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Abstract 1 

Background: Many loci associated with obesity have been reported in previous genome-2 

wide association studies (GWASs). However, it remains unclear whether variants at all these 3 

loci contributed to onset of obesity or whether one or a few variants cause obesity when 4 

obesity is a genetically heterogeneous population. 5 

Objective: To investigate the genetic architecture of obesity by clustering a population with 6 

obesity into clusters using obesity-related factors. 7 

Methods: This study was based on the Tohoku Medical Megabank Project Birth and Three-8 

Generation Cohort Study and the Community-Based Cohort Study. As the Step-1, a GWAS 9 

with body mass index (BMI) as an outcome was performed for all 48,365 eligible participants. 10 

As the Step-2, we then assigned the 13,067/48,365 participants with obesity (BMI ≥ 25 11 

kg/m2) using the k-prototype to 5 clusters. Obesity-related factors (such as age, nutrient 12 

intake, physical activity, sleep duration, difference between weight at age 20 and current 13 

weight, smoking, alcohol drinking, psychological distress, and birth weight) were used for 14 

clustering. Subsequently, participants in each cluster and those with a BMI < 25 kg/m2 were 15 

combined, and GWASs were performed according to the 5 clusters. Additionally, a sub-16 

analysis using data from the UK Biobank was conducted to compare the results. 17 

Results: The Step-1 detected 18 genes, most of which were reportedly associated with 18 

obesity or obesity-related topics in previous studies. The result of Step-2, of the 18 genes 19 

detected in Step-1, LINC01741, CRYZL2P-SEC16B, and SEC16B were significantly related 20 

to Cluster 2, FTO, PMAIP1, and MC4R to Cluster 3, and BDNF, BDNF-AS, LINC00678, and 21 

KIF18A to Clusters 4 and 5. In the sub-analysis, a similar phenomenon was observed in 22 

which separate obesity-related genes were detected for each cluster.  23 

Conclusions: Our data support the notion that a decreased sample size with increased 24 

homogeneity may reveal insights into the genetic architecture of obesity. 25 
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 27 

Introduction 28 

Obesity is a serious global medical and economic issue that represents a major risk factor for 29 

many lifestyle-related diseases, such as diabetes, hyperlipidemia, and hypertension (1,2). The 30 

global proportion of individuals with a body-mass index (BMI) ≥ 25 kg/m2 is reportedly 31 

36.9% for men and 38.0% for women (3). The pathogenesis of obesity is complex and 32 

includes regulation of calorie utilization, appetite, and physical activity, as well as health care 33 

availability, socioeconomic status, and underlying genetic and environmental factors (4,5).  34 

The heritability of BMI has been widely reported. For instance, in twin studies, the 35 

BMI heritability ranged from 30% to 90% (6–8), whereas in genome-wide association studies 36 

(GWASs) it was estimated to be 20–30% (9–11), and only ~3% has been elucidated based on 37 

genome wide significant loci (9,10). Although GWASs using BMI as an outcome have 38 

identified over 100 associated loci (9–14), it remains unclear whether they all contribute to 39 

the development of obesity via the same pathway. Indeed, the association of these genetic 40 

variants with obesity may be explained by a polygenic model in which the effects of each 41 

variant are weak yet contribute to the onset of obesity (15). Hence, if the genetic architecture 42 

of obesity can be explained by a polygenic model, we would expect that larger sample sizes 43 

correspond to more identified signals, whereas as fewer signals would be associated with 44 

smaller sample sizes (Supplementary Figure 1). Meanwhile, within a genetically 45 

heterogeneous population of obesity, if few variants exhibit a relatively strong influence 46 

leading to obesity in a portion of the subtypes included therein, then dividing the population 47 

with obesity into homogeneous groups could detect unique genes in each population, even 48 

with a reduced sample size. However, to our knowledge, no GWASs have been conducted by 49 

dividing persons with obesity into more homogeneous populations. 50 
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Traylor et al. demonstrated that attempts to categorize patients with a complex 51 

disease into more homogeneous subgroups provided more power to elucidate hidden 52 

heritability in a simulation study (16). Thus, clustering algorithms for machine learning could 53 

reveal novel and more genetically homogeneous clusters. Accordingly, the purpose of this 54 

study was to investigate the genetic architecture of obesity by dividing individuals with 55 

obesity into clusters using various obesity-related factors and machine learning techniques 56 

and performing GWAS on each cluster (cluster-based GWAS: cGWAS) (17,18).  57 

 58 

Methods 59 

Population 60 

This study was conducted according to the guidelines of the Declaration of Helsinki (19), and 61 

the protocol was reviewed and approved by the Institutional Review Board of the Tohoku 62 

Medical Megabank Organization. In the main study, we used data from cohort studies 63 

conducted by the Tohoku Medical Megabank Project (TMM) Birth and Three- Generation 64 

Cohort Study (BirThree Cohort Study) and the TMM Community-Based Cohort Study 65 

(CommCohort Study) (20-22). The BirThree Cohort Study and CommCohort Study were 66 

conducted in Miyagi and Iwate Prefectures, Japan. Details of the BirThree Cohort Study and 67 

the CommCohort Study have been described elsewhere (21,22). In brief, the BirThree Cohort 68 

Study is a birth and three-generation cohort study. Pregnant women were registered between 69 

