
The  original  GWAS from BIP,  MDD  and  SCZ were  plotted  in  the  a,  b  and  c  Manhattan  plots,
respectively.  In  the  Y-axes  the  original  -log10 p-values  are  displayed,  and  in  the  X-axis  the
chromosomes. The blue dots represent genomic regions significantly colocalizing with our placental
mQTLs,  and  the  red  dots  are  mQTL-SNPs  associated  with  CpGs  that  have  been  shown  to
pleiotropically associate with either BIP, MDD or SCZ in the SMR approach. Therefore, the blue dots
represent the colocalization results, and the red dots show the SMR results. 
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Figure 4. Two different CpGs pleiotropically associated with MDD.  The mQTL-SNPs rs1111179
and rs61990289, highlighted as purple diamonds, with the -log10 p-values of the original MDD GWAS
are  represented  in  the  a  locusZoom  plot.  The  X-axis  displays  the  involved  genomic  region  of
chromosome 14 in Mb, showing the distribution of the coding genes in the locus, as well as the location
of  the  cg10318063  and  cg23217097  mQTL-CpGs.  The  Y-axis  shows  the  -log10 p-value  from the
original GWAS, and the SNPs are colour coded as a function of the LD with the highlighted SNP. The
two  significant  mQTLs,  rs1111179-cg10318063  and  rs61990289-cg32217097,  are  plotted  in  the  b
dotplots, where Y-axis represents the beta DNAm values of the indicated CpG, ranging from 0 to 1. The
X-axes  display  the  genotype  of  the  indicated  SNPs.  The  eQTM of  cg10318063  and  cg32217097
mQTL-CpGs are portrayed in the  c  dotplots, where X-axis represents the DNAm values from each
involved CpG, ranging from 0 to 1. The Y-axes display the expression values of the  LFRN5 gene in
placenta. The hypothesis of the pleiotropical association between the SNPs, the DNAm values of the
CpGs  in  placenta,  the  gene  expression  levels  of  LFRN5  in  placenta  and  MDD are  schematically
represented in d. The vertical pleiotropy (or causal association) hypothesis is represented with a blue
backgroud, and the horizontal pleiotropy hypothesis is highlighted with a yellow background.
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Figure 5. One CpGs is pleiotropically associated to SCZ, and marked by two independent signals.
The two mQTL-SNPs rs313286 and rs16897420, highlighted as purple diamonds, are shown in the
original (top) and the conditional (bottom) SCZ GWAS in the a locusZoom plot. The X-axis displays
the involved genomic region in chromosome 6 in Mb, showing the distribution of the coding genes in
the locus, as well as the location of the mQTL-CpG cg15026241. The Y-axis shows the -log 10 p-value
from the original and conditional GWAS, and the SNPs are colour coded as a function of the LD with
the  highlighted  SNP.  The  two  significant  mQTLs,  rs16897420-cg15026241  and  rs3132386-
cg15026241, are plotted in the b dotplots, where Y-axes represent the cg15026241 beta DNAm values,
ranging from 0 to 1. The X-axis displays the genotype of the corresponding SNPs. The eQTM of the
significant mQTL-CpG is portrayed in the c dotplot, where the X-axis shows the DNAm values of the
cg15026241 CpG, ranging from 0 to 1. The Y-axis displays the expression values of the ZSCAN23 gene
in placenta. The hypothesis of the pleiotropical association between the SNPs, the DNAm values of the
CpGs in placenta, the gene expression levels of  ZSCAN23  in placenta and MDD are schematically
represented in d. The vertical pleiotropy (or causal association) hypothesis is represented with a blue
backgroud, and the horizontal pleiotropy hypothesis is highlighted with a yellow background.
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Figure  6.  STB-imQTL  pleiotropically  associated  with  BIP.  The  mQTL-SNP  rs72743436,
highlighted as a purple diamond, is shown in the original BIP GWAS in the a locusZoom plot. The X-
axis displays the involved genomic region in chromosome 15 in Mb, showing the distribution of the
coding genes in the locus, as well as the location of the mQTL-CpG cg27130493. The Y-axis shows the
-log10 p-value from the original GWAS, and the SNPs are colour coded as a function of LD with the
highlighted SNP. The STB-imQTL is pictured in the b dotplot. The X-axis represents the cg27130493
beta DNAm values and the Y-axis the STB proportion, both ranging from 0 to 1. The genotype of
rs72743436 SNP-imQTL is colour coded as indicated in the legend. 
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Figure 7. Overlap between the SMR results in brain, placenta and fetal brain, in BIP, MDD and
SCZ.  The overlap between the mQTL-CpGs pleiotropically associated between the three tissues and
BIP, MDD and SCZ are represented in the a, b and c Venn diagrams, respectively. Overlapping mQTL-
CpGs are shown, and also the closest gene from the Illumina annotation file (between brackets).  
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