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Abstract 

Purpose: In this paper, we aimed to clinically interpret Temporal-Superior-Nasal-Inferior-

Temporal (TSNIT) retinal optical coherence tomography (OCT) images in a convolutional 

neural network (CNN) model to differentiate between normal and glaucomatous optic 

neuropathy.  

Methods: Three modified pre-trained deep learning (DL) models: SqueezeNet, ResNet18, 

and VGG16, were fine-tuned for transfer learning to visualize CNN features and detect 

glaucoma using 780 segmented and 780 raw TSNIT OCT B-scans of 370 glaucomatous and 

410 normal images. The performance of the DL models was further investigated with Grad-

CAM activation function to visualize which regions of the images are considered for the 

prediction of the two classes. 
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Results: For glaucoma detection, VGG16 performed better than SqueezeNet and ResNet18 

models, with the highest AUC (0.988) on validation data and accuracy of 93% for test data. 

Moreover, identical classification results were obtained from raw and segmented images. For 

feature localization, three models accurately identify the distinct retinal regions of the TSNIT 

images for glaucoma and normal eyes. 

Conclusion: This evidence-based result demonstrates the remarkable effectiveness of using 

raw TSNIT OCT B-scan for automated glaucoma detection using DL techniques which 

mitigates the black box problem of artificial intelligence (AI) and increases the transparency 

and reliability of the DL model for clinical interpretation. Moreover, the results imply that the 

raw TSNIT OCT scan can be used to detect glaucoma without any prior segmentation or pre-

processing, which may be an attractive feature in large-scale screening applications. 

  

1. Introduction  

Glaucoma is a progressive optic neuropathy characterized by retinal ganglion cell (RGC) death, 

leading to neuroretinal rim tissue loss at the optic nerve and corresponding irreversible vision 

loss.1 It is one of the leading causes of blindness: 3.4% of people aged 40-80 years are estimated 

to suffer from glaucoma, and the global burden has been predicted to rise to around 112 million 

by the year 2040.2 Approximately 2.7 million people in the US were affected in 2010, and this 

is expected to increase by more than two-fold by 2050 (6.3 million).3 Early diagnosis is 

essential because promptly addressing modifiable risk factors, such as intraocular pressure and 

precipitating factors for its elevation (e.g., angle-closure), help to minimize vision loss. 

However, as few as 50% of all cases are diagnosed correctly in those who have seen an eye 

care practitioner in the past year.4 
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   There is potential for AI to support glaucoma detection. However, there are particular 

challenges, especially in identifying differences in the optic nerve and retina of normal eyes 

from those with early glaucoma. It is assumed that most glaucomatous pathology is evident at 

the optic nerve head (ONH) and the peripapillary RGC layer due to characteristic axonal 

degeneration.5 Regardless of the underlying aetiological mechanisms at play, this damage 

results in so-called “peripapillary atrophy”, with thinning of the chorioretinal and retinal 

pigment epithelium (RPE) surrounding the optic nerve.6 OCT is a popular imaging technology 

that can generate a cross-sectional B-scan of the circumpapillary retinal regions from the centre 

of the ONH (Figure 1(a)). It facilitates monitoring the thickness variations of the retinal layer 

commencing at the temporal quadrant in a clockwise direction, referred to as the “temporal-

superior-nasal-inferior-temporal” (TSNIT) retinal layers (Figure 1(b)).  

Glaucomatous damage has a predilection for early damage in the inferior and superior zones.7 

Glaucomatous loss of the RNFL leads to local defects, which are evident in the TSNIT OCT 

B-scan of Figure 1(b) (white arrow), 6-sector Garway-Heath analysis of Figure 1(c) and the 

TSNIT profile red arrow of Figure 1(d). Local thinning of the retinal layers in glaucoma varies 

in location, depth or width. With more advanced diseases, thinning becomes widespread, 

affecting all quadrants of the peripapillary area.8 
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Figure 1. (a) Circumpapillary OCT scan in a clockwise direction from a 3.5 circle diameter of the 

center of ONH (b) Cross-sectional Spectralis TSNIT OCT B-scan (c) 6-sector Garway-Heath results 

(d) TSNIT profile; the red area of the 6-sector Garway-Heath indicates the circumpapillary RNFL is 

significantly thinned in the temporal-inferior sector and this defect is also visible on the B-scan and 

the TSNIT profile (white and red arrows). 