July 2013 and March 2017 (21). Additionally, pregnant women's partners (fetus' father), 70 

pregnant women’s parents and partner's parents (fetus’ grandparents), as well as the fetus' 71 

siblings and their relatives, were recruited (21). Among the BirThree Cohort Study 72 

participants, fetus’ mothers (n = 22,493), fetus' father (n = 8,823), and fetus’ grandparents (n 73 

= 8,058) were included in this study. The TMM CommCohort study is a community-based 74 

prospective cohort study including men and women aged >20 years living in the Miyagi 75 
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Prefecture, northeastern Japan (22). The type 1 survey (n = 41,097) which performed in 76 

specific municipal health check-up sites, Type 2 survey (n = 13,855) which performed in 77 

assessment centers. (22).  78 

Participants’ data were excluded based on the following criteria: withdrew consent, 79 

failed to return the self-reported questionnaire, BMI < 18.5 kg/m2, missing information on the 80 

food frequency questionnaire (FFQ), extreme energy intake (energy intake > mean ± 3 81 

standard deviation [SD]), and duplicate participation in the both BirThree Cohort Study and 82 

CommCohort Study Type-1 (the data of earlier date of participation were included). Data 83 

from eligible participants of the BirThree Cohort Study (n = 23,479), CommCohort Study 84 

Type-1 (n = 34,187), and CommCohort Study Type-2 (n = 12,485) were combined (n = 85 

70,151). In the sub-analysis, a similar analysis was performed using the UK Biobank (UKB) 86 

data (23-25) to compare the results with those of the main study. Methods for analyzing the 87 

UKB data are described in the supplementary information. 88 

 89 

Genotyping, imputation, and quality control 90 

Cohort participants were genotyped using the Affymetrix Axiom Japonica Array (v2) in 19 91 

batches, with 50 plates set for each batch. Details pertaining to the genotyping performed in 92 

TMM have been described previously (26). Following batch genotyping, samples with a call 93 

rate < 0.95 or samples with unusually high IBD values compared to other samples, were 94 

excluded. In addition, variants with Hardy-Weinberg equilibrium (HWE) P-values < 1.00 × 95 

10-5, minor allele frequency (MAF) < 0.01, or missing fraction > 0.01 were excluded from 96 

each batch. A direct genotype dataset in PLINK BED format was obtained by merging the 97 

genotype datasets for the 19 batches. A total of 21,541 participants with missing direct 98 

genotype data were excluded. Principal component analysis (PCA) was performed using the -99 

-pca approx option in PLINK 2.0 (27) on the direct genotype dataset and an additional 245 100 
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participants with > 4 SD for principal components 1 or 2 were excluded. Finally, a total of 101 

48,365 participants (BirThree Cohort Study: n = 11,674, CommCohort Study Type-1: n = 102 

27,745, CommCohort Study Type-2: n = 8,946) were included in the analysis (Figure 1).  103 

Plot of participants (n = 48,365) according to principal component 1 and 2 by principal 104 

component analysis was shown Supplementary Figure 2.  105 

To prepare an imputed genotype dataset, pre-phasing was performed using 106 

SHAPEIT2 (28), along with the --duohmm option (29), which incorporates information on 107 

the relatedness between individuals to increase phasing accuracy. The phased genotypes were 108 

subsequently imputed with a cross-imputed panel of 3.5KJPNv2 (30) and 1KGP3 (31) using 109 

IMPUTE4 (25). To create the cross-imputation panel for 3.5KJPNv2 (30) and 1KGP3 (31), 110 

the -merge_ref_panels option in IMPUTE2 was applied (32). Consequently, we obtained an 111 

imputed genotype dataset in the Oxford BGEN format 112 

(https://www.well.ox.ac.uk/gav/qctool/). For genotype imputation data, those with minor 113 

allele frequencies < 0.01 and imputation information scores < 0.8 were excluded. Finally, 114 

9,868,333 SNPs were included in the GWASs. 115 

 116 

Variables 117 

The following variables related to obesity were collected from questionnaires responded by 118 

the participants at baseline for each cohort and used for clustering: age, nutrient intake 119 

calculated from the FFQ based on frequency of food intake over the past year (energy, 120 

protein, fat, carbohydrate, sodium, potassium, calcium, magnesium, phosphorus, iron, zinc, 121 

copper, manganese, retinol equivalents, vitamin D, vitamin K, vitamin B1, vitamin B2, niacin, 122 

vitamin B6, vitamin B12, folate, pantothenic acid, vitamin C, cholesterol, dietary fiber, 123 

lycopene, α-carotene, β-carotene, and β-cryptoxanthin), frequency of leisure time physical 124 

activity (slow walking, fast walking, moderate exercise, strenuous exercise; the choices 125 
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included: no activity, < once per month, 1–3 times per month, 1–2 times per week, 3–4 times 126 

per week, almost every day), time typically spent in physical activity per day (strenuous work, 127 

walk, standing, sitting) according to predetermined options (no time, min < 30, 30 ≤ min< 60, 128 

1 ≤ h < 3, 3 ≤ h < 5, 5 ≤ h < 7, 7 ≤ h < 9, 9 ≤ h < 11, h ≥11), sleep duration (< 5 h, 5 ≤ h < 6, 6 129 

