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Abstract

In this paper we characterize the performance of linear models trained via widely-used sparse machine
learning algorithms. We build polygenic scores and examine performance as a function of training set size,
genetic ancestral background, and training method. We show that predictor performance is most strongly
dependent on size of training data, with smaller gains from algorithmic improvements. We find that LASSO
generally performs as well as the best methods, judged by a variety of metrics. We also investigate performance
characteristics of predictors trained on one genetic ancestry group when applied to another. Using LASSO, we
develop a novel method for projecting AUC and Correlation as a function of data size (i.e., for new biobanks)
and characterize the asymptotic limit of performance. Additionally, for LASSO (compressed sensing) we show
that performance metrics and predictor sparsity are in agreement with theoretical predictions from the Donoho-
Tanner phase transition. Specifically, a predictor trained in the Taiwan Precision Medicine Initiative for asthma
can achieve an AUC of 0.63(0.02) and for height a correlation of 0.648(0.009) for a Taiwanese population. This is
above the measured values of 0.61(0.01) and 0.631(0.008), respectively, for UK Biobank trained predictors applied
to a European population.

1 Introduction

Given the complexity of the human genome, large datasets are required to detect associations between specific
genetic variations and their effect on phenotypes. These large datasets provide the statistical power necessary to
overcome false signals (fluctuations) resulting from examination of millions of genetic variants at a time. With the
advent of very large biobanks [1–3], which collect millions of individual genotypes and associated phenotypes, it
has become possible to probe the genetic architectures of important disease risks and other complex traits.

The analysis of large genotype and phenotype datasets has led to the development of polygenic scores (PGS).
A PGS is simply a score built from numerically weighting the state of a persons genome. In most work to
date, and in this paper, we are interested in linear PGS built from single nucleotide polymorphisms (SNPs), i.e.,
PGS =

∑
X̄ · ~β, for genotype matrix X̄ and SNP weights ~β. SNP weights are typically obtained through a

machine learning algorithm on genotype/phenotype pairs and can be as simple as single marker regression (e.g.,
Genome-Wide-Association-Studies or GWAS).
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The vast majority of available GWAS and biobank data is from individuals of European ancestry. For example, the
UK Biobank [3] (UKB) is > 90% self-reported white. As a consequence, current PGS perform better for descendants
of Europeans. There are a number of new biobank-scale efforts, focusing on non-European populations, which will
ameliorate this situation; e.g., the Taiwan Precision Medicine Initiative [4] (TPMI). Other novel projects have
focused on gathering samples with ancestral equity in mind, e.g., All of Us [5] (AoU). However, until more diverse
data become available, it is necessary to adapt the European results for other ancestral populations in order for PGS
to have utility for the largest number of individuals possible – i.e., in applications such as disease risk estimates,
potential clinical interventions, etc.

As genotype databases become larger and as sequencing technology incorporates more SNPs (i.e., increasing the
number of SNPs through imputation, larger arrays, and whole genome sequencing or WGS), novel difficulties arise
in PGS construction. First, larger samples and features require greater computational power (we comment on
the computational requirements for the results in this paper in the Supplementary Information). Second, and as
mentioned above, the application of PGS has been largely restricted to those of European ancestry [6–17]. In
order to “transport” PGS to other ancestry groups, many techniques have been proposed, using features that are
most important in different groups and adjusting their specific weights [14, 18–22] (e.g., by using minor allele
frequency differences or functional information). The complexity of this analysis clearly scales with the number of
relevant features. Third, future benefits of PGS [7, 10, 16, 17, 23–43] rely on genotyping future participants. If
this genotyping can be restricted to a small number of SNPs (e.g. as opposed to more costly WGS) it can be more
cost effective to implement. Fourth, most PGS development approaches and methods use linear models. Further
challenges include non-linear SNP effects (e.g., which are responsible for the difference between narrow and broad
sense heritability [44–50]), the relationship between tagged vs causal SNPs, and incorporating genome-environment
interactions. Addressing these challenges again scales with the number of relevant features.

In this paper we focus on the performance, detailed application, and future power of sparse algorithms, i.e. al-
gorithms that perform feature selection, for the 11 traits listed in Table 1. Performing feature selection can help
ameliorate some of the issues raised above. Sparse algorithms have previously been shown to be comparable to
non-sparse methods in terms of standard metrics (e.g., area under receiver operator curve, correlation, r2, etc.)
[10, 51–53]. We focus on 11 phenotypes that have been previously been shown to cover a wide range of sparsities
(see Table 1): asthma, atrial fibrillation, breast cancer, coronary artery disease (CAD), hypertension, type 1 and
type 2 diabetes (T1D, T2D), body mass index (BMI), direct bilirubin, height, and lipoprotein A.

As mentioned, there are many efforts to modify PGS trained in primarily European ancestries to improve perfor-
mance in non-European ancestries. As we discuss, these improvements, while important, are unlikely to close the
gap completely. It seems necessary to create large data cohorts in each ancestry group. This is difficult and ex-
pensive. Hence it is valuable to understand in advance what the resulting benefits will be for polygenic prediction.
In this work we present a novel method for projecting and predicting the results from sparse algorithms in a novel
biobank.

