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Summary 39 

Ageing-associated cognitive decline affects more than half of those in long-term residential 40 

aged care. Emerging evidence suggests that gut microbiome-host interactions influence the 41 

effects of modifiable risk factors. We investigated the relationship between gut microbiome 42 

characteristics and severity of cognitive impairment (CI) in 159 residents of long-term aged 43 

care. Severe CI was associated with a significantly increased abundance of proinflammatory 44 

bacterial species, including Methanobrevibacter smithii and Alistipes finegoldii, and decreased 45 

relative abundance of beneficial bacterial clades. Severe CI was associated with increased 46 

microbial capacity for methanogenesis, and reduced capacity for synthesis of short-chain fatty 47 

acids, neurotransmitters glutamate and gamma-aminobutyric acid, and amino acids required 48 

for neuro-protective lysosomal activity. These relationships were independent of age, sex, 49 

antibiotic exposure, and diet. Our findings implicate multiple gut microbiome-brain pathways 50 

in ageing-associated cognitive decline, including inflammation, neurotransmission, and 51 

autophagy, and highlight the potential to predict and prevent cognitive decline through 52 

microbiome-targeted strategies.  53 

 54 
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Introduction 57 

Progressive loss of cognitive function is a common feature of ageing and is not limited to those 58 

with dementia (Albert et al., 1995; Comijs et al., 2004; Harada et al., 2013; Verdi et al., 2018). 59 

Contributory pathologies, often occurring in combination, include ischaemic or haemorrhagic 60 

infarcts within the brain (characteristic of vascular dementia) (Henon et al., 2001; Ye et al., 61 

2015), the accumulation of amyloid plaques and neurofibrillary tangles (characteristic of 62 

Alzheimer’s disease) (Bussian et al., 2018; Luo et al., 2020), and the development of abnormal 63 

collections of alpha-synuclein protein within diseased brain neurons (characteristic of Lewy 64 

body dementia) (Lin et al., 2017; Mattila et al., 2000). While these pathophysiological 65 

processes are increasingly well-characterised, the factors that contribute to them and their 66 

relationship to external risk exposures remain poorly understood.  67 

 68 

In addition to genetic factors (Koistinaho et al., 2004; Lin et al., 2018; Liu et al., 2017; Parcon 69 

et al., 2018; Shi et al., 2017; Ulrich et al., 2018), modifiable risk factors associated with 70 

dementia have been identified. Modifiable risk factors include exposures (smoking, excessive 71 

alcohol consumption, physical inactivity, air pollution, diet);  health conditions (hypertension, 72 

obesity, depression, diabetes, traumatic brain injury, hearing impairment), and social factors 73 

(less education, and low social contact) (Livingston et al., 2020). Together, these modifiable 74 

risk factors are estimated to account for 40% of dementia incidence (Livingston et al., 2020). 75 

Identifying how such factors influence the pathophysiology of ageing-associated cognitive 76 

impairment (CI) is essential to the development of effective prevention and treatment. 77 

 78 

The gut microbiome influences neurophysiology, central nervous system, and cognitive 79 

function through discrete bidirectional pathways, collectively termed the microbiome-gut-80 

brain axis (Cryan et al., 2019; Rogers et al., 2016; Sharon et al., 2016; Shoubridge et al., 2022). 81 
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These pathways include the microbial synthesis of neurotransmitters, such as gamma-82 

aminobutyric acid (GABA), noradrenaline, dopamine and serotonin (Valles-Colomer et al., 83 

2019; Yano et al., 2015), the modulation of systemic immunity (Correa-Oliveira et al., 2016; 84 

Dalile et al., 2019), and metabolism of essential amino acids, such as tyramine and tryptophan 85 

(Lai et al., 2021; Marx et al., 2021). They also involve production of immune and metabolically 86 

active metabolites, such as short-chain fatty acids (SCFAs) and 4-ethylphenylsulfate, and 87 

activation of nerve growth factor, glial-derived neurotrophic factor, and brain-derived 88 

neurotrophic factor secretion (Bonfili et al., 2021; Soto et al., 2018). Such microbial traits have 89 

the potential to contribute substantially to the development of neurological diseases, including 90 

Alzheimer’s (Kim et al., 2020; Vogt et al., 2017), Huntington’s (Bjorkqvist et al., 2008; Du et 91 

al., 2020; Wasser et al., 2020), and Parkinson’s diseases (Sampson et al., 2016; Sun et al., 92 

2018). 93 

 94 

Ageing-associated gut microbiome characteristics (Claesson et al., 2011; Meyer et al., 2022) 95 

are linked to progressive frailty and cognitive decline (Komanduri et al., 2021; Manderino et 96 

al., 2017; Meyer et al., 2022; Verdi et al., 2018). External exposures that disrupt the 97 

microbiome, such as antibiotics, can further contribute to altered neurological homeostasis and 98 

poorer cognitive outcomes (Desbonnet et al., 2015; Frohlich et al., 2016; Lynn et al., 2021). In 99 

contrast, dietary interventions that alter the composition of the gut microbiome in a beneficial 100 

manner can result in improvements in cognitive function (Ghosh et al., 2020). Such findings 101 

suggest that the relationship between the gut microbiome and host neurophysiology may 102 

provide a basis to predict and/or prevent the onset and progression of ageing-associated 103 

cognitive decline. Potential causality in these relationships is suggested by studies that have 104 

successfully recapitulated impairment of memory and synaptic plasticity following faecal 105 

microbiota transplant from aged mice to younger mice (D'Amato et al., 2020). 106 
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  107 

Our aim was to explore whether the severity of CI experienced by residents of long-term aged 108 

care facilities (sometimes referred to as nursing homes, care homes, or residential aged care 109 

facilities) is associated with characteristics of the gut microbiome, and if so, whether such 110 

relationships might provide mechanistic insight into CI pathogenesis.  111 
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Materials and Methods 112 

Study design, cohort and data collection 113 

The Generating evidence on Resistant bacteria in the Aged Care Environment (GRACE) study 114 

(www.gracestudy.com.au) was a cohort study supported by the Australian Medical Research 115 

Future Fund (Grant No. GNT1152268). Ethical approval for the study was obtained from the 116 

Southern Adelaide Clinical Human Research Ethics Committee (HREC/18/SAC/244). The 117 