≤ h < 7, 7 ≤ h < 8, 8 ≤ h < 9, h ≥ 9), difference between weight at age 20 and current weight, 130 

smoking (smoked > 100 cigarettes since birth; yes or no), alcohol consumption (> 1 drink per 131 

month, quit, rarely, unable to drink), psychological distress over the past month (total K6 132 

score [Japanese version]) (33,34), and birth weight (unknown, 1500 ≤ g < 2000, 2000 ≤ g < 133 

2500, 2500 ≤ g< 3000, 3000 ≤ g < 3500, 3500 ≤ g < 4000, g ≥ 4000). In addition, cohort type 134 

(BirThree Cohort Study, CommCohort study Type-1 and CommCohort study Type-2) was 135 

added to the variables for the clustering. 136 

The missing variables used for clustering were imputed using the k-nearest neighbor 137 

(KNN) algorithm (35). KNN selects k samples close to the missing values in the feature 138 

space and imputes the median of the k samples in the case of continuous variables, or the 139 

most frequent category among the k samples in the case of categorical variables. KNN was 140 

implemented using the R package VIM (36). Based on previous reports (35,37), we set k to 141 

219 as an odd number close to the square root of 48,365 participants. 142 

 143 

Body mass index 144 

BMI was computed by dividing weight (kg) by the squared height (m2) using self-reported 145 

height and weight on a questionnaire responded by the participants at baseline for each cohort. 146 

A BMI > 25 kg/m2 was defined as obese based on the Western Pacific Region of the World 147 

Health Organization criteria for Asians (38). 148 

 149 

Cluster analysis 150 
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The k-prototype is a clustering algorithm that combines k-means and k-modes and enables 151 

clustering using continuous and categorical variables (39). The k-prototype was implemented 152 

using the R package clustMixType (40). The number of clusters was set to 5. Continuous 153 

variables were standardized by subtracting the mean of each variable and dividing it by the 154 

SD before clustering. 155 

 156 

Genome-wide association study 157 

The GWASs with BMI as a continuous variable were conducted in 2 steps. Step-1: GWAS 158 

was performed on all 48,365 participants. Step-2: 13,067 of the 48,365 participants were 159 

clustered using the k-prototype to 5 clusters. Thereafter, participants in each of the 5 obesity 160 

clusters and those with a BMI < 25 kg/m2 were combined, and the GWASs were performed 161 

for each of the 5 clusters (Supplementary Figure 3). To identify associations between 162 

autosomal SNPs and BMI, fastGWA with the GCTA software were employed (41). 163 

FastGWA is a linear mixed model using a sparse genetic relationship matrix (GRM) that is 164 

reportedly robust for population stratification and familial relationships (42). The top 20 165 

principal components calculated from the PCA of the direct genotyping dataset, sex, age, and 166 

cohort type (BirThree Cohort Study, CommCohort study type-1 and CommCohort study 167 

type-2) were included as covariates. We set the Bonferroni genome-wide significance line at 168 

P < 8.33×10-9 (5.0 × 10-8/6) as six GWASs were performed for Step-1 and Step-2. The 169 

detected SNPs were annotated using the ANNOVAR (43). Manhattan plots and quantile-170 

quantile plots (Q-Q plots) were generated using R (version 4.1.0). 171 

 172 

Results 173 

Clustering 174 
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Following assignment of the 13,067 participants with obesity into 5 clusters, Cluster 1 175 

contained 628 participants, Cluster 2 had 3,073, Cluster 3 had 4,111, Cluster 4 had 2,468, and 176 

Cluster 5 contained 2,787. Table 1 shows the characteristics of obese participants (BMI ≥ 25 177 

kg/m2) in each cluster. The variables were characterized by mean and SD for continuous 178 

variables and by number and percentage for categorical variables. The participants in Cluster 179 

1 had the highest energy and nutrient intakes, as well as a higher frequency of leisure-time 180 

exercise. Cluster 2 was characterized by a higher proportion of women, older age, and the 181 

highest percentage of nonsmokers. Cluster 3 participants had the lowest energy and nutrient 182 

intake and a high proportion who did not exercise during leisure time nor perform their usual 183 

physical activities (strenuous work, walking, and standing). Cluster 4 had the second-highest 184 

energy and nutrient intake. Cluster 5 was characterized by the largest proportion of men, 185 

lowest age, longest time spent standing or sitting, highest number of smokers, highest 186 

proportion of alcohol drinkers, and highest scores for psychological distress. 187 

 188 

Gene interpretation 189 

We observed several genes that satisfied the P < 8.33 × 10-9 threshold in Step-1 (Figure 2 and 190 

Supplementary Table 1). Most genes for which associations were detected in Step-1 are 191 

reportedly associated with obesity. More specifically, LINC01741 (44–46) (Chr 1), 192 

CRYZL2P-SEC16B (45,47) (Chr 1), SEC16B (46,47) (Chr 1), TMEM18 (48,49) (Chr 2), 193 

BDNF (45,47) (Chr 11), LINC00678 (50,51) (Chr 11), BDNF-AS (45,47) (Chr 11), FTO 194 

(9,10,45,52) (Chr 16), MC4R (53,54) (Chr 18), GIPR (13) (Chr 19), and FBXO46 (50) (Chr 195 

19) were previously associated with BMI. Meanwhile, KIF18A (Chr 11) was previously 196 

associated with visceral fat (55), PMAIP1 (Chr 18) with serum IgE measurement (56) and 197 

monocyte count (57,58), RSPH6A (Chr 19) with high and low density lipoprotein cholesterol 198 
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levels (59), SYMPK (Chr 19) with Type 2 diabetes mellitus (60) and total cholesterol levels 199 