The main results of this paper can be summarized as follows

1. Widely-used sparse methods perform comparably, with a simple LASSO-based approach regularly achieving
the best results.

2. Increased biobank/database size and access to new datasets will lead to large gains, especially for the perfor-
mance of PGS in diverse ancestries.

3. We develop a novel method which predicts correlation and AUC for continuous and case/control phenotypes
(respectively), with uncertainty bands, for biobank-sized datasets.

4. We explore details of “phase change” behavior of compressed sensing/LASSO with increasing data size, and
the corresponding the SNP content of resulting predictors.
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high sparsity moderate sparsity low sparsity
O(102)SNPs O(103)SNPs O(104)SNPs

Case/Control
asthma (∼ 3.5k)

type 2 diabetes (∼ 4k)breast cancer (∼ 500)
type 1 diabetes (∼ 50) atrial fibrillation (∼ 3k)

hypertension (∼ 10k)
CAD (∼7.5k)

Continuous height (∼ 22.5k)lipoprotein A (∼170) direct bilirubin (∼ 3k) BMI (∼ 24.5k)

Table 1: The 11 phenotypes studied in this work and their relative sparsity. As described in section 3.3 predictor sparsity
can be defined in a variety of ways. Here we color-code the various traits according to the order of magnitude of SNP sparsity.
Numbers in parentheses are the approximate number of SNPs used in a LASSO trained predictor using the maximum amount
of data from the UKB. This definition of sparsity is consistent with the number of SNPs with non-zero weights found in
previous publications[10, 11].

2 Results

Here we present the main results of this project. Additional details concerning specific methods are found in
section 3 and in the Supplementary Information. The main results are obtained using UKB genotype-phenotype
data. Training with PRScs at times uses linkage disequilibrium (LD) information from the 1,000 Genomes Project[1]
(1kg). Projections are given for de novo training in TPMI and AoU. We refer to ancestry groupings European
(EUR), South Asian (SAS), East Asian (EAS), African (AFR), and American (AMR). These labeling conventions
come from [54].

2.1 Comparison of Sparse predictors

We compare the performance of several sparse methods: LASSO, Elastic Net, L1-penalized Logistic regression
(for case-control conditions), and PRScs with LD matrix information from either UKB or 1KG. It is important to
note that the results presented here for AUC and correlation are for purely genetic PGS. In brief, phenotypes are
first regressed on covariates (such as age, sex, and the first 20 genetic principal components) - this allows them
to explain as much of the variance as possible so that we can conservatively estimate purely genetic effects. Only
then are SNP predictors are trained (using genotype-phenotype data or summary statistics in the case of PRScs)
on residual phenotypes. Further details about the training and evaluation of PGS can be found in section 3.

In Figure 1 we see the comparison results for asthma and height. Similar plots for the other phenotypes can be found
in appendix D. Ancestry groups SAS, AFR, EAS, and EUR result from UKB definitions of self-reported ancestry
(although training, as described in section 3 involves a principal component, or PC, adjustment). AMR refers to
an American–like group constructed via principal component clustering detailed in appendix A.1 and similar to
that found in [55]. Sib refers to a set of white siblings (i.e. every member of the set has at least one sibling also in
the set) where the ancestry is self-reported, but the sibling status is determined by a genetic analysis as detailed
in appendix A.2. This sib-set attempts to partially control for environmental effects as described in [56, 57]. It
also allows for performing sibling selection experiments as described in appendix A.2. All results reflect training
on a EUR population and then applied to a set of siblings or a different ancestry group, not used in training. The
bands for TMPI/AoU are based on projections for future biobanks - this is described in detail in section 2.2.

Uncertainty (error bars) depend on cross-validation (i.e. multiple training sets), finite size effects from computing
AUC/correlation, and from sample sizes. Details about uncertainty calculations are given in the Supplementary
Information. For case-control conditions this can lead to error bars that are the same size as the central values.
However, for continuous phenotypes with much larger sample sizes this is not the case. For example, compare the
AMR group on both plots in Figure 1. On the left, the AUC error bar overlaps 0.5 (i.e. consistent with no signal),
while on the right, the correlation error bar is relatively small.
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Figure 1: Comparison of sparse methods for asthma and height predictors with a comparison to prediction
bands for more diverse biobanks. On the left, asthma predictors trained on a UKB white population. Predictors are
built with LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000 Genomes LD matrices.
The specific parameters for the Elastic nets and PRScs are described in section 3. Similar results for the other phenotypes
can be found in appendix D.

Comparing performance across ancestry groups, we see a well known fall-off behavior which is observed when
predictors trained in one population are applied to another (e.g., see [52, 55]). The amount of fall-off is phenotype
specific and ranges from complete fall-off, e.g. diabetes fall-off from sib to AFR, to negligible fall-off, e.g. breast
cancer AUC from sibs to EAS. The relative order of fall-off is also phenotype specific. For most traits, the (EUR-
ancestry) sibling set shows the least reduction – then either SAS, EAS, and AMR, – and finally AFR. However,
there are clear exceptions like the direct bilirubin correlation which goes from largest metric to smallest: Sib, SAS,
AFR, EAS, AMR. There have been recent arguments that PGS fall-off is roughly linear as a function of local
genetic distance [52]. We should note that this claim is not necessarily in conflict with the results we present here.
First, there are many exceptions to this general linear behavior, e.g., Figure 5 in [52]. Second, the claimed linear
fall-off is a function of Euclidean distance in PC space of training population. For genetically distant groups, the
axes of variation will be different: any measure of PC distance is therefore a local measure. In other words, only
ancestry groups that are near-enough to the original population where PCs where computed can be considered
well-ordered in terms of genetic difference. These effects can also be exacerbated by the fact that these are all
sparse predictors and, after projecting onto PC space, the order of Euclidean genetic-distance may change.