GRACE study investigated the carriage and transfer of resistant bacteria in long-term aged care 118 

facilities and was conducted between 2018 and 2020. GRACE enrolled 279 residents in five 119 

long-term aged care facilities in metropolitan South Australia. Anonymised participant data, 120 

including assessments of cognition and behaviour, were collected via an entry into care funding 121 

assessment (Aged Care Funding Instrument [ACFI]), in addition to medications prescribed via 122 

the Pharmaceutical Benefits Scheme (PBS) (Carpenter, 2021).  123 

 124 

Assessment of cognitive impairment  125 

The Cognitive Skills component of the ACFI was used as a basis for assessment of cognitive 126 

impairment. This cognitive skills component assesses a person’s cognitive abilities in everyday 127 

activities, including memory, self-care, and orientation (AIHW, 2002; Department of Health 128 

and Ageing, 2016), as defined via the Psychogeriatric Assessment Scales – Cognitive 129 

Impairment Scales (PAS-CIS) method (Jorm et al., 1995). Where individuals were unable to 130 

undertake the PAS-CIS test, for example, non-English speaking, sensory impairment, or severe 131 

cognitive impairment beyond the scope of the instrument, the ACFI cognitive skills assessment 132 

was based on a clinical report by a registered health professional (Department of Health and 133 

Ageing, 2016). The ACFI cognitive skills component utilised the PAS-CIS and/or clinical 134 

reports to rate an individual’s level of cognitive impairment as none or minimal (PAS-CIS = 135 

0-3), mild (4-9), moderate (10-15), or severe (16-21).  136 
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 137 

Cognitive impairment cohort 138 

GRACE participants were categorised according to their cognitive skills rating, as defined in 139 

the ACFI. Participants were excluded if: 1) their cognitive skills assessment was not completed 140 

or missing, 2) the date of stool collection was not known, 3) the date of the cognitive assessment 141 

was not known, 4) the participant was diagnosed with a developmental or intellectual disability, 142 

or 5) the period between cognitive skills assessment and stool sample collection was not known 143 

or was deemed an outlier (>1462 days as determined using the ROUT method of regression 144 

and outlier removal (Motulsky & Brown, 2006)). A total of 45 participants were excluded 145 

(detailed in Supplementary Fig. 1). Participants with dementia and a missing PAS-CIS rating 146 

were imputed the median PAS-CIS value from their cognitive skills assessment group. Mental 147 

and behavioural diagnoses of dementia, depression, and delirium were ascertained from the 148 

ACFI, where a documented diagnosis from a medical practitioner was provided. 149 

 150 

Faecal collection, DNA extraction, metagenomic sequencing and bioinformatics 151 

Stool was collected and stored using Norgen Stool Nucleic Acid Collection and Preservation 152 

Tubes (Norgen Biotek, ON, Canada) and microbial DNA extracted using the PowerLyzer 153 

PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany) as described previously (Carpenter, 154 

2021). Indexed, paired-end DNA libraries were prepared using the Nextera XT DNA Library 155 

Prep Kit (Illumina, CA, USA), as per manufacturer’s instructions. Samples were sequenced at 156 

a depth of 5 Gb on an Illumina Novaseq platform with 150bp paired-end reads. Forward and 157 

reverse sequences were quality-filtered using Trimmomatic (v0.39) and human reads were 158 

removed with Bowtie (v2.3.5.1) against the NCBI human reference genome release GRCh38 159 

(Bolger et al., 2014; Langmead & Salzberg, 2012). Taxonomic relative abundance was 160 

assigned using MetaPhlAn (v3.0) (Beghini et al., 2021), while microbial metabolic pathway 161 
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abundance was assigned using HUMAnN (v3.0) against the MetaCyc database (Beghini et al., 162 

2021). Sequence data has been entered into the European Nucleotide Archive (ENA) at EMBL-163 

EBI under accession number PRJEB51408. 164 

 165 

Microbiome characterisation 166 

The taxonomic relative abundance at the species level was used to generate alpha diversity 167 

(within-group) and beta diversity (between-group) measures. Alpha diversity measures 168 

included Pielou’s evenness (J’: a score between 0-1 where scores are influenced more by the 169 

evenness of abundant species), the Shannon-Wiener diversity (H’): a score of the number and 170 

equal representation of different types of species (Peet, 1974), and species richness (d: total 171 

number of unique species identified per participant), and were generated using the ‘vegan’ R 172 

package (Oksanen, 2022). 173 

 174 

The Bray-Curtis index was calculated to compare microbiome similarity between groups (beta 175 

diversity), using square-root transformed species relative abundance data (PRIMER 6 176 

(v6.1.16)). For sensitivity analysis, weighted and unweighted UniFrac distance matrices 177 

(Lozupone & Knight, 2005) were calculated using the “calculate_unifrac” MetaPhlAn R script 178 

(Beghini et al., 2021). Non-metric multidimensional scaling (nMDS) plots for all beta diversity 179 

measures were generated using the ‘vegan’ package in R and visualised using ‘ggplot2’.  180 

 181 

Microbial functional profiling 182 

The functional capacity of the gut microbiota was defined by the genetically encoded functional 183 

traits detected within the metagenome. These MetaCyc pathways from HUMAnN were filtered 184 

to only analyse those present in >30% of participants. Two functional profiling analyses were 185 

performed: an untargeted analysis of all filtered pathways (n=400), and a targeted analysis 186 
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based on pathways with a hypothesised functional role in cognitive impairment (n=70). These 187 

included pathways involved in neurotransmitter biosynthesis (n=2), SCFA production (n=25), 188 

and amino acid biosynthesis (n=43). 189 

 190 

Metabolite profiling 191 

As a confirmatory analysis of microbial functional capacity, the metabolomic profile of a 192 

randomly selected subgroup of individuals (n=35; n=11-12/group) was established. Stool 193 

metabolite analysis was performed on an Agilent 1200 series high-performance liquid 194 

chromatography system (Agilent Technologies) (methods modified from (Gubert et al., 2022; 195 

Kong et al., 2021) and detailed in Supplementary Text 1). Briefly, metabolite extraction and 196 

analysis were performed separately for SCFAs and polar metabolites. SCFAs analysis was 197 

performed using an Agilent 6490 series triple quadrupole mass spectrometer (Agilent 198 