(50), and FOXA3 (Chr 19) with waist-to-hip ratio adjusted for BMI (52).  200 

From the GWAS results in Step-2, several variants detected in Step-1 were observed 201 

in separate clusters (Figure 3, Supplementary Table 2). Genome-wide associations were not 202 

detected in Cluster 1. In Cluster 2, the loci that satisfied this threshold were identified as 203 

LINC01741, CRYZL2P-SEC16B (Chr 1; intergenic), CRYZL2P-SEC16B, and SEC16B (Chr 204 

1). Meanwhile, in Cluster 3, the FTO (chromosome 16), PMAIP1, and MC4R (chromosome 205 

18; intergenic) loci were identified. For Cluster 4, BDNF (Chr 11), BDNF-AS (Chr 11), 206 

BDNF-AS, LINC00678 (Chr 11), and BDNF, KIF18A (Chr 11) loci were identified. 207 

Additionally, in Cluster 5, BDNF-AS, LINC00678 (Chr 11), LINC00678 (Chr 11), BDNF-AS 208 

(Chr 11), BDNF (Chr 11), and BDNF, KIF18A (Chr 11) loci were identified (Figure 3). 209 

Quantile-quantile plots corresponding to the GWAS results of the main study are shown in 210 

Supplementary Figure 4. 211 

In the sub-analysis, the UKB data was applied for comparison with the main study 212 

results. In Step-1, we confirmed the association between representative obesity-related genes 213 

and BMI (Supplementary Table 3 and Supplementary Figure 5). In Step-2, the clustering 214 

results for the 32,779 obese participants revealed that revealed that Clusters 1–5 comprised 215 

5,874, 6,497, 6,919, 6,733, and 6,756 participants, respectively. The characteristics of each 216 

cluster are shown in Supplementary Table 4. In the GWAS results for Step-2, several variants 217 

detected in Step-1 were found in separate clusters, similar to the TMM cohort analysis 218 

(Supplementary Table 5 and Supplementary Figure 6). 219 

 220 

Discussion 221 

Herein, we conducted a GWAS of all participants for BMI in Step-1. In Step-2, obese 222 

participants (BMI ≥ 25 kg/m2) were divided into 5 clusters based on obesity-related-factors, 223 
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and GWAS was performed for each of the 5 clusters. Consequently, several genes identified 224 

in previous studies were confirmed in Step-1. Of the 18 genes detected in Step-1, LINC01741, 225 

CRYZL2P-SEC16B, and SEC16B were significantly associated with Cluster 2, FTO, PMAIP1, 226 

and MC4R to Cluster 3, and BDNF, BDNF-AS, BDNF-AS, LINC00678, and KIF18A to 227 

Clusters 4 and 5. A similar phenomenon was observed in the sub-analysis using UKB data, in 228 

which unique obesity-related genes were detected in each cluster. 229 

It is important to consider how the cluster characteristics relate to the variants 230 

identified in each cluster. Indeed, the GWAS results in Step-2 may be partially explained by 231 

cluster characteristics. In cluster 1, significant associations were not detected, which might be 232 

due to the low number of participants with a BMI > 25.0 kg/m2 as this cluster contained the 233 

fewest obese participants. Hence, the detection power would have been insufficient.  234 

FTO, PMAIP1, and MC4R (intergenic) variants were associated with BMI in Cluster 235 

3. Variants in the FTO region regulate IRX3 and IRX5 expression (61), which promotes fat 236 

accumulation and cause obesity. Meanwhile, melanocortin-4-receptors (MC4R) transcribed 237 

by the MR4C gene regulate food intake and energy expenditure (62,63). Moreover, MC4R in 238 

the paraventricular hypothalamus or amygdala controls food intake, while its expression 239 

elsewhere is responsible for energy expenditure (62). Therefore, the genetic variants in FTO 240 

and MC4R, which have been attributed to increased body fat accumulation and reduced 241 

energy expenditure, may partially account for the obesity of individuals in Cluster 3 despite a 242 

low energy intake. 243 

In Cluster 4 and Cluster 5, BDNF and BDNF-AS variants were identified. Obese 244 

participants in Cluster 4 had the second highest energy and nutrient intake, while those in 245 

Cluster 5 had the highest mean score for psychological distress (K6 total score). Brain 246 

derived neurotrophic factor (BDNF), which is transcribed by the BDNF gene, promotes the 247 

development and growth of nerve cells and reportedly has anti-obesity effects (64,65). 248 
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Furthermore, transcription of the BDNF-AS (antisense RNA) gene is responsible for 249 

regulating BDNF expression (66). Thus, altering BDNF regulation might affect the central 250 

nervous system and alter eating behaviors and psychiatric conditions, as seen in this cluster.  251 

In Cluster 2, SEC16B variants were detected; the obese participants in this cluster 252 

had the highest proportion of women, increased age, and nonsmokers. Variants of SEC16B 253 

may be associated with obesity via regulation of dietary lipid absorption and appetite (67,68). 254 

However, to our knowledge, no previous data has made direct connections between the 255 

characteristics of Cluster 2 participants and SEC16B variants. On the other hand, it should be 256 

noted that the characteristics of clusters are not always recognizable to humans. That is, given 257 

that clustering algorithms extract latent features by combining numerous variables, the 258 

resulting clusters, although more homogeneous, are not necessarily comprehensible. Thus, it 259 

will be necessary to define these obscure clusters identified by clustering algorithms. 260 