Figure 2: Left: affected sibling pair (ASP) selection rate for asthma. Pairs of siblings, where one person is a case and the
other a control, are used and the rate corresponds to the number of times the case sibling has the higher PGS. The rate of
correct selection, and uncertainty, increases if the siblings are also separated by at least 1.5, 2, or 2.5 standard deviations in
PGS. Right: rank order selection rate for BMI respectively. The rate corresponds to frequency of the sibling with the larger
BMI also having the larger PGS. Again the selection rate, and uncertainty (due to reduced statistics), increase if the sibling
BMI is required to differ by at least 0.5, 1, or 1.5 standard deviations. Similar results for the other phenotypes are found in
the Supplementary Information.
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The performance of PGS can always be confounded due to environmental factors, interactions between genes and
the environment, and non-linear genetic effects (e.g., epistasis). To attempt to guard against some of these effects
we can perform sibling tests similar to those described in [56, 57]. Genetic siblings can be assumed to have, on
average, a more similar environmental background than unrelated individuals. However, there can be a competing
effect from the enhancement of signals from effects like genetic nurture [58]. For case control conditions we can
create affected sibling pairs (ASPs) where one person is a case and one is a control. Then we can ask what fraction
of the time does the higher PGS correspond to the case vs control. We can also condition this question on the PGS
difference being larger than some cut off (e.g., 1.5, 2, or 2.5 standard deviations). For continuous phenotypes we
can simply compare the fraction of the time where the person with the higher PGS also has the higher phenotype
value. We can again condition this question for siblings whose phenotypes are separated by a cut off (e.g., 0.5, 1,
or 1.5 standard deviations). These selection rates for asthma and BMI are shown in Figure 2 as an example; the
results for all traits considered in this work can be found in the Supplementary Information. Again, we see that
while several methods are extremely competitive, LASSO is regularly among the best performing methods. For
larger and larger cut-offs, the selection rate improves, but the associated uncertainty also increases largely because
of decreasing sample sizes. Interestingly, while PRScs performed similarly to other methods in terms of AUC and
correlation, it routinely under performs methods training directly on genetic data in sibling selection tests.

Figure 3: Inclusive odds ratio
(OR) for asthma. The inclu-
sive OR is the ratio of all cases
to controls at a given PGS or
above normalized to the ratio of
the total number of cases to con-
trols. At the highest PGS bins,
data is omitted if there are no
cases or controls. Similar plots
for the other phenotypes and de-
tails about how uncertainties are
computed are all located in the
Supplementary Information.

PGS for case-control conditions can be converted to more clinically interpretable metrics. In Figure 3 we see an
example of an inclusive odds ratio (OR) for asthma. It is inclusive in the sense that the OR corresponds to the
ratio of the cases to controls (normalized by the ratio of the total cases to controls) at a specific PGS value or above.
As before uncertainties are conservative and include contributions from multiple cross-validation folds and finite
size effects. Similar plots for the other case control conditions can be found in the Supplementary Information.
Because LASSO routinely performed among the best predictors in terms of AUC and correlation we only present
OR plots for this method. Analogous plots for the other methods can be generated similarly, although for all 7
case-control traits it leads to 357 plots which can be difficult to interpret. An initial interpretation of these results is
that at extreme values of PGS there are large increases in OR: for asthma, within ancestry testing (i.e. the sibling
group) leads to 2 < OR < 2.5 at large PGS. When testing on other ancestries, an optimistic interpretation is that
asthma OR ranges from 1.25-3.5 at large PGS. While this is encouraging, we also urge caution. The extremes of
the PGS distributions are the regions where model assumptions are most likely to break down, e.g., the linearity
of SNP effects. Additionally, the sample sizes in these regions are smallest which leads to large uncertainties and
difficulty interpreting the results. In addition, odds ratios are difficult to model in the presence of non-Gaussian
distributions. The inclusive odds ratio can be written as a ratio of cumulative distribution functions of cases and
controls. Similarly the PGS percentile can be written as an integral over the sum of the probability distribution
functions for cases and controls.

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286870doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286870
http://creativecommons.org/licenses/by-nc/4.0/


2.2 Biobank Projections

This section details how training at various sizes in current biobanks can be used to model the growth dependence on
training size. For most clinically relevant metrics, e.g., correlation and AUC below, this growth can be modeled with
uncertainty. Using relatively simple parametric functions, we find that we can model the growth of these metrics.
The results can be used to guide future studies and genotype-phenotype database construction by identifying where
large gains can be made.

For sparse methods like LASSO, it has been previously shown that using self-reported ancestry performs similarly to
principal component based clustering when based on AUC and Correlation metrics [10]. Nonetheless, after sorting
on self-reported ancestry, we perform an additional regression on the top 20 PCs to adjust for any remaining
population stratification.