Technologies) while polar metabolites (a screen for 165 low molecular weight metabolites, e.g. 199 

amino acids) were analysed using an Agilent 6545 series quadrupole time-of-flight mass 200 

spectrometer (Agilent Technologies). Resultant data matrices were imported to the web-based 201 

platform MetaboAnalyst (v5.0) for quality control checks. SCFA data were normalised to 202 

internal standards, and polar metabolite data were log-transformed and median-normalised. 203 

 204 

Covariates  205 

Covariates were: days since cognitive assessment (below or equal/above the median), age (low, 206 

medium or high tertile), sex (male or female), medication history (Pharmaceutical Benefits 207 

Scheme (PBS) data available or unavailable), medications that affect gastrointestinal health 208 

and are prevalent in aged care facilities: antibiotic use (yes or no); proton pump inhibitor use 209 

(yes or no); opioid use (yes or no); laxative use (yes or no), meal texture at time of cognitive 210 

assessment (regular or soft/smooth), and liquid texture at time of cognitive assessment 211 
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(normal/thin or thick). Medication use was defined as two or more supplies to a resident within 212 

90 days prior to stool collection. 213 

 214 

Statistical analysis 215 

Both unadjusted and multivariate regression models were applied in all analyses. Multivariate 216 

adjusted models accounted for time between cognitive assessment and stool collection, age, 217 

sex, antibiotics, proton pump inhibitors, opioids, laxatives, meal texture, and liquid texture (as 218 

detailed above).  219 

 220 

Beta diversity analysis was performed using permutational multivariate analyses of variance 221 

(PERMANOVA) on Bray-Curtis, weighted, and unweighted UniFrac distance matrices in an 222 

unrestricted permutation of raw data. Only the Bray-Curtis metric was assessed with the 223 

multivariate-adjusted model. PERMANOVA analyses were performed using PRIMER 6, with 224 

9999 permutations.  225 

 226 

Within-individual microbiome variables included alpha diversity, phyla-level relative  227 

abundance (only those detected in >30% of participants), species-level relative abundance 228 

(only those detected in >30% of participants), metabolic pathway abundance (only those 229 

detected in >30% of participants), and metabolite intensities. All within-individual variables 230 

were converted to groups consisting of: zero values, tertile 1, tertile 2, and tertile 3. Ordinal 231 

logistic regression was performed to assess the effect of CI on microbiome variables using the 232 

‘MASS’ function in R. The odds ratios and 95% confidence intervals for the coefficients of the 233 

regression models were calculated and tested for statistical significance (p<0.05) as CI severity 234 

increased, using the PAS-CIS score of cognitive impairment as the predictor variable. False 235 

Discovery Rate (FDR) multiple hypothesis testing was conducted with the Benjamini and 236 
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Hochberg method across all profiles using the ‘p.adjust’ function in R, at a significant threshold 237 

of 0.05. Correlations between microbial functional capacity and detected metabolites were 238 

calculated by two-tailed Spearman correlations and tested for statistical significance (p<0.05).  239 
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Results 240 

The study group of 159 participants did not differ from the original GRACE cohort in any of 241 

the assessed characteristics (Supplementary Table 1). CI was classified as mild in 46 242 

individuals (28.9%) with a median PAS-CIS score of 6.6 (IQR=5.0-8.0), moderate in 58 243 

(36.5%; PAS-CIS median=11.0; IQR=11.0-12.8), and severe in 55 (34.6%; PAS-CIS 244 

median=18.0; IQR=17.0-18.8) (Table 1; Supplementary Fig. 2A). The median time from 245 

assessment of cognitive skills to the subsequent collection of stool samples was 437 days (IQR: 246 

185-741). Participant age, sex ratio, time since cognitive assessment, and use of antibiotics, 247 

opioids, and laxatives, did not differ significantly between CI severity categories (p>0.05; 248 

Supplementary Fig. 2B-F). However, the number of days that an individual had been residing 249 

in long-term aged care was significantly higher for those in the severe CI group (median=939 250 

days; IQR=219-854) compared to the mild CI group (median=500 days; IQR=130-627; 251 

p<0.05). Proton pump inhibitor usage was significantly lower in the severe CI group (p<0.05). 252 

Within the severe CI group, 53/55 (96.4%) had a concurrent diagnosis of dementia, 33/58 253 

(56.9%) of moderate CI had a dementia diagnosis, and 4/46 (8.7%) of those with mild CI.    254 

 255 

Gut microbiome characteristics differ by CI severity  256 

Gut microbiome characterisation of long-term aged care residents with CI was determined by 257 

metagenomic sequencing of collected stool samples (Fig. 1A). A total of 11 bacterial phyla 258 

were detected across the 159 stool samples, consisting of 186 genera (586 species). The 259 

composition and distribution of taxa was broadly similar with previous studies of aged 260 

populations (Claesson et al., 2011; Jackson et al., 2016), with high representation of 261 

Eggerthella lenta, Escherichia coli, Faecalibacterium prausnitzii, and Clostridium species 262 

(Fig. 1B), and genera within the Bacteroidota (formerly Bacteroides) and Bacillota 263 

(Firmicutes) phyla (Fig. 1C). 264 
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 265 

Demographic 
Mild  Moderate  Severe  Total 

(n=46) (n=58) (n=55) (n=159) 

Age (years):  

Median (IQR)  87.5 (81.3;93.6) 90.3 (83.7;95.0) 87.9 (82.0;93.0) 

 

88.7(82.1; 93.5) 

Sex: n (%)      

Female 27 (58.7) 42 (72.4) 40 (72.7) 109 (68.6) 

Male 19 (41.3) 16 (27.6) 15 (27.3) 50 (31.4) 

PAS-CIS: 

Median (IQR) 6.6 (5.0;8.0) 11.0 (11.0;12.8) 18.0 (17.0;18.8) 

 

10.8 (7.0;18.0) 

Time between CI 

assessment and stool 

collection (days):     

 

Median (IQR) 345.5 (148.5,654.5) 421.5 (182.3,734.3) 487.0 (252.0,909.0) 437.0 (185.0,741.0) 

Time since entry to 

facility (days):     

 