This study has several strengths. First, the GWAS results had high validity. That is, 261 

most genes detected in this study were previously reported to be associated with BMI. 262 

Therefore, the GWAS data was considered appropriate. Second, the TMM and UKB cohorts 263 

had various obesity-related factors. Using these 2 cohorts, it was possible to cluster the obese 264 

population into more homogeneous groups using a rich set of obesity-related factors. Third, 265 

the sub-analysis replicated the phenomenon, in which unique obesity-related genes were 266 

detected in each cluster. This supports the hypothesis that obesity is an aggregation of 267 

heterogeneous subgroups. The findings of this study suggest possibility that by dividing 268 

obesity into homogeneous populations, fewer genetic variants could explain obesity in each 269 

subgroup. Although many issues remain to be addressed to elucidate the full genetic 270 

architecture of obesity, the current study provides important insights with the potential to 271 

inform the development of personalized treatment or nutritional support for obesity. More 272 

specifically, once clusters are identified, a classifier can be created using the cluster numbers 273 
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as training data, which can then be applied to classify obesity into subgroups and verify the 274 

effectiveness of obesity treatment according to the subgroups. 275 

 276 

Limitations 277 

This study has certain limitations. First, it is unclear whether the selection of 278 

variables, algorithm, or number of clusters was optimal. In this study, many factors related to 279 

obesity were selected, however, the existence of unknown obesity-related factors cannot be 280 

ruled out. In addition, the number of clusters in this study was arbitrarily set to 5. Therefore, 281 

it is needed to explore them in the future. Second, obesity was assessed at a temporal point; 282 

therefore, the possibility of misclassification may have occurred. Even those who were not 283 

obese at the time of measurement had the potential to become obese with age. Third, the BMI 284 

was calculated using height and weight from self-reported questionnaires in the main study. 285 

Previous studies have shown no substantial differences between BMI calculated from self-286 

reported height and weight and that calculated from measured height and weight, indicating 287 

that self-reported weight and height are useful (69). Therefore, it is unlikely that the use of 288 

self-reported height and weight data significantly distorted the results. Fourth, we could not 289 

assess the heritability of each cluster due to the small sample size.  290 

 291 

Conclusion 292 

Our data suggest that a decreased sample size with increased homogeneity may reveal 293 

insights into the genetic architecture of obesity. 294 
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Table 1. Characteristics of the clusters.              

 1 2 3 4 5    
Number of participants with obesity in each cluster 628 3073 4111 2468 2787    

Cohort                           
TMM BirThree Cohort Study       69 (11.0)      311 (10.1)     1157 (28.1)      347 (14.1)      911 (32.7)   

  High 

TMM CommCohort StudyType-1      461 (73.4)     2185 (71.1)     2308 (56.1)     1671 (67.7)     1459 (52.4)   
  

 
TMM CommCohort StudyType-2       98 (15.6)      577 (18.8)      646 (15.7)      450 (18.2)      417 (15.0)   

  
 

       
  

 
Body mass index (kg/m2), mean (SD) 27.89 (2.86) 27.52 (2.86) 27.89 (3.01) 27.75 (3.40) 27.97 (3.15)  

  Low 

Sex (Female), n (%) 429 (68.3) 2182 (71.0) 2064 (50.2) 1441 (58.4) 1068 (38.3)  
  

 
Age, mean (SD)    63.19 (10.49)   63.91 (8.82)   53.05 (14.97)   61.78 (11.26)   50.13 (14.43)    

Energy intake (kcal/day), mean (SD)  3698.48 (614.37) 1762.55 (297.63) 1365.83 (383.23) 2724.54 (520.18) 2249.39 (398.18)    
Protein intake (g/day), mean (SD)   165.21 (42.58)   64.05 (11.88)   42.76 (12.30)  107.01 (21.94)   78.60 (13.97)    

Fat intake (g/day), mean (SD) 148.20(42.11) 54.36(14.77) 36.24 (14.24) 96.63(29.90) 72.43(21.84)    
Carbohydrate intake (g/day), mean (SD)   405.20 (102.38)  238.40 (53.37)  185.68 (59.18)  326.16 (76.90)  273.02 (68.82)    

Sodium intake (mg/day), mean (SD) 10076.84 (3514.42) 4152.44 (1175.43) 2463.53 (960.69) 6591.02 (1819.89) 4508.60 (1262.10)    
Potassium intake (mg/day), mean (SD)  7160.45 (1605.83) 2800.74 (551.85) 1526.41 (486.92) 4439.55 (782.99) 2715.77 (544.54)    

Calcium intake (mg/day), mean (SD)  1706.40 (956.58)  563.50 (200.86)  308.26 (156.96)  987.82 (489.58)  592.21 (296.28)    
Magnesium intake (mg/day), mean (SD)   688.69 (159.46)  284.94 (50.70)  171.87 (49.64)  441.28 (71.28)  294.01 (52.86)    
Phosphorus intake (mg/day), mean (SD)  2688.34 (742.22) 1025.36 (191.87)  667.55 (195.26) 1716.71 (393.09) 1222.02 (245.29)    