To be conservative in the projections for PRS performance in other biobanks, several modeling assumptions are
made. First, to be conservative we assume that these biobanks will have population prevalence rates for diseases
even though some biobanks over-recruit cases to enrich their datasets. Additionally, the actual incidence rate for
disease conditions fluctuates over time. For the conditions considered in this paper we try to consider the most
recent surveys of all ages. Finally, when there are various estimates for disease prevalence within ancestry sub-
groups, we choose a conservative (i.e. low) prevalence as the representative for the overall ancestry prevalence.
Specific details about within ancestry prevalences are given in the Supplementary Information.

Figure 4: Growth of AUC (left: asthma) and correlation (right: BMI) as a function of training size in the UKB. Colored,
curved bands come from fitting data with various 4 paramter functions. Width of the band corresponds to a confidence
interval on the predictions: on the left 2 standard deviations or ∼ 68% and on the right 4 standard deviations or ∼ 95%.
Vertical bars represent projections for de novo training in other biobanks using literature prevalences, summarized in the
Supplementary Information. On the right, horizontal lines indicate the correlation predicted from GCTA and LDSR.

trait AUC∞(std) gain(std) trait corr∞(std) gain(std) linearh2∞(std)
asthma 0.71(0.03) 70(5)%

atrial fibrillation 0.82(0.06) 180(10)%

T2D 0.83(0.06) 150(10)%

T1D 0.668(0.006) −0.01(0.03)%

CAD 0.82(0.06) 170(10)%

hypertension 0.635(0.005) 31(1)%

breast cancer 0.75(0.06) 110(50)%

direct bilirubin

BMI

height

lipoprotein A

0.53(0.02)

0.47(0.02)

0.690(0.005)

0.779(0.009)

5(4)%

34(6)%

10(1)%

3(1)%

0.28.(0.02)

0.22(0.02)

0.476(0.007)

0.61(0.01)

Table 2: Asymptotic projections for AUC and and correlation for case-control and continuous traits respectively. Type 1/2
diabetes (T1/2D), coronary artery disease (CAD), and body mass index (BMI) are all abbreviated to save space. “Gain”
represents the additional gain over the best result from training reported here. For most case control conditions, except
T1D, there are large gains that can be found from increased training sizes. For continuous phenotypes, BMI can benefit
from training on larger data sizes. Correlations are also translated to the asymptotic projection of linear, narrow-sense SNP
heritability explaind by the predictor. Colors correspond the relative sparsity of the predictor as mentioned in Table 1.
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In Figure 4 we see projection bands for asthma and BMI. The bands grow from no signal (0.5 AUC and 0 correlation
respectively) to asymptotic values. The various colored prediction bands correspond to the Monte Carlo (MC)
confidence intervals for the various fit functions as described in section 3. The asymptotic predictions for each trait
can be averaged, incorporating the confidence intervals, and the results are given in Table 2. Further projection
plots for the remaining traits can be found in the Supplementary Information.

The fraction of phenotypic variance captured by SNPs (i.e., the linear, narrow sense heritability) of traits is
traditionally estimated via means such as Restricted Maximum Likelihood estimates (REML) and using Linkage
Disequilibrium Score Regression (LDSR). For continuous traits, the correlation of the residual phenotype with the
PGS can be related to the linear SNP heritability explained by the predictor by simply squaring the correlation.
In Table 2 this can be seen in the final column. The heritability explained by the predictor is a lower bound on
the REML heritability in that there may not be enough data to saturate the REML estimates. In Figure 4 we can
see the heritability estimates from GCTA (using REML) and LDSR converted to a correlation scale. For traits
like BMI and height it appears that, eventually, sparse predictors will capture all the linear SNP heritability. For
much sparser conditions, e.g. Lipoprotein A presented in the Supplementary Information, it appears that sparse
methods are out performing traditional measures of heritability.

2.3 Sparse Output Interpretation

An advantage of sparsity is that, because there are fewer features, it is relatively easier to categorize features
compared to non-sparse methods. Here we identify important features for predictors for each trait. Because a
simple LASSO routinely performed as one of the best predictors in terms of AUC and correlation in section 2.1 we
focus here on interpreting the LASSO outputs.

In Figure 5 we see an example of the SNP content for an asthma predictor as it is trained with larger and larger
training sizes. The LASSO weights β, single-SNP-variance (SSV), and training sizes are all further described in
section 3. A notable feature from this figure is that, as training size is increased, the LASSO algorithm first adds
more SNPs (becomes less sparse) while barely increasing the AUC. Eventually the algorithm gets rid of most of
these SNPs, becomes much more sparse, and then quickly increase AUC as SNPs are then added again. This is
an example of the algorithm “searching” for seemingly important features. Once some of the important features
are identified, the algorithm finds more and more features that are important as evidenced by the rising AUC.
Note that, as described in section 3, LASSO does not try to directly optimize AUC. This sparsity behavior (rising
and falling before eventually finding important features that greatly increase AUC/correlation) appears in the rest
of the predictors seen in the Supplementary Information and appears to be related to the Donoho-Tanner phase
transition (see [59] for an explanation of this transition in the context of genomics). This behavior can be seen in
other features of each predictor – e.g., the SSV – as displayed in Supplementary Information.