Median (IQR) 500 (253.0,947.5) 704 (299.0,983.0) 962 (502.0,1198.0) 681 (360.0,1015.0) 

Dementia diagnosis: 

 % (n)# 8.7 (4) 56.9 (33) 96.4 (53) 56.6 (90) 

Memory Support 

Unit^: n (%) 0 (0.0) 4 (6.9) 19 (34.5) 23 (14.5) 

Meal texture: n (%) 

Regular 

Soft/smooth 

38 (82.6) 

8 (17.4) 

44 (75.9) 

14 (24.1) 

30 (54.5) 

25 (45.5) 

112 (70.4) 

47 (29.6) 

Liquid texture: n (%) 

Normal/thin 

Thick 

42 (91.3) 

4 (8.7) 

54 (93.1) 

4 (6.9) 

49 (89.1) 

6 (10.9) 

145 (91.2) 

14 (8.8) 

Antibiotics (at least 2 

supplied*): n (%) 10 (21.7) 7 (12.1) 5 (9.1) 22 (13.8) 

Proton pump 

inhibitors (at least 2 

supplied*): n (%) 23 (50.0) 23 (39.7) 12 (21.8) 58 (36.5) 

Opioids (at least 2 

supplied*): n (%) 8 (17.4) 12 (20.7) 14 (25.5) 34 (21.4) 

Laxatives (at least 2 

supplied*): n (%) 6 (13.0) 6 (10.3) 9 (16.4) 21 (13.2) 

 266 

Table 1. Study Cohort Characteristics by Severity of Cognitive Impairment. 267 

#Extracted from Aged Care Funding Instrument data. 268 

^Memory support units (also known as dementia units/wards, memory care, or special care 269 

units) are secure areas within long-term care facilities specially designed to accommodate 270 

residents with dementia. 271 

*Medication use defined as two or more supplies of the same medication within 90 days prior 272 

to stool collection. 273 

 274 
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Figure 1. Gut microbiome of residents of long-term aged care facilities stratified by 276 

cognitive impairment (CI). A) Characterisation of the gut microbiome of long-term aged care 277 

residents with cognitive impairment determined by metagenomic sequencing of collected stool 278 

samples. B) Taxa bar plot of core species grouped by cognitive impairment severity (present 279 

in >60% of participants). Species coloured by phyla: Actinomycetota = blues; Bacteroidota = 280 

oranges; Bacillota = greens; Pseudomonadota = purples; non-core species (other) = grey. C) 281 

The frequency of genera detected and their median relative abundances, labelled with core 282 

genera. D) Non-metric multidimensional scaling plot of Bray-Curtis similarity matrix, grouped 283 

by CI severity (mild, n=46; moderate, n=58; severe, n=55), showing significant divergence 284 

between CI groups following multivariate analysis (p(perm)=0.0003). E) Odds ratio and 95% 285 

confidence interval of effect of CI severity on microbiome diversity (taxa richness, Shannon-286 

Wiener diversity, and Pielou’s evenness), following multivariate analysis. Multivariate 287 

analysis adjusted for time since CI assessment, age, sex, antibiotic use, proton pump inhibitor 288 

use, opioid use, laxative use, recorded medical history, meal texture, and liquid texture. ns=not 289 

significant; **q<0.01; ***q<0.001 for adjusted p-values following FDR correction.  290 
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Following adjustment for time since cognitive assessment, age, sex, medication use, and diet, 291 

the faecal microbiota composition differed significantly between mild, moderate, and severe 292 

CI (p(perm)=0.0003; R2=2.21%; Fig. 1D; Table 2). This difference was greatest between 293 

severe CI and mild CI (p(perm)=0.0023), and severe CI and moderate CI (p(perm)=0.0003), 294 

and consistent with the unadjusted model (Table 2). Repeated analysis using weighted and 295 

unweighted UniFrac dissimilarity did not identify significant intergroup differences, apart from 296 

between mild and moderate CI groups using weighted UniFrac dissimilarity (unadjusted 297 

p(perm)=0.037; Supplementary Fig. 4). 298 

 299 

Analysis of microbiota diversity identified a positive association between CI severity and taxa 300 

richness (odds ratio (OR): 1.08 [95% confidence interval 1.05, 1.12], q<0.001) and Shannon-301 

Wiener diversity (OR: 1.043 [1.013, 1.073], q<0.05; Fig. 1E). However, there was no 302 

association between CI severity and Pielou’s evenness (OR: 0.985 [0.957, 1.014], q>0.05; Fig. 303 

1E). 304 

 305 

To assess whether specific taxa differed with CI, phylum-level and species-level relative 306 

abundances were assessed. Of the seven phyla present in at least 30% of participants, five 307 

differed significantly with CI (Fig. 2). Pseudomonadota (Proteobacteria) (OR: 0.937 [0.909, 308 

0.965], q<0.001) and Bacillota (OR: 0.943 [0.915, 0.971], q<0.001) were lower with increasing 309 

CI severity (Fig. 2). In contrast, Euryarchaeota (OR: 1.097 [1.065, 1.131], q<0.001), 310 

Actinomycetota (Actinobacteria) (OR: 1.066 [1.035, 1.099], q<0.001), and Synergistota 311 

(Synergistetes) (OR: 1.043 [1.008, 1.079], q<0.05) were higher with increasing CI severity 312 

(Fig. 2).  313 

 314 

 315 
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  Unadjusted Model Multivariate-adjusted Modela 

Main Test 
Pseudo-F 

Ratio R
2
 p(perm)^ 

Pseudo-F 

Ratio R
2
 p(perm)^ 

Cognitive Impairment*  1.9646 0.0246 0.0002  1.815 0.0221 0.0003 

Pairwise Test t p(perm)^ t p(perm)^ 

Mild v Moderate 1.0596 0.2583 1.1135 0.1478 

Mild v Severe 1.4474 0.0017 1.4228 0.0023 

Moderate v Severe 1.6304 0.0002 1.5265 0.0003 

 316 

Table 2. Permutational ANOVA of the gut microbiome by severity of cognitive impairment. 317 

aTime since cognitive impairment assessment + age + sex+ antibiotic use + proton pump 318 

inhibitor use + opioid use + laxative use + recorded medication history + meal texture + liquid 319 

texture. 320 

^Permutation p-value generated with a PERMANOVA. 321 

*Degrees of freedom = 2.  322 
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 323 