Deep learning (DL) has shown promising performance in classifying 2D images to distinguish 

the glaucomatous ONH, such as an enlarged cup-to-disc ratio (CDR),9 which is deemed to be 

one of the crucial clinical features in glaucoma diagnosis and assessment. Initially, most studies 

have explored the DL segmentation to derive CDR from fundus photographs.  Li and 

colleagues10 used the pre-trained Inception-v3 DL model to detect referable glaucomatous optic 

neuropathy and segment the cup and disc boundaries from fundus images. Similarly, Miri and 

co-workers11 used a multisurface graph-based technique to segment multimodal features. They 

trained the features using a random forest classifier to detect the optic disc and cup boundaries 

by combining both fundus and SD-OCT images. The limitation of these approaches is the 

known overlap between CDRs in normals and those with glaucoma.  

OCT is now entrenched as an indispensable non-invasive imaging approach in the clinic. Cross-

sectional OCT B-scans permit in vivo histopathological imaging of the retina and ONH and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.06.23286879doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286879
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

allow mapping of contours and topography.12,13 Different ONH features imaged using OCT, 

such as average retinal nerve fiber layer (RNFL) thickness, disc topography, ganglion cell 

layer, inner plexiform layer thickness, ganglion cell complex (GCC) layer thickness and 

macular RNFL thickness, are widely used in clinical features to train an artificial neural 

network in glaucoma detection.14 According to Christopher et al.15, unsupervised machine 

learning-based principal component analysis (PCA) could be a novel technique to detect 

glaucomatous nerve fibre layer damage using wide-angle OCT. Wang and colleagues16 

developed a new BLNet (Boundary detection and Layer segmentation Network) model to 

detect all the retinal boundaries and segment all the layers from peripapillary circular optic 

nerve scans. It measured the RNFL thickness to classify glaucoma using a CNN and achieved 

an area under the receiver operating characteristic curve (AUC) of 0.864. Researchers at the 

National University of Singapore17 developed a custom U-net called DRUNET, a robust 

segmentation framework that can segment six ONH tissue layers by capturing both the tissue 

texture and spatial arrangement of tissues. The authors in another study18 developed a Branch 

Residual U-Network (BRU-Net), which combines residual building blocks with dilated 

convolutions into an asymmetric U-shape model which can successfully segment several 

retinal layers.  This model reduced the training and validation mean square error (MSE) loss 

and improved the convergence speed compared to U-net.19  

However, with all these methods, the accuracy of the model depends on the accurate 

segmentation and quantification of the relevant retinal structures of OCT images. The use of 

human-led image annotation potentially decreases classification accuracy. Machine-based 

segmentation also often failed due to the presence of speckle noise,20-22 low signal strength,23 

motion artifacts,24 and vitreous opacity or vitreoretinal interface effects.25-27 Furthermore, mis-
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segmentation occurs in eyes with advanced glaucoma or retinal pathology (e.g., diabetic 

retinopathy).28 

The benefit of using CNNs is their feature-agnostic ability, i.e., the ability to classify images 

by learning the position and scaling the variant structures within the data. This ability decreases 

the need for human input by eliminating manual segmentation and pre-processing. Recently, 

two studies reported that a feature agnostic CNN model performs better when processing 

unsegmented SD-OCT scans than segmented retinal layers29 to detect glaucoma. Maetschke 

and colleagues28 proposed a DL model that can detect glaucoma directly from raw OCT 

volumes of the ONH using a 3D CNN with an AUC of 0.94. The second study by Thompson 

and colleagues30 achieves a higher AUC (0.97) using the CNN model than the global RNFL 

thickness model (0.87) for automated glaucoma detection, trained from raw SD-OCT 

peripapillary B-scan images. 