At the largest training sizes – i.e., after the phase transition – we also look at how the SNP content varies across
CV folds. As detailed in section 3, for case control phenotypes the largest training size includes as many controls as
possible while all previous training sizes contain an equal number of cases and controls. In Figure 6 and Figure 7 we
see examples of the SNP content for these two training sizes for asthma. Analogous plots for the other phenotypes
can be found in the Supplementary Information. For the largest training sizes we can also average over the CV
folds to find the fraction of SSV per chromosome. An example can be seen in Figure 8 where the error bars describe
the variation over folds (the plots for other phenotypes are in the Supplementary Information). There are several
important takeaways from these results. The main metric for case-control phenotypes is much more affected by
the number of cases than controls. Specifically, increasing the number of cases used in training increases the AUC,
but increasing the number of controls in training, even by a factor of 2 or more, either does not change the AUC
or leads to a very minor change. However, when looking at the single SNP variance, the number of both cases and
controls do have appreciable effects. Take for example asthma, seen in Figure 6 for 5 cross-validation folds with the
maximal number of cases and controls, and seen in Figure 7 for 5 cross-validation folds with near maximal number
of cases and an equal number of controls. If we look for common features among the folds, in Figure 6 we see a
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modest jump in SSV at specific locations on chromosome 1, 2, 5, 6, 9, 10, 11, and 17. Additionally the increase in
SSV on chromosome 17 is much larger on a single fold. In contrast, Figure 7 shows impact regions at similar regions,
but the fraction of SSV at the beginning of chromosome 9 is much larger and the effect on chromosome 17 seem to
be more smoothed out. This is also reflected in Figure 8 where the SSV fraction is averaged per chromosome and
contrasts these two cases.

To interpret these plots we have collected and identified every SNP that accounts for at least 1% of total SSV.
These tables are found in the Supplementary Information. Here we review the most important SNPs and compare
them to known results, i.e. we identify genes, associated with the particular phenotypes, that are within at least 2
million base pairs of a SNP accounting for > 1% SSV. We choose a 2 million base pair distance to be a conservative
measure of possible long-range LD[60]. All predictors, except those for Lipoprotein A, include SNPs that account
for at least 1% of total SSV but are not near any known gene that associates with the phenotype. Additionally, we
list the p-value associated with a GWAS on the raw (case control) or adjusted (continuous) phenotype to highlight
that many of these important LASSO SNPs would be missed by a traditional GWAS approach.

SNPs which we identify that are located near known associated genes for several phenotypes are listed here:

• Asthma: SNPs around FLG, IL1RL1, TSLP, IL33, SMAD3, HLA-DQ, RORA, CLEC16A, and SERPIN7
which have been previously been identified by GWAS [61–65]

• Atrial fibrillation: at least 164 SNPs have been identified in GWAS studies [66–69], and while none of these
exact SNPs appear in the 58 SNPs identified using LASSO, many of the LASSO SNPs are located around
the genes KCNN3, PMVK, LMNA, KIFAP3, PRRX1, SCN5A, SCN10A, PITX2, FAM13B, WNT8A, CAV1,
SH3PXD2A, HCN4, ZFHX3, RPL, and FBXO32 which are associated with some of the gwas SNPs

• Breast cancer: none of the SNPs identified here are near the genes identified in [70]

• Type 2 Diabetes: we find relevant SNPs in the associated genes GCKR, TCF7L2, and SLC12A1[71]

• Type 1 Diabetes: we find SNPs near HLA-A, TRIM26, MICA, HLA-DRB1, and LAT[72]

• Coronary Artery Disease: we find SNPs near the associated genes PCSK9, PLPP3, IL6R, MIA3, VAMP5,
ZEB2, SLC22A4/A5, SLC22A3, LPAL2, LPA, PLG, and CETP[73, 74]

• Hypertension: we find important contributions near the ULK4, NR3C2, PRRC2A, and NOS3 genes[75]

• Direct Bilirubin: we find results near the UGT1A1, SLCO1B3, and SLCO1B1 associated genes [76, 77]

• Body Mass Index: we find SNPs in genes TMEM18 and the well studied FTO - both appear with more than
1% SSV for BMI [78]

• Height: Liu et. al. [79] categorized over 400 genes associated with height that were later reanalyzed by Yengo
et. al [80]. Of these, SNPs near ORC1, COL11A2, FANCE, BRAF, ACAN, ANKRD11, CDK10, CDT1,
FANCA, GALNS, and RPL13 all appear in our analysis

• Lipoprotein A: all SNPs appear in or near the genes LPA, LPAL2, and SLC22A3 which are all known to be
associated with Lipoprotein A levels [81, 82] and additionally contribute to coronary artery diseases [83].