Iron intake (mg/day), mean (SD)    20.44 (6.03)    8.73 (1.83)    5.16 (1.53)   13.11 (2.88)    8.65 (1.79)    
Zinc intake (mg/day), mean (SD)    17.98 (4.16)    7.55 (1.31)    5.42 (1.50)   12.02 (2.47)    9.34 (1.78)    

Copper intake (mg/day), mean (SD)     2.70 (0.85)    1.24 (0.24)    0.79 (0.22)    1.81 (0.38)    1.26 (0.24)    
Manganese intake (mg/day), mean (SD)     6.83 (2.79)    4.13 (1.66)    2.42 (1.01)    5.19 (1.96)    3.37 (1.09)    

Retinol intake (μg/day), mean (SD)  2120.19 (1639.68)  602.68 (332.58)  312.40 (229.58) 1105.44 (661.04)  666.65 (452.91)    
Vitamin D intake (mg/day), mean (SD)    23.75 (26.41)    7.07 (4.35)    3.78 (2.98)   13.43 (8.96)    8.59 (5.38)    
Vitamin K intake (μg/day), mean (SD)   944.42 (743.11)  313.91 (163.46)  154.52 (102.94)  486.57 (298.52)  271.11 (127.74)    

Vitamin B1 intake (mg/day), mean (SD)     2.24 (0.51)    0.92 (0.21)    0.57 (0.19)    1.50 (0.34)    1.03 (0.23)    
Vitamin B2 intake (mg/day), mean (SD)     3.86 (1.34)    1.40 (0.36)    0.78 (0.29)    2.30 (0.69)    1.46 (0.43)    

Niacin intake (mg/day), mean (SD)    40.43 (15.25)   17.13 (4.22)   11.57 (4.19)   28.18 (8.00)   21.27 (5.65)    
Vitamin B6 intake (mg/day), mean (SD)     3.40 (0.85)    1.37 (0.26)    0.83 (0.26)    2.21 (0.40)    1.50 (0.31)    

VitaminB12 intake (mg/day), mean (SD)    19.14 (12.10)    5.75 (2.88)    3.33 (2.13)   11.31 (5.82)    7.62 (3.67)    
Folic acid intake (μg/day), mean (SD)  1001.59 (347.25)  402.90 (107.44)  194.46 (75.65)  599.17 (155.75)  331.59 (88.21)    

Vitamin C intake (mg/day), mean (SD)   332.58 (178.51)  143.77 (58.10)   54.52 (32.39)  205.01 (93.32)   90.81 (39.33)    
Cholesterol intake (mg/day), mean (SD)   735.15 (554.89)  229.51 (106.63)  160.33 (93.09)  429.94 (270.69)  342.50 (194.53)    
Dietary fiber intake (g/day), mean (SD)    35.50 (15.50)   14.62 (4.11)    7.30 (2.98)   21.51 (6.67)   12.25 (3.80)    

Lycopene intake (μg/day), mean (SD)  6666.82 (10005.23) 3094.68 (5244.45) 1252.77 (2849.40) 5061.35 (9101.55) 2117.82 (3576.83)    
α-carotene intake (μg/day), mean (SD)  1658.99 (2095.73)  589.70 (718.99)  268.40 (294.49)  864.46 (1002.82)  449.63 (413.07)    
β-carotene intake (μg/day), mean (SD)  9667.42 (8422.51) 3306.81 (2244.96) 1416.89 (1084.96) 5038.74 (3517.34) 2466.99 (1469.77)    

β-Cryptoxanthin intake (μg/day), mean (SD)  2725.27 (3071.63) 1282.12 (1427.77)  382.64 (568.93) 1760.34 (2027.22)  592.89 (649.73)    
Frequency of leisure time physical activity, Slow walking, n (%)                          

 No activity      164 (26.1)      989 (32.2)     1521 (37.0)      724 (29.3)      991 (35.6)     
< Once per month        52 (8.3)      231 (7.5)      473 (11.5)      207 (8.4)      302 (10.8)     

1–3 times per month       74 (11.8)      428 (13.9)      671 (16.3)      320 (13.0)      491 (17.6)     
1–2 times per week       99 (15.8)      484 (15.8)      513 (12.5)      349 (14.1)      375 (13.5)     

 3–4 times per week       93 (14.8)      340 (11.1)      342 ( 8.3)      315 (12.8)      243 (8.7)     
Almost every day      146 (23.2)      601 (19.6)      591 (14.4)      553 (22.4)      385 (13.8)     

Frequency of leisure time physical activity, Fast walking, n (%)                          
 No activity      329 (52.4)     1820 (59.2)     2794 (68.0)     1334 (54.1)     1790 (64.2)     

< Once per month        68 (10.8)      206 (6.7)      374 (9.1)      204 (8.3)      276 (9.9)     
1–3 times per month       47 (7.5)      273 (8.9)      281 (6.8)      238 (9.6)      233 (8.4)     

1–2 times per week       63 (10.0)      260 (8.5)      241 (5.9)      254 (10.3)      191 (6.9)     
 3–4 times per week       53 (8.4)      227 (7.4)      168 (4.1)      191 (7.7)      143 (5.1)     

Almost every day       68 (10.8)      287 (9.3)      253 (6.2)      247 (10.0)      154 (5.5)     
Frequency of leisure time physical activity, Moderate exercise n (%)                          