Figure 2. Phyla-level differences in the gut microbiome of residents of long-term aged 324 

care by cognitive impairment. Odds ratio and 95% confidence interval of effect of cognitive 325 

impairment severity on phyla relative abundance. Colours indicate bacterial phyla: blue = 326 

Actinomycetota; green = Bacillota; purple = Pseudomonadota; grey = non-core species. 327 

Performed by multivariate analysis, adjusting for time since cognitive impairment assessment, 328 

age, sex, antibiotic use, proton pump inhibitor use, opioid use, laxative use, recorded medical 329 

history, meal texture, and liquid texture. #Denotes phyla with recently amended names: 330 

Actinomycetota (Actinobacteria), Synergistota (Synergistetes), Bacillota (Firmicutes), and 331 

Pseudomonadota (Proteobacteria). *q<0.05; ***q<0.001 for adjusted p-values following FDR 332 

correction.  333 
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Bacterial species that were detected in at least 60% of participants, and with a relative 334 

abundance of at least 0.1%, were denoted as “core” taxa (Supplementary Table 2). Of the 586 335 

microbial species identified across the entire cohort, 30 were identified as core in mild CI 336 

(Supplementary Fig. 5A), 31 in moderate CI (Supplementary Fig. 5B), and 29 in severe CI 337 

(Supplementary Fig. 5C). 338 

 339 

Comparison of species relative abundances identified 50 species that differed significantly with 340 

CI severity (Fig. 3A). Notably, Blautia hydrogentrophica (OR: 1.135 [1.099, 1.173]), 341 

Catabacter hongkongensis (OR: 1.131 [1.096, 1.168]), and Alistipes finegoldii (OR: 1.089 342 

[1.058, 1.121]), had the strongest positive association with CI severity (all q<0.001, Fig. 3A). 343 

Further, Collinsella aerofaciens and Methanobrevibacter smithii were not only positively 344 

associated with CI severity (q<0.001, Fig. 3A), they were also core species in severe CI, but 345 

not mild or moderate (Fig. 3B, Supplementary Table 2, Supplementary Fig. 5). In contrast, 346 

Bacteroides uniformis (OR: 0.935 [0.908, 0.962]), Blautia producta (OR: 0.916 [0.888, 0.945]) 347 

and Blautia wexlerae (OR: 0.940 [0.913, 0.968]) were among those with the strongest inverse 348 

association with CI severity (all q<0.001, Fig. 3A). Faecalibacterium prausnitzii, a species 349 

previously associated with health outcomes in ageing (Jackson et al., 2016), was also found to 350 

trend lower in this cohort with increasing CI severity, but this did not achieve statistical 351 

significance (OR: 0.986 [0.958, 1.014], q=0.421, Fig. 3A; p>0.05, Fig. 3B).   352 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2023.03.06.23286878doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286878
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

 353 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2023.03.06.23286878doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286878
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Figure 3. Species-level differences in the gut microbiome of residents of long-term aged 354 

care by cognitive impairment. A) Odds ratio and 95% confidence interval of effect of 355 

cognitive impairment severity on species relative abundance. Colours indicate bacterial phyla:  356 

blue = Actinomycetota; orange = Bacteroidota; green = Bacillota = green; grey = other. 357 

Performed by multivariate analysis, adjusting for time since cognitive impairment assessment, 358 

age, sex, antibiotic use, proton pump inhibitor use, opioid use, laxative use, recorded medical 359 

history, meal texture, and liquid texture. B) The relative abundance of bacterial species 360 

associated with cognitive impairment severity and aging: Alistipes finegoldii, Collinsella 361 

aerofaciens, Methanobrevibacter smithii, Bacteroides uniformis, and Faecalibacterium 362 

prausnitzii. ns=not significant; *q<0.05; **q<0.01; ***q<0.001 for adjusted p-values 363 

following FDR correction. Mild, n=46; moderate, n=58; severe, n=55.  364 
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The functional capacity and output of the gut microbiota differs with CI severity 365 

Differences in the functional capacity of the gut microbiota were identified with increasing CI 366 

severity. Four hundred MetaCyc pathways were detected in >30% of participants, of which, 70 367 

were selected based on their potential influence on CI, including via mechanisms relating to 368 

neurotransmission, immunity, and metabolism. Metabolomic analysis of a subgroup of 369 

individuals (n=35; n=11-12/group) confirmed these findings (Fig. 4A). A total of 165 polar 370 

metabolites were detected in stool samples from these participants, including 33 metabolites 371 

classed as amino acids, peptides, and analogues, 50 classed as lipids and lipid-like molecules, 372 

18 classed as carbohydrates, and 64 classed within other categories (Supplementary Fig. 6A), 373 

in addition to nine SCFAs (Supplementary Fig. 6B). Pathways inversely associated with CI 374 

severity included PWY-5505, a pathway essential to the production of the primary excitatory 375 

neurotransmitter glutamate (OR: 0.922 [0.895, 0.949], q<0.001), and GLUDEG-I-PWY, a 376 

pathway essential to the production of the primary inhibitory neurotransmitter GABA (OR: 377 

0.962 [0.934, 0.990], q<0.05, Fig. 4B). The metabolite and excitatory neurotransmitter 378 

glutamate was present at lower levels in individuals with severe CI (Fig. 4C). Similarly, 379 

pathways related to the production of immunomodulatory SCFAs, including acetate (P461-380 

PWY; OR: 0.877 [0.850, 0.904], q<0.001), propionate (P108-PWY; OR: 0.939 [0.913, 0.966], 381 

q<0.001), and butyrate (PWY-5022; OR: 0.935 [0.908, 0.962], q<0.001, Fig. 4D) were also 382 

lower in relative abundance as CI severity increased. The decrease in immune functional 383 

capacity corresponded with depleted levels of immunomodulating SCFA metabolites in 384 

individuals with severe CI, including for butyrate (q<0.01), propionate (q<0.01), and acetate 385 

(q<0.05, Fig. 4E; Supplementary Fig. 7). Functional pathways related to the biosynthesis of 386 

amino acids that regulate key metabolic processes, such as autophagy, included L-arginine 387 