Deep learning models are often criticized as “black boxes” due to their failure to provide a 

reasonable explanation behind the prediction of a specific diagnosis. To address this gap 

between DL and clinician-based assessments, different visualization techniques such as 

Deconvolution Network (DeconvNet),31 Deep Visual Explanation (DVE),32 Local 

Interpretable Model-Agnostic Explanations (LIME),33 Class Activation Mapping (CAM),34 

Gradient-weighted-CAM (Grad-CAM),35 etc. have been developed to explain and visualize the 

neural network mechanism and feature maps responsible for network prediction.  

In this study, we aimed to explore the low-level and high-level learning features of different 

layers of CNN using pre-trained models to explore whether the raw TSNIT profile can 

distinguish glaucomatous eyes from healthy eyes. The models were fine-tuned to detect 

glaucoma from both raw and segmented (Inner Limiting Membrane (ILM)+RNFL layer) 
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images using the transfer learning method. To the best of our knowledge, this is the first study 

using the ONH TSNIT retinal structural OCT feature for detecting glaucoma using deep 

learning and our preliminary work achieved promising result.36 The work has been 

substantially extended by implementing three different pre-trained models for i) glaucoma 

detection ii) CNN feature visualization and iii) localization of distinguishing retinal regions 

using the Grad-CAM technique by employing more datasets. 

2. Materials and Methods 

Datasets 

This study was a retrospective, a total of 1560 circumpapillary RNFL (cpRNFL) ONH OCT 

B-scans (Heidelberg Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany), 

consisting of 780 segmented (ILM+RNFL) and 780 raw images of 370 glaucomatous and 410 

normal eyes were collected. The patients were seen at the Centre for Eye Health, UNSW from 

2015 to 2018, normal aged 49±13 and glaucoma aged 63±13 under the ‘Glaucoma 

Management Clinic’ (GMC). The glaucoma patients were diagnosed and managed by the GMC 

referred by the optometrist, CFEH optometrists and an ophthalmologist following clinical 

guidelines.37 A mixed dataset was selected with different types of glaucoma (e.g. primary open-

angle glaucoma (POAG), normal-tension glaucoma (NTG), secondary open-angle glaucoma 

(SOAG), and angle-closure glaucoma (ACG) with different stages (early to severe) of 

glaucomatous optic neuropathy. The glaucoma staging was diagnosed by the clinicians, 

followed by the Mills criteria.38 The study adhered to all the tenets of the Declaration of 

Helsinki and was approved by the UNSW Sydney ethics committee. A written informed 

consent was obtained from each patient prior to using their de-identified clinical data in the 

study. The TSNIT retinal B-scan was cropped from the original machine’s cpRNFL OCT scans 
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and resized using the bicubic interpolation method to desired pixels size using ImageJ software 

(https://imagej.net/Fiji): no other pre-processing was performed. 

Glaucoma detection 

Pre-trained models were trained using 678 raw and segmented images (Normal: 364, 

Glaucoma: 314) for automated glaucoma detection. To balance the groups, 50 images from the 

glaucoma group were augmented by rotating 5 degrees clockwise. Finally, 728 images were 

split into 70% for training and 30% for validation. The remaining 102 images (46 normal and 

56 glaucoma: early 31, advanced and moderate 23, severe 2) were used in the testing dataset 

to observe the performance of the model. The three pre-trained models SqueezeNet,39 

ResNet18,40 and VGG16,41 were fine-tuned to train the images for feature visualization and 

glaucoma detection. The SqueezeNet model was selected for its simple architecture, reliance 

on few parameters, and fast learning abilities. The ResNet and VGG are powerful DL models 

and are widely used for medical image classification.42 The SqueezeNet model consists of 68 

layers: only the last layer of the model is replaced with a new convolutional layer updating to 

two class numbers. The weight and biases of the fully connected layer are changed; all other 

remaining layers’ weights and biases are unchanged. The TSNIT images were resized to 

227×227 pixels according to the input size of the SqueezeNet model. A minibatch size of 12, 

total epochs of 10, and a learning rate of 0.0002 were set for the final model.   