 No activity      189 (30.1)      963 (31.3)     2145 (52.2)      744 (30.1)     1302 (46.7)     
< Once per month        56 (8.9)      255 (8.3)      516 (12.6)      249 (10.1)      383 (13.7)     

1–3 times per month       77 (12.3)      499 (16.2)      642 (15.6)      403 (16.3)      491 (17.6)     
1–2 times per week      101 (16.1)      582 (18.9)      389 (9.5)      394 (16.0)      311 (11.2)     

 3–4 times per week      105 (16.7)      433 (14.1)      252 (6.1)      378 (15.3)      185 (6.6)     
Almost every day      100 (15.9)      341 (11.1)      167 (4.1)      300 (12.2)      115 (4.1)     

Frequency of leisure time physical activity, Strenuous exercise, n (%)                          
 No activity      515 (82.0)     2670 (86.9)     3515 (85.5)     1989 (80.6)     2262 (81.2)     

< Once per month        34 (5.4)       74 (2.4)      175 (4.3)      119 (4.8)      158 (5.7)     
1–3 times per month       18 (2.9)       91 (3.0)      140 (3.4)      133 (5.4)      163 (5.8)     

1–2 times per week       31 (4.9)      148 (4.8)      170 (4.1)      123 (5.0)      127 (4.6)     
 3–4 times per week       23 (3.7)       75 (2.4)       89 (2.2)       87 (3.5)       58 (2.1)     

Almost every day        7 (1.1)       15 (0.5)       22 (0.5)       17 (0.7)       19 (0.7)     
Time typically spent in physical activity per day, Strenuous work, n (%)                          

No time      152 (24.2)     1117 (36.3)     1537 (37.4)      707 (28.6)      817 (29.3)     
min < 30       133 (21.2)      655 (21.3)      991 (24.1)      502 (20.3)      696 (25.0)     

 30 ≤ min< 60       86 (13.7)      407 (13.2)      498 (12.1)      347 (14.1)      399 (14.3)     
1 ≤ h < 3      115 (18.3)      477 (15.5)      529 (12.9)      438 (17.7)      422 (15.1)     
3 ≤ h < 5       78 (12.4)      233 (7.6)      284 (6.9)      242 (9.8)      217 (7.8)     
5 ≤ h < 7       39 (6.2)      135 (4.4)      161 (3.9)      151 (6.1)      136 (4.9)     
7 ≤ h < 9       20 (3.2)       40 (1.3)       92 (2.2)       55 (2.2)       77 (2.8)     

  9 ≤ h < 11        2 (0.3)        2 (0.1)       14 (0.3)       16 (0.6)       20 (0.7)     
h ≥11        3 (0.5)        7 (0.2)        5 (0.1)       10 (0.4)        3 (0.1)     

Time typically spent in physical activity per day, walk, n (%)                          
No time       14 (2.2)       39 (1.3)       88 (2.1)       44 (1.8)       44 (1.6)     

min < 30        88 (14.0)      412 (13.4)      841 (20.5)      340 (13.8)      545 (19.6)     
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 30 ≤ min< 60      173 (27.5)      753 (24.5)     1137 (27.7)      642 (26.0)      966 (34.7)     
1 ≤ h < 3      212 (33.8)     1331 (43.3)     1360 (33.1)      941 (38.1)      723 (25.9)     
3 ≤ h < 5       66 (10.5)      318 (10.3)      367 (8.9)      278 (11.3)      269 (9.7)     
5 ≤ h < 7       41 (6.5)      143 (4.7)      186 (4.5)      125 (5.1)      138 (5.0)     
7 ≤ h < 9       21 (3.3)       48 (1.6)       91 (2.2)       61 (2.5)       67 (2.4)     

  9 ≤ h < 11       10 (1.6)       16 (0.5)       22 (0.5)       30 (1.2)       24 (0.9)     
h ≥11        3 (0.5)       13 (0.4)       19 (0.5)        7 (0.3)       11 (0.4)     

Time typically spent in physical activity per day, Standing, n (%)                          
No time       10 (1.6)       39 (1.3)       96 (2.3)       35 (1.4)       41 (1.5)     

min < 30        49 (7.8)      215 (7.0)      439 (10.7)      191 (7.7)      336 (12.1)     
 30 ≤ min< 60       79 (12.6)      459 (14.9)      643 (15.6)      335 (13.6)      465 (16.7)     

1 ≤ h < 3      222 (35.4)     1169 (38.0)     1398 (34.0)      902 (36.5)      842 (30.2)     
3 ≤ h < 5      142 (22.6)      647 (21.1)      748 (18.2)      506 (20.5)      499 (17.9)     
5 ≤ h < 7       75 (11.9)      326 (10.6)      450 (10.9)      300 (12.2)      314 (11.3)     
7 ≤ h < 9       35 (5.6)      148 (4.8)      233 (5.7)      135 (5.5)      187 (6.7)     

  9 ≤ h < 11        8 (1.3)       51 (1.7)       73 (1.8)       45 (1.8)       64 (2.3)     
h ≥11        8 (1.3)       19 (0.6)       31 (0.8)       19 (0.8)       39 (1.4)     

Time typically spent in physical activity per day, Sitting, n (%)                          
No time       10 (1.6)       34 (1.1)       48 (1.2)       29 (1.2)       31 (1.1)     

min < 30        18 (2.9)       73 (2.4)      108 (2.6)       86 (3.5)       84 (3.0)     
 30 ≤ min< 60       60 (9.6)      195 (6.3)      311 (7.6)      173 (7.0)      231 (8.3)     