There are several interesting aspects of examining SNPs in this manner. First we note that we are interested in
common variants and exclude SNPs with a minor allele frequency below 0.01 to avoid any spurious associations.
Because of this, rare variants can’t appear in our analysis, even if they are known to be associated with a phenotype.
An example of this can be seen in the case of breast cancer where the BRCA mutations aren’t included in our
analysis. Interestingly there are SNPs that have previously been identified via GWAS, that are available on our
array, but are not selected by LASSO. An example would be rs116716490 which is part of the ZBTB10 gene,
previously associated with asthma via GWAS [63], but not selected by LASSO.
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A much more coarse grained interpretation of the impactful regions can be found in Figure 8 and in the Supple-
mentary Information. Here, we examine–for each trait–the fraction of SSV that resides on each chromosome. For
case-control phenotypes, we also compare the result for max possible training (i.e., the max possible cases and
controls), and training with the largest possible equal number of cases and controls. We highlight some of the
notable results. For atrial fibrillation, max training and equal case control training both find a large fraction of
SSV on chromosome 4, but the signal is much larger for equal cases and controls. On chromosome 15 there is a
large signal for max training, but not for equal cases and controls. For type 2 diabetes a large fraction of SSV is on
chromosome 10, but the signal is largest for equal cases and controls. For type 1 diabetes. equal cases and controls
find a strong signal on chromosome 6 while max training also finds signals on chromosomes 1, 11, 15, and 17. For
CAD, the equal case control training finds the largest signal in chromosome 6 while max training finds similarly
large signals in chromosomes 1, 2, 3, 6, and 12. Hypertension shows varying signals all throughout the chromosome
with the most precise signal coming from chromosome 1. Breast cancer has the most diverse differences between
the two types of training with large signals for equal case control training on chromosomes 10 and 16, and large
signals on 7, 11, 16, and 19 for max training. For continuous phenotypes we only have one measure of SSV per
chromosome. For direct bilirubin the largest contributions are on chromosomes 1 and 2. For BMI the largest
signals are on chromosomes 1, 2, and 3. For height there is strong signal throughout most of the genome. Finally
for Lipoportein A, the signal seems to be concentrated on chromosome 6.

2.4 Sparsity and Heritability

We can see examples of all the definitions of sparsity in Figure 9 where the definitions themselves are explaind in
section 3.3. The traits are roughly grouped according to their heritability estimate using GCTA [84]. Using all
metrics together, the scatter of data can be regressed linearly in log10 scales in both training size and sparsity. We
find log10(s) = 0.7(0.1)log10(N)+0.1(0.5) (the black line in Figure 9) with an r2 = 0.43. This weakly implies s ∼ N0.7

(or conversely N ∼ s1.4). In [59] it was shown, using simulated data, that for h2 = 0.5 (where h2 represents the
narrow-sense heritability) the compressed sensing phase transition occurs at N ≈ 30s. The result reported here is
consistent with this previous prediction, but tighter error bars are required to completely determine the coefficient
and its dependence on h2.
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Figure 5: Asthma active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis shows the β
value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis represents
the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The “training” label
represents the number of cases used in training. The first 10 (from the top) training sizes use equal number of cases and
controls. The final training size uses all possible remaining controls.
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Figure 6: Asthma active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis
represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of cases
used in training. All possible controls were used in each fold. While features generally appear consistent across folds, i.e.,
the presence of a bump in the SSV line, the size of the bump varies.

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286870doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286870
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7: Asthma active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at near-maximum training size, but
with equal cases and controls. Left axis shows the β value and is represented by colored dots. Different colors are used
to differentiate chromosomes. The right axis represents the single SNP variance (SSV) normalized to the total SSV. The
“training” label represents the number of cases used in training (an equal number of controls also used). Compared to maximal
training in Figure 6, the features here are much more consistent across folds.
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Figure 8: Average SSV per chromosome for asthma. Uncertainty comes from averaging over 5 fold cross validation. Max
training refers to using the maximum number of cases and all possible controls. #cases = #controls uses near maximal number
of cases and an equal number of controls. Both types of training find generally similar SSV distribution, but max training
finds a much larger signal and chromosome 17 and a smaller signal on chromosome 9.

Figure 9: Sparsity measurements, as a function of training size, for all 11 traits. Different markers correspond to different
(arbitrary) estimated heritability groupings. Different colors correspond to different versions of sparsity. Heritablity here
for case-control phenotypes is broad sense heritability reported from twin/family study literature, whereas GCTA was used
to estimate heritability for continuous phenotypes. Low heritability traits (circles) include: atrial fibrillation, breast cancer,
and BMI[85, 86]. Medium heritability traits (squares) include: CAD, hypertension, direct bilirubin, height, and lipoprotein
A[87, 88]. High heritability traits (triangles) include: asthma and type 1/2 diabetes[89–91].
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Figure 10: Estimates of the fraction of variance explained from purely genetic contributions for asthma and BMI. There are
various ways to estimate the variance explained as explained in appendix G. Similar plots for the other traits are found in
the Supplementary Information.

Finally we can see estimates of heritability using a variety of metrics in Figure 10 and in the Supplementary
Information. In Figure 10 we see examples of these heritability estimates, from a LASSO training, as a function of
training size. (Additional phenotypes are in the Supplementary Information). Additionally, for the largest training
size, we also record these heritability estimates for the other training methods. As a function of training size we
generally see the phenotype dependent phase transition behavior noticed before. After a critical amount of training
data is used, the error bars for all methods greatly decrease. Identifying this transition behavior is important as
it indicates looking at central values below the critical training amount gives a deceptively high estimate. For
most phenotypes–regardless of training size, metric, or method–the estimated heritability is below what can be
estimated from GCTA. However, there are a few exceptions: for asthma and type 1 diabetes, at the largest training
size PRS-cs using the Nmetric outperforms GCTA; for height the •metric generally, and PRS-cs at largest training,
outperforms GCTA; and for Lipoprotein A, every metric and method except PRS-cs results in a higher value than
GCTA.