(PWY-5154; OR: 0.911 [0.884, 0.938], q<0.001), L-lysine, L-threonine, and L-methionine 388 

(P4-PWY; OR: 0.905 [0.878, 0.932], q<0.001), and were among the most depleted at higher 389 
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CI severity (Fig. 4F). Production of amino acid polar metabolites also decreased with 390 

increasing CI severity (Fig. 4G; Supplementary Fig. 7).  391 

 392 

Further exploratory analysis across all functional pathways (n=400) identified 271 statistically 393 

significantly altered pathways, with multiple pathways related to methanogenesis among those 394 

of greatest significance and higher relative abundance (p<0.01, Fig. 4F; q<0.001, 395 

Supplementary Table 3). The relative abundances of metagenomic pathways and the levels 396 

of associated metabolites were also positively correlated (Supplementary Fig. 8).  397 
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 401 

 402 

Figure 4. Specific functional differences relating to neurotransmission, immunity, and 403 

metabolism in the gut microbiome of residents of long-term aged care by cognitive 404 

impairment. A) Metagenomic and metabolomic profiling of microbiome functional capacity 405 

and output for long-term aged care residents with cognitive impairment in relation to neuronal 406 

communication (B-C), immunity (D-E), and metabolism (F-G). Odds ratio and 95% 407 

confidence interval of effect of cognitive impairment severity on functional pathway relative 408 
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abundance and metabolite normalised abundance. Performed by multivariate analysis, 409 

adjusting for time since cognitive impairment assessment, age, sex, antibiotic use, proton pump 410 

inhibitor use, opioid use, laxative use, recorded medical history, meal texture, and liquid 411 

texture. The abundance of key pathways and metabolites grouped by cognitive impairment 412 

severity involved in neurotransmission, immunomodulation, and metabolism are shown. 413 

ns=not significant; *q<0.05; **q<0.01; ***q<0.001 for adjusted p-values following FDR 414 

correction. Pathways: mild, n=46; moderate, n=58; severe, n=55. Metabolites: mild, n=12; 415 

moderate, n=11; severe, n=12.  416 
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Discussion 417 

We report significant associations between characteristics of the faecal microbiome and the 418 

severity of CI in residents of long-term aged care facilities. Microbiome CI severity-associated 419 

traits were identified even after adjustment for age, sex, prior medication exposure, and diet. 420 

Individuals with more severe CI exhibited a greater representation of the Actinomycetota 421 

phylum and Methanobrevibacter smithii, and a lower prevalence of Bacteroides uniformis, a 422 

reduced capacity for synthesis of SCFAs, neurotransmitters (glutamate and GABA), and amino 423 

acids that are essential for autophagy, and an increased capacity for methanogenesis. These 424 

findings identify microbial factors potentially influencing ageing-associated cognitive decline, 425 

and present opportunities for prediction and treatment of CI.  426 

 427 

Changes in intestinal microbiology can influence neuroplastic changes in the brain via a range 428 

of mechanisms (Cryan et al., 2019; Rogers et al., 2016; Sharon et al., 2016; Shoubridge et al., 429 

2022). Many of these pathways relate to the production of specific factors by the gut 430 

microbiota, including the biosynthesis of immunomodulatory metabolites and 431 

neurotransmitters (Correa-Oliveira et al., 2016; Erny et al., 2015), amino acid metabolism 432 

(Bellono et al., 2017; Ye et al., 2021), and the release of pro-inflammatory cytokines (Arentsen 433 

et al., 2017; Erny et al., 2015; Kim et al., 2013).  434 

 435 

We assessed the potential influence of the gut microbiome of participants to neurophysiology 436 

through two complementary strategies. The first was the analysis of the metagenome, 437 

representing the functional capacity of microbes within the gut to produce particular 438 

metabolites. The second was a confirmatory analysis of the faecal metabolome, representing 439 

the output of the combined metabolic activity of the gut microbiota. Each of these processes 440 

identified factors that were significantly associated with CI severity, and notably, positive 441 
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correlations between metabolite levels and the prevalence of genes involved in their 442 

biosynthesis was widespread.  443 

 444 

A lower capacity for microbial biosynthesis of the neurotransmitters, glutamate and GABA, 445 

was evident in those with more severe CI. Levels of both factors have been associated with CI 446 

previously (Gueli & Taibi, 2013; Jimenez-Jimenez et al., 1998; Lin et al., 2019; Lin et al., 447 

2017; Murley et al., 2020). The gut microbiome mediates neurological homeostasis via 448 

multiple key pathways, including through metabolism and production of neurotransmitters, 449 

such as glutamate, GABA, dopamine, and serotonin. These neurotransmitters can then directly 450 

innervate intestinal neural pathways or circulate peripherally to the brain (Kaelberer et al., 451 

2018; Shoubridge et al., 2022; Strandwitz, 2018).  452 

 453 

Severe CI was also associated with reduced capacity for bacterial biosynthesis of the SCFAs 454 

butyrate, acetate, and propionate. SCFA production is known to be important for normal 455 

cognitive function and in preventing neuroinflammation (Arnoldussen et al., 2017; Byrne et 456 

al., 2016; Erny et al., 2015). Previous studies have identified an association between a reduced 457 

capacity for SCFA biosynthesis and the development of a chronic and systemic inflammatory 458 

state, commonly referred to as “inflammaging”, involving increased circulation of IL-6, TNF-459 

α, and C-reactive protein (Franceschi & Campisi, 2014; Franceschi et al., 2018; Frasca & 460 

Blomberg, 2016). Inflammaging, particularly in the brain, is associated with decreased 461 

neuronal arborisation, numbers of neurons and synapses, and overall brain cortical volume 462 

(Stephenson et al., 2018) and has been implicated in the acceleration of dementia onset (Grande 463 

et al., 2021; Sankowski et al., 2015), and the rate of neurological deterioration (Eikelenboom 464 

et al., 2012; Giunta et al., 2008). 465 

 466 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2023.03.06.23286878doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286878
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

In contrast to a decreased capacity for SCFA synthesis, we observed a greater capacity for 467 

methanogenesis with increasing CI severity. This relationship was apparent from the 468 

representation of methanogenic pathways within the metagenome, and from the increased 469 

relative abundance of species, such as Methanobrevibacter smithii, in those with severe CI. 470 