1 ≤ h < 3      213 (33.9)      824 (26.8)     1070 (26.0)      682 (27.6)      761 (27.3)     
3 ≤ h < 5      190 (30.3)     1159 (37.7)     1410 (34.3)      871 (35.3)      824 (29.6)     
5 ≤ h < 7       87 (13.9)      495 (16.1)      659 (16.0)      391 (15.8)      459 (16.5)     
7 ≤ h < 9       30 (4.8)      180 (5.9)      284 (6.9)      144 (5.8)      214 (7.7)     

  9 ≤ h < 11       11 (1.8)       60 (2.0)      139 (3.4)       51 (2.1)       99 (3.6)     
h ≥11        9 (1.4)       53 (1.7)       82 (2.0)       41 (1.7)       84 (3.0)     

Sleep duration, n (%)                          
< 5 h       56 (8.9)      169 (5.5)      291 (7.1)      151 (6.1)      182 (6.5)     

5 ≤ h < 6      158 (25.2)     1096 (35.7)     1156 (28.1)      656 (26.6)      677 (24.3)     
6 ≤ h < 7      213 (33.9)      984 (32.0)     1646 (40.0)      995 (40.3)     1258 (45.1)     
7 ≤ h < 8      142 (22.6)      617 (20.1)      732 (17.8)      464 (18.8)      508 (18.2)     
8 ≤ h < 9       46 (7.3)      179 (5.8)      238 ( 5.8)      168 (6.8)      148 (5.3)     

h ≥ 9       13 (2.1)       28 (0.9)       48 (1.2)       34 (1.4)       14 (0.5)     
Difference between weight at age 20 and current weight, mean (SD)    10.86 (9.75)   10.48 (8.86)   11.31 (9.03)   11.28 (9.49)   11.99 (9.49)    

Not smoked more than 100 cigarettes since birth, n (%)      446 (71.0)     2379 (77.4)     1961 (47.7)     1559 (63.2)      959 (34.4)     
Alcohol drinking, n (%)                          

> 1 drink per month      277 (44.1)     1115 (36.3)     2274 (55.3)     1313 (53.2)     1918 (68.8)     
 Quit       18 (2.9)       79 (2.6)      169 (4.1)       63 (2.6)      113 (4.1)     

      Rarely      301 (47.9)     1688 (54.9)     1440 (35.0)      935 (37.9)      614 (22.0)     
Unable to drink       32 (5.1)      191 (6.2)      228 (5.5)      157 (6.4)      142 (5.1)     

Total score of K6, n (%)     4.74 (4.75)    3.81 (3.91)    4.61 (4.65)    4.36 (4.39)    5.12 (4.88)    
Birth weight, n (%)                          

Unknown      263 (41.9)     1559 (50.7)     1303 (31.7)     1021 (41.4)      493 (17.7)     
1500 ≤ g < 2000       17 (2.7)       60 (2.0)       68 (1.7)       58 (2.4)       46 (1.7)     
2000 ≤ g < 2500       57 (9.1)      223 (7.3)      300 (7.3)      186 (7.5)      188 (6.7)     
2500 ≤ g < 3000       159 (25.3)      727 (23.7)     1065 (25.9)      625 (25.3)      731 (26.2)     
3000 ≤ g < 3500      102 (16.2)      376 (12.2)     1057 (25.7)      451 (18.3)     1079 (38.7)     
3500 ≤ g < 4000       26 (4.1)      108 (3.5)      273 (6.6)      110 (4.5)      203 (7.3)     

g ≥ 4000        4 (0.6)       20 (0.7)       45 (1.1)       17 (0.7)       47 (1.7)     
The characteristics of obese participants in each cluster.              

   
The variables are characterized by the mean and standard deviation for continuous variables and by number and percentage for categorical variables.  

   
In the case of continuous variables, the cluster with the higher mean is colored red, and the cluster with the lower mean is colored blue. 

   
In the case of categorical variables, the clusters with the higher percentages are colored red, and those with the lower percentages are colored blue.  
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Figure Legends 

Figure 1. Flow chart of exclusion criteria in this study. 

The participants data from each cohort were excluded based on the following criteria. 

 

Figure 2. Manhattan plot of Step-1. 

A GWAS with BMI as a continuous variable was performed on 48,365 participants.  

 

Figure 3. Manhattan plots of Step-2. 

We clustered 13,067 of the 48,356, individuals with BMI≥25kg/m2 using the k-prototype. 

Thereafter, participants with obesity in each of the 5 clusters and those with BMI< 25kg/m2 

were then combined and GWAS was performed according to the 5 clusters (cluster-based 

GWAS: cGWAS). 

 

Supplementary Figure 1. Virtual Manhattan plots with different number of participants. 

 

Supplementary Figure 2. Plot of participants according to principal component 1 and 2 

by principal component analysis. 

 

Supplementary Figure 3. Details of the cluster-based GWAS. 
 
 
Supplementary Figure 4. quantile-quantile plots and lambda values in main study. 

 

Supplementary Figure 5. Manhattan plots (a) and corresponding quantile-quantile plots 

(b) of Step-1 in sub-analysis. 
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Supplementary Figure 6. Manhattan plots (a) and corresponding quantile-quantile plots 

(b) of Step-2 in sub-analysis. 
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