3 Methods

3.1 Predictor Training

We start with a very brief description of the general training pipeline for generating predictors: step (1) initial
populations are separated into groups; step (2) quality control (QC) for both phenotypes and genotypes; step
(3) phenotypes are regressed on covariates and adjusted phenotypes are built; step (4) SNP set is filtered down
to a computationally manageable size; step (5) machine learning on adjusted phenotype and genotypes using
cross-validation; step (6) predictors are tested on withheld groups.

As an initial grouping of UKB data, we separate participants using self-reported ancestry (a principal component
adjustment is done below). We use participants reporting ancestry as White (EUR), South Asian (SAS), East Asian
(EAS), and Black (AFR). Additionally we construct an American ancestry (AMR) set done using the approach
from [55] and described in the Supplementary Information (there is a small 60 person subset of the 322 AMR
labeled participants who also self identify as white and could appear in the training. This set is so small that its
effects are assumed to be negligible). From the EUR population we identify genetic siblings as described in A.2
and remove them to use as a final testing set. The remaining EUR population is used for training.

Step 2 involves performing quality control on both the genotypes and phenotypes. Full phenotype definitions,
including UKB codes, are given in Supplementary Information. For phenotype quality control we exclude any
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missing values or negative values (usually used as a placeholder or indicator in the UKB). For continuous phenotypes
we average over all recorded measurements (many participants are measured on repeated visits, but there is not
a consistent number of visits per participant). Case control conditions are defined with a logic ’or’, i.e., if the
participant is recorded as a case for any relevant code, then they are counted as a case. The UKB array contains
805,426 SNPs. We run QC using PLINK to filter out (remove) variants (SNPs) with more than 3% missing values,
samples (participants) with more than 3% missing values, and variants with minor allele frequency less than 0.001
(i.e. 0.1%). After QC this leaves 663,533 SNPs and 487,048 participants. (Exact number of participants can
slightly vary due to participant withdrawal from the UKB program.) Finally we reduce our SNP set down to only
the autosome as this allows us to roughly double our training base, i.e. use all sexes in training (except for sex
specific phenotypes).

Step 3 can be briefly described as sex-specific z-scoring and covariate adjustment. The z-scoring is only done on
continuous phenotypes while covariate adjustment is done for all phenotypes. We z-score to improve the efficiency
of the machine learning algorithms (e.g., using normalized data lowers the risk of large numbers appearing in a
gradient descent algorithm). If we assume that we are looking for common genetic factors that are independent
of sex then we can z-score each sex individually and roughly double our training data. The ultimate aim is to
identify genetic variants that we are most confident are related to a phenotype. To do this we assume that common
covariates and population stratification have a maximal effect. That is, we regress covariates on the raw (or z-
scored) phenotype and then adjust (i.e., create a residual phenotype) phenotypes for the contribution explained
by these covariates. Common covariates included are: age, sex (except for sex specific traits like breast cancer),
and the top 20 principal components as computed by the UKB. Even though we do a sex specific z-scoring, at this
stage we still assume sex can have an impact. That is, for phenotype, ~y, and covariates, H̄, we regress: ~y ∼ ~αH̄.
Then we can construct an adjusted phenotype, ~yadj , that just includes the residual signal: ~yadj = y − ~αH̄.

Unfortunately, before we employ a machine learning algorithm, we have to reduce down the ∼ 600k SNPs to a
computationally manageable number. The exact computational details will depend on the machine being used to
run the analysis and whether or not computational cost saving measures can be used (e.g., parallelization). For our
analysis, as shown in the Supplementary Information, the time to run lasso scales as a function of training data,
N , roughly as ∼ N1.35. Additionally, the memory and CPU usage, while growing more slowly than exponential,
grows quickly. For step 4, we choose to subset our SNP set by selecting the top 50k SNPs (10k for penalized logistic
regression which is more computationally intensive) via GWAS with the training set.

Next, in step 5 we run machine learning algorithms. For LASSO and Elastic Net we use the Scikit-learn[92] lasso
path linear_model.lasso_path and enet path linear_model.enet_path algorithm. The Elastic Net algorithm
minimizes the objective function,

1

2N
||~yadj − X̄ · ~β||2L2

+ λ

(
L1ratio|~β|L1 +

1− L1ratio

2
||~β||2L2

)
, (3.1)

where X̄ is the normalized genotype matrix, ~β the regression weights, λ the hyperparameter, L1ratio relatively
weights the L1 and L2 penalties. As L1ratio → 1 this becomes LASSO and L1ratio → 0 it becomes ridge re-
gression. For all phenotypes we run for 5 different ratio weights: L1ratio ∈ {.1, .3, .5, .7, .9}. For L1 penalized
logistic regression we use the Scikit-learn function linear_model.LogisticRegression with an L1 penalization
and parallelize it using the Multiprocessing package Pool function. For all methods of (penalized) regression we
use five-fold cross validation and use a 2,500 sample validation set (withheld from training) for hyperparemeter
selection. For case-control phenotypes, the validation set is equal number of cases and controls. Finally, we also
use PRS-cs[93] which is a Bayesian shrinkage prior which runs directly on summary statistics (i.e., GWAS output)
and an LD matrix. We use three fold cross validation and run with the global shrinkage/sparseness parameter,
φ ∈ {10−1, 10−3, 10−5, 10−7, 10−9} and the local scale parameters {a, b} ∈ {1/2, 1, 3/2}.