The ResNet18 consists of 71 layers and is popular for its residual learning; gradients can flow 

through the shortened effective paths to any other earlier layer spontaneously, resolving the 

vanishing gradients problem for large and deep neural networks. For ResNet18, a minibatch 

size of 10, total epochs 10, and a learning rate of 0.00001 were selected for final classification.  

VGG16 consists of 41 layers and has demonstrated promising results for retinal OCT image 
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analysis compared to other pre-trained models.43-46 For VGG16 the dataset was split into 80% 

training and 20% validation to avoid the overfitting problem. The batch size was 10, maximum 

epochs 10, learning rate 0.00005 were set to train the model. The AUC, calculated from the 

receiver operating characteristics (ROC) curve and confusion-matrix (CM) were used for 

performance evaluation. The classification metrics were calculated from the CM. 

Visualizing features map of TSNIT OCT  

The technique of visualizing the learned features of CNN is termed feature visualization. We 

investigated how raw image features are learned throughout different layers of the network 

through the visualization of features from low- to high-level. The feature maps were visualized 

through the different layers of the SqueezeNet model (Figure 2).  To visualize the features 

through the neural network’s convolutional filters and activations maps, SqueezeNet was 

preferred because it has fewer parameters, a low run-time facility with limited memory. Both 

glaucomatous and healthy TSNIT raw and segmented OCT images were used to feed the 

network and observe the activations of different layers of the network. The CNN features were 

investigated by observing the activated image regions in the convolutional layers and compared 

to the corresponding regions of the raw images. The activation output was normalized using 

the ‘mat2gray’ function (convert the matrix into grayscale images) and the minimum activation 

value was set between 0 to 1 to provide a clear visual explanation.  
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Figure 2. SqueezeNet model diagram for feature map visualization and glaucoma detection. 

The first convolution layer and two deeper layers of the CNN were selected and demonstrated 

the features of the strong activation channel for both normal and glaucomatous eyes images. 

The first convolutional layer consists of different convolution filters (kernel size: 3×3) and 

performs image operations such as image blurring, sharpening, embossing, edge detection, etc., 

to learn the useful image elements. The network often learns one feature per channel, or filter. 

For SqueezeNet, the first convolutional layer has 64 channels (113×113×64) (Figure 2). We 

first examine the output activations of the first convolutional (conv1) layer on an 8×8 grid, to 

display 64 images (one for each channel of the layer: see Figure 3). Among the 64 channels, 

the strongest activation channel is found by calculating the maximum pixel values of the conv1 

layer and displaying it with the same size as the original image (Figure 3 right). 

Investigation of network predictions using Grad-CAM 

The pre-trained models trained using both segmented and raw OCT images were investigated 

with Grad-CAM activation function to visualize which regions of the images are counted for 
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prediction of the two classes. Grad-CAM creates a class-specific localization map highlighting 

the features of the image using the gradient of the prediction score of the specific class with 

respect to the last convolutional layer of the model. The Grad-CAM produces heatmap 

transparently on the image by using ‘AlphaData’ and ‘jet’ colormap to generate deep red as the 

peak value (greatest impact on the classification) and deep blue as the lowest class value. 

3. Results and Discussion 

Glaucoma detection 

The classification results of the validation and test images of the three fine-tuned pre-trained 

models are demonstrated using the CM in Table 1 and performance metrics in Table 2. The 

AUC was calculated from the ROC curve comparing the true positive rate to the false positive 

rate. The sensitivity, specificity, precision, and F1-score were calculated from the CM based 

on four outcomes: true positive- (correctly identified as glaucoma); true negative- (correctly 

identified as normal); false positive- (normal incorrectly classified as glaucoma); false 

negative- (glaucoma incorrectly classified as normal). The segmentation of ILM+RNFL has no 

impact on the results of DL models. Therefore, we are only demonstrating the results of raw 

OCT images. 