Increasing capacity for methanogenesis within the gut microbiome has been reported 471 

previously in two cohorts of centenarians (Li et al., 2022; Wu et al., 2019), as well as in rodent 472 

models of ageing (Maczulak et al., 1989). While the clinical consequences of increased 473 

methane production in the gut are poorly understood, high levels are associated with functional 474 

constipation (Chatterjee et al., 2007), diverticulosis (Weaver et al., 1986), and colon cancer 475 

(Haines et al., 1977). 476 

 477 

The gut microbiome in participants with more severe CI was found to be depleted in its capacity 478 

to synthesise amino acids, particularly L-arginine. The availability of arginine is critical to the 479 

regulation of autophagy (Poillet-Perez et al., 2018), the cellular process that involves the 480 

recycling of nutrients from macromolecules in response to nutrient deficiency (Mizushima, 481 

2004) and the removal of damaged material from the cellular environment (Lazarou et al., 482 

2015). Genetic polymorphisms in genes involved in the regulation of autophagy have been 483 

linked to a number of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, 484 

Huntington’s, and Lewy body diseases, frontotemporal dementia, and amyotrophic lateral 485 

sclerosis (Fujikake et al., 2018; Gan et al., 2018; Gao et al., 2018; Nixon, 2013; Tsuang et al., 486 

2012). The conversion of arginine to putrescine, spermidine, and spermine by intestinal 487 

microbes promotes autophagy (Eisenberg et al., 2009; Oliphant & Allen-Vercoe, 2019; Pugin 488 

et al., 2017) and the significant reduction in arginine biosynthesis capacity is consistent with 489 

the contribution of suppressed autophagy to the development and progression of age-related 490 

disease. Severe CI was also associated with a reduced capacity for microbial production of the 491 
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essential amino acids, L-valine and L-lysine. Impaired L-valine production has been linked 492 

with declining neurological health previously (Baranyi et al., 2016), and diet supplementation 493 

with L-lysine and L-valine has been shown to improve cognitive and psychological function in 494 

older adults (Suzuki et al., 2020).  495 

 496 

Microbial functions, such as those associated with CI severity, can often be performed by many 497 

different members of the gut microbiota. This phenomenon is referred to as functional 498 

redundancy and can result in relationships between individual microbial species and host 499 

measures of disease being less strong than those based on conserved microbial functional traits. 500 

Despite this, we observed a number of discrete bacterial taxa that were significantly associated 501 

with CI. In particular, Methanobrevibacter smithii and Alistipes finegoldii were more prevalent 502 

in those with severe CI, while Bacteroides uniformis was less highly represented. As above, 503 

Methanobrevibacter smithii is associated with higher methane production (Ghoshal et al., 504 

2016) and has been identified as an inflammatory and cardiometabolic biomarker (Fu et al., 505 

2020). Whilst the precise mechanisms of Alistipes species in health and disease are still unclear 506 

(Parker et al., 2020), clinical studies of inflammatory diseases have shown Alistipes finegoldii 507 

triggers intestinal inflammation and decreases SCFA-producing bacteria, potentially playing a 508 

pathogenic role in chronic diseases (Kim et al., 2018; Parker et al., 2020; Rodriguez-Palacios 509 

et al., 2019).  510 

 511 

We also observed severe CI to be associated with a lower prevalence of bacterial taxa that are 512 

considered broadly beneficial. These included Bacteroides uniformis, which is associated with 513 

reduced risk of colorectal cancer (Wang et al., 2012) and inflammatory bowel disease 514 

(Takahashi et al., 2016), and Blautia species, which have the potential to inhibit the growth of 515 

pathogenic bacteria in the intestine and reduce inflammation (Hosomi et al., 2022; Liu et al., 516 
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2021). Taxa that have been previously associated with aspects of cognition, such as Collinsella 517 

aerofaciens (Ghosh et al., 2020), were more prevalent in those with severe CI. However, other 518 

bacterial taxa associated with aspects of ageing, frailty, and cognitive decline in previous 519 

studies, including Faecalibacterium prausnitzii (Jackson et al., 2016), Eubacterium rectale 520 

(Ghosh et al., 2020; van Soest et al., 2020), and Escherichia coli (Barrientos et al., 2009; 521 

d'Avila et al., 2018; Hoogland et al., 2018) were not associated with CI severity in our cohort. 522 

 523 

In addition to the relative abundance of different bacterial species, analysis of the broad 524 

structure of the gut microbiota can also be informative. We assessed three different alpha 525 

diversity measures, Shannon-Wiener diversity, Pielou’s evenness, and species richness, that 526 

together provide an overview of microbiota structure. While evenness, which represents the 527 

relative differences in the abundance of various species in the community, was not associated 528 

significantly with CI severity, Shannon-Wiener diversity and species richness were both higher 529 

in severe CI. Studies of the gut microbiota in ageing have previously reported reduced diversity 530 

in older age. For example, Verdi and colleagues identified significantly lower faecal microbiota 531 

diversity to be associated with longer reaction times (in cognitive assessments) in an 532 

independently living aged cohort (Verdi et al., 2018). Similarly, Wasser and colleagues 533 

reported reduced alpha diversity in those with Huntington’s disease (Wasser et al., 2020), while 534 

two other studies have reported no significant relationship between CI severity and alpha 535 

diversity (Komanduri et al., 2021; Stadlbauer et al., 2020). In our analysis, where age was 536 

adjusted for, a contrary effect was observed, consistent with an association between CI and 537 

specific microbiome changes that is separate to wider microbial shifts that are typical in later 538 

life.  539 

 540 
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Our study strengths and limitations include the use of entry into long term care facility 541 

assessment tools (‘ACFI’) for CI ascertainment. While it has been employed by the Australian 542 

Commonwealth Government as a basis for care funding for all residents of long term care 543 

facilities across Australia since 2008, is completed by trained assessors, and includes the PAS-544 

CIS (a validated and consistently applied tool of CI in aged care), there are limitations to this 545 

tool. For example, people may not be comprehensively assessed for CI if they have a 546 

sensory/speech impairment, are non-English speaking, or have severe CI beyond the scope of 547 

the instrument, which can include a concurrent diagnosis of dementia or mental disorder 548 

(AIHW, 2002; Department of Health and Ageing, 2016). The ACFI is also designed for funding 549 

purposes, not clinical care or epidemiological surveillance, which likely results in 550 

underreporting of these chronic health conditions (Lind et al., 2020). 551 

 552 

CI was measured on average 16 months prior to stool collection. There was no clinically 553 

significant difference in mean time from assessment to stool collection between severity 554 

groups, and the period of time between assessment and sample collection could not be reduced 555 

further without substantial reduction in the cohort size. However, changes in cognition between 556 

assessment and stool sample collection could confound the relationships that we report. Future 557 

studies arising from our findings would benefit from a briefer and more consistent interval 558 

between CI and microbiome assessment, and/or longitudinal analysis of associations. 559 

 560 

Our study had other limitations that should be considered. First, we were able to relate changes 561 

in intestinal microbiology to cognitive function, but not to specific aspects of host neurological 562 

pathophysiology. Second, the relationships identified between taxonomic and functional 563 

features of the intestinal microbiome and CI are associative and whether they contribute 564 

directly to the development and progression of CI remains to be established. Third, the 565 
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possibility that CI severity drives alterations in microbiome composition, mediated by factors 566 

such as dementia medications, changes in food preparation for those with dysphagia, and 567 

isolation to locked wards for residents with severe behavioural care needs, cannot be excluded 568 

based on the current analysis. Indeed, changes in behaviour associated with psychiatric 569 

conditions in other contexts, particularly those relating to diet, have been shown to contribute 570 

to disease-specific gut microbiome markers (Larroya et al., 2021).  571 

 572 

While our analysis involved participants from five facilities in metropolitan South Australia, 573 

the findings are likely to be representative of a wider phenomenon. Alignment of the GRACE 574 

cohort to the comprehensive Registry of Senior Australians (ROSA) (Carpenter et al., 2023), a 575 

cohort that includes over 2.8 million Australians (including those in long-term aged care) 576 

supported the representative nature of our study cohort (Carpenter et al., 2023).  577 

 578 

Conclusions 579 

We report age-, sex-, antibiotic-, and diet-independent microbial markers of severe CI. Our 580 

analysis implicates multiple gut microbiome-brain pathways in ageing-associated cognitive 581 

decline, including those involved in inflammation, neurotransmission, and autophagy. These 582 

findings raise the possibility of identifying cognitive decline and slowing its rate of progression 583 

via microbiome-targeted therapeutic interventions. 584 
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Figures and Tables 
 

Table 1. Study Cohort Characteristics by Severity of Cognitive Impairment. 

#Extracted from Aged Care Funding Instrument data. 

^Memory support units (also known as dementia units/wards, memory care, or special care 

units) are secure areas within long-term care facilities specially designed to accommodate 

residents with dementia. 

*Medication use defined as two or more supplies of the same medication within 90 days prior 

to stool collection. 

Demographic 
Mild  Moderate  Severe  Total 

(n=46) (n=58) (n=55) (n=159) 
Age (years):  

Median (IQR)  87.5 (81.3;93.6) 90.3 (83.7;95.0) 87.9 (82.0;93.0) 
 

88.7(82.1; 93.5) 

Sex: n (%) 
  

   

Female 27 (58.7) 42 (72.4) 40 (72.7) 109 (68.6) 
Male 19 (41.3) 16 (27.6) 15 (27.3) 50 (31.4) 

PAS-CIS: 
Median (IQR) 6.6 (5.0;8.0) 11.0 (11.0;12.8) 18.0 (17.0;18.8) 

 
10.8 (7.0;18.0) 

Time between CI 
assessment and stool 
collection (days):  

   

 

Median (IQR) 345.5 (148.5,654.5) 421.5 (182.3,734.3) 487.0 (252.0,909.0) 437.0 (185.0,741.0) 
Time since entry to 
facility (days): 

 
  

 

 

Median (IQR) 500 (253.0,947.5) 704 (299.0,983.0) 962 (502.0,1198.0) 681 (360.0,1015.0) 
Dementia diagnosis: 
 % (n)# 8.7 (4) 56.9 (33) 96.4 (53) 56.6 (90) 
Memory Support 
Unit^: n (%) 0 (0.0) 4 (6.9) 19 (34.5) 23 (14.5) 
Meal texture: n (%) 

Regular 
Soft/smooth 

38 (82.6) 
8 (17.4) 

44 (75.9) 
14 (24.1) 

30 (54.5) 
25 (45.5) 

112 (70.4) 
47 (29.6) 

Liquid texture: n (%) 
Normal/thin 

Thick 
42 (91.3) 

4 (8.7) 
54 (93.1) 

4 (6.9) 
49 (89.1) 
6 (10.9) 

145 (91.2) 
14 (8.8) 

Antibiotics (at least 2 
supplied*): n (%) 10 (21.7) 7 (12.1) 5 (9.1) 22 (13.8) 
Proton pump 
inhibitors (at least 2 
supplied*): n (%) 23 (50.0) 23 (39.7) 12 (21.8) 58 (36.5) 
Opioids (at least 2 
supplied*): n (%) 8 (17.4) 12 (20.7) 14 (25.5) 34 (21.4) 
Laxatives (at least 2 
supplied*): n (%) 6 (13.0) 6 (10.3) 9 (16.4) 21 (13.2) 
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Table 2. Permutational ANOVA of the gut microbiome by severity of cognitive impairment. 

aTime since cognitive impairment assessment + age + sex+ antibiotic use + proton pump 

inhibitor use + opioid use + laxative use + recorded medication history + meal texture + 

liquid texture. 

^Permutation p-value generated with a PERMANOVA. 

*Degrees of freedom = 2. 

 

  Unadjusted Model Multivariate-adjusted Modela 

Main Test 
Pseudo-F 

Ratio R
2
 p(perm)^ 

Pseudo-F 
Ratio R

2
 p(perm)^ 

Cognitive Impairment*  1.9646 0.0246 0.0002  1.815 0.0221 0.0003 

Pairwise Test t p(perm)^ t p(perm)^ 

Mild v Moderate 1.0596 0.2583 1.1135 0.1478 

Mild v Severe 1.4474 0.0017 1.4228 0.0023 

Moderate v Severe 1.6304 0.0002 1.5265 0.0003 
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