Table 1. Confusion matrix of validation data (left) and test data (right) for three models (a) 

SqueezeNet (b) ResNet-18 (c) VGG16.  
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Figure 3. The accuracy and loss curve during the training progress of the VGG16 model. 
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Table 2. Comparison of pre-trained models’ performance for glaucoma detection using 

TSNIT OCT images 

CNN AUC Accuracy (%) Sensitivity (%) Specificity (%) Precision F1-score 

SqueezeNet 0.973 93.6% 94.5% 92.7% 92.8% 93.6% 

ResNet-18 0.978 94.0% 93.6% 94.5% 94.4% 94.0% 

VGG16 0.988 95.2% 94.5% 95.9% 95.8% 95.0% 

 

 

Figure 4. The ROC curve for three transfer-learning models for automated glaucoma detection. 

Figure 3 demonstrated the accuracy and loss curve of the VGG16 model against each epoch, 

which demonstrated that the model was robustly trained and obtained a stable validation 

accuracy. The CMs (Table 1), Table 2 and the ROC curve of Figure 4 demonstrate that of the 

pre-trained models, VGG16 offered the best performance, with the highest AUC (0.98), 

accuracy (95.2%), sensitivity (94.5%), specificity (95.9%), precision (95.8%) and F1-score 

(95.0%) on validation data. The accuracy for test data was 93.0%, sensitivity 94.6%, specificity 

91.3%, precision 93.0% and F1-score 93.8%. Among 102 images, the VGG16 model correctly 

identified 53 glaucomas out of 56 images; only three images from eyes with early glaucoma 

were misclassified as normal. Further image assessment found the 6-sector Garway-Heath 

results also look normal for two glaucoma eyes, no affected region was found for these two 
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earlier glaucomatous eyes. Four images from normals were incorrectly classified as glaucoma. 

Of these, one eye was suspected of macular degeneration in the clinical record, two had a family 

history of glaucoma, and for the other one had no ocular or family history of note. Most of the 

test results included early glaucoma (31 out of 56); therefore, we can say the DL model using 

TSNIT OCT images may detect early glaucoma could therefore help clinicians initiate earlier 

treatment. 

Feature map visualization 

input layer: 227×227×3 

 

raw glaucoma 

conv1 layer: 113×113×64 

 

strong activation channel of 

conv1 layer: 227x227 double 

 

 
raw normal 

 
 

 
segmented normal 

(a) 

  
(b) 

 
(c) 

 

Figure 5. a) Original OCT images for normal and glaucomatous eyes (b) The activation channels of 

the first convolutional layer (c) The strongest activation channel of first convolutional layer. 

Figure 5 demonstrates that the strong activation channel appears similar for raw and segmented 

images. However, in the conv1 layer few channels are only activated with segmented edges. 
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The features of the conv1 layer will pass through several rectified linear units (ReLu), max-

pooling and convolution filters throughout the network. The Relu only activates on positive 

pixel values and assigns zero for negative feature map pixel values.47 The max-pooling function 

reduces the feature map sizes by calculating the maximum pixel value within its stride 

window48 whilst also producing the most important features of the images in the network. 

Therefore, the most significant features are activated and pass to the adjacent layers.  

Figure 6 examines the deeper layer activations of the SqueezeNet model. Among 68 layers, we 

chose the 35 number layer (fire6-squeeze1x1) - which is a convolutional layer - and the last 

convolutional layer (relu_conv10) to observe which features were finally used by the network 

to make the classification decision. For the fire6-squeeze1x1 layer, images are displayed on a 

6x8 grid (one for each channel of the layer). The features map (14×14×48) of this layer was 

ambiguous and combined features of the previous layers. For relu_conv10, only the strong 

activation channel is displayed in Figure 6 (right). 
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Strong activation channel of 
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Figure 6. (a) The activation channels of fire6-in squeeze1x1 convolutional layer (b) The strongest 

activation channel of fire6-in squeeze1x1 convolutional layer (c) The strongest activation channel of 

the last convolutional layer. 

If we compare the original image with the strong activation channels (Figure 6), we can see the 

channel activates most of the RNFL layer of the image. The active regions of positive (white 

pixels) are bigger in the normal image’s activation channel than in the glaucomatous image’s. 

This shows that CNN correctly locates the affected region (glaucoma-the brightest pixels) and 

the healthy RNFL regions in normal eyes images (both raw and segmented) in the final 

convolution layer (conv10). 

Investigate network predictions using Gradient-weighted-Class Activation Mapping 

(Grad-CAM) 

We explored the features of the images which were considered by the three models when 

predicting the two groups. Four random glaucomatous and normal images were investigated 

using Grad-CAMs, and the results are demonstrated in Figure 7 and Figure 8.  
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Figure 7. The Grad-CAM result for SqueezeNet, ResNet18, and VGG16 (left to right) extracted from 

raw images of glaucomatous eyes (left). 

    

    

Figure 8. The Grad-CAM result for SqueezeNet, ResNet18, and VGG16 (left to right) extracted from 

raw images of normal eyes (left). 

In Figure 7 and Figure 8, we can see that the heatmaps generated from the Grad-CAM 

accurately differentiate the two groups. The localized region for glaucoma is in line with the 

definition of glaucoma. Thinning of the RNFL indicates glaucomatous damage, whilst a thicker 

RNFL suggests is present in normals. The three models precisely identify the glaucomatous 

damage across the TSNIT scan.  We also explored Grad-CAMs for segmented images, and the 

heatmaps were similar for both raw and segmented images. Thus, we conclude that the raw 
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TSNIT OCT-based DL model can contribute to glaucoma diagnosis. The CNN detects the same 

structural information as the expert clinicians without consideration of prior clinical 

information. 

This study explored automated glaucoma detection using three pre-trained models, of these, 

VGG16 showed the most promise, with an AUC 0.98 for validation data. The sensitivity was 

95% in the test dataset, and the F1 score was 94%, which is better than that found in previous 

studies.26,28,45 Visualization of image features from low to high levels demonstrated that the 

RNFL layer was the most discriminative feature among all the retinal layers. To the best of our 

knowledge, this is the first study where the CNN features of retinal OCT images were 

visualized and investigated. The Grad-CAM reveals that the three models successfully 

localized the regions affected by glaucomatous optic neuropathy (red regions are highly 

predictive for specific classes) and can separate glaucomatous from normal eyes, which is 

consistent with previous literature.45 The OCT TSNIT scan is ideal for glaucoma imaging as it 

encompasses the complete retinal structure throughout 360 degrees in the peripapiallary region. 

Our results demonstrate that the raw version of this scan can be used to differentiate early 

glaucoma using deep learning techniques. Moreover, our results suggest that DL models can 

detect glaucoma via a feature agnostic approach from TSNIT OCT B-scans. Hence, these DL 

algorithms do not require any machine or human-led segmentation or pre-processing before 

training, which may be an attractive feature in large scale screening applications. Use of a 

single cpRNFL OCT scan could streamline glaucoma screening, improve the experience for 

patients and better optimize health resources. 

We note that our study has limitations. Our study is a single-centre study; most of the patients 

in this study are Caucasian and Asian; therefore, we could not investigate the effect of ethnicity 
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on the retinal layer. Moreover, we did not examine the glaucoma TSNIT layer changes with 

other concomitant diseases (like cataracts, diabetes etc.). Therefore, there is a need for 

additional, global validation of deep learning models for different ethnic backgrounds 

including larger age groups and further investigation regarding concurrent ocular diseases’ 

impact on TSNIT scans. Furthermore, the robustness of the DL model using TSNIT OCT scan 

with improved results could be achievable in the future by integrating larger training datasets. 

4. Conclusion 

In conclusion, the classification results and the interpretation of optical coherence tomography 

images using pre-trained deep learning models demonstrated promising and reliable 

performance superior to comparable studies in this field. This suggests that the Temporal-

Superior-Nasal-Inferior-Temporal retinal profile could be considered a novel clinical imaging 

feature to train artificial neural networks for automated glaucoma detection and management. 

The features visualization and localization process solved the ‘black box’ problem of artificial 

intelligence and renders the classification process more transparent to users. Interpretable 

results can help shed new perspectives to clinicians during the diagnostic phase and increase 

the reliability of the deep learning model at the clinician’s level. This automated transparent 

deep learning model using Temporal-Superior-Nasal-Inferior-Temporal retinal optical 

coherence tomography images could be a powerful tool that may ultimately improve screening 

for glaucoma, even in its early stages.  
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