In the final step 6 we apply the predictors to all testing sets: the EUR genetic siblings set, an SAS set, an EAS
set, an AFR set, and an AMR set. Case control phenotypes are evaluated by computing the Area Under the
receiver operator Curve (AUC) which compares the true positive rate to the false positive rate, i.e. how well
the predictor is calling cases and controls. Within this work we generally report the AUC only using the genetic
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weights to emphasize how well cases and controls can be identified using only genetic information. For case control
phenotypes we can also compute an odds ratio, as a function of polygenic score, as seen in Figure 3. This is an
inclusive odds ratio: at each score, we compute the ratio of the number of cases to controls (normalized to the
total cases and controls) of all individuals with that score or a higher score. I.e., the 80th percentile represents all
individuals with a score ≥ 80%. For continuous phenotypes we simply report the correlation between the polygenic
score and the adjusted phenotype, Corr(PGS, ~yadj), and again this estimates the purely genetic contribution. For
both types of phenotypes there are sibling specific tests that we perform. These were developed in [57, 94]. Siblings
generally share a similar environment growing up which helps to control for some external factors. For case control
phenotypes we can consider Affected Sibling Pairs (ASPs), which are a pair of siblings where one person is a case
and the other a control. We can then look at the correct selection rate, that is the fraction of the time the person
with the larger polygenic score corresponds to the case. This computation can be done again while requiring that
the sibling pair’s scores are at least 1.5, 2, or 2.5 standard deviations different. For continuous phenotypes we show
a similar selection rate for the amount of time the person with the larger polygenic score has the larger phenotype.
Again this rate can be recomputed with the requirement that the phenotype difference between the siblings is at
least 0.5, 1, or 1.5 standard deviations.

In addition to standard metrics like AUC and correlation, we are often interested in the amount of variance
described by a particular polygenic predictor. For a particular polygenic score, the variance is described by

var(PGS) = var

(∑
i

xiβi

)
=
∑
i

var(xiβi) + 2
∑
j<i

cov(xiβi, xjβj)

 (3.2)

=
∑
i

2β2i (1− fi)fi + 2
∑
j<i

cov(xiβi, xjβj)

 ≈∑
i

2β2i (1− fi)fi ≡ SSV , (3.3)

where the approximation defines the Single SNP Variance (SSV). This approximation assumes that the covariance
between SNPs is small. For most sparse methods, this covariance is minimized to enforce sparsity. For example, in
the objective function eq. (3.1), adding extra SNPs with non-zero weights amounts to decreasing the first term and
increasing the second term. For an added SNP that is highly correlated with another SNP with non-zero weight,
the decrease in the first term is likely smaller than the increase in the second. The accuracy of this approximation
is demonstrated in Supplementary Information.

3.2 Metric Projection

We can model improvement in predictor performance metrics as a function of training data size. In Figure 4
we see examples of this for asthma and BMI. We use four functions, which have left and right asymptotes, to
model this growth: sigmoid, inverse tangent, error function, and hyperbolic tangent. The hyperbolic tangent can
be written as a rescaled version of a sigmoid function. We use that as a cross-check, i.e. we make sure both
functions give the same results, to avoid fitting routines getting stuck in a local minimum. For all functions, four
parameters are used to fit the performance, e.g., erf4(x; a, b, c, d) = a+ b erf(c(x+ d)). Care is taken to incorporate
uncertainty from cross-validation and finite data sizes. More details about the functions, uncertainty calculations,
and fitting results are given in the Supplementary Information. The non-linear fit of each functional form involves
computing a Hessian matrix as a function of the parameters {a, b, c, d}. The inverse of this matrix is the correlation
matrix for the model’s fit parameters. Using these empirical correlations we build a MC method that relies on a
Cholesky decomposition. For a given correlation matrix C of fit parameters, we can generate a correlated set of
MC parameters, ~Y , from random numbers, ~X, via a Cholesky matrix, L:

C = LL∗ → L ~X = ~Y .

Subject to physical constraints – 0.5 < AUC < 1 and 0 < Corr < 1 (positive correlation is a convention choice) – we
can then build MC bands as seen in Figure 4. For both types of phenotypes, these projection bands are informative:
they indicate (1) the asymptotic (i.e. best possible) metric obtained from infinite data, as in Table 2 (2) which
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traits are nearing that asymptotic maximum or which are still improving substantially with more training data,
and (3) what sample size other biobanks will need to obtain meaningful results. These projection bands can be
compared to the application of European trained predictors applied to other ancestry groups. In Figure 1 we see
that predictors built using data from TPMI and AoU will greatly surpass the results of UKB trained predictors
when applied to distant ancestry groups.

3.3 Sparsity

The sparsity associated with a phenotype can be defined in several ways and it is not a priori clear which definition
is most appropriate. The definitions used here are:

1. The number of SNPs with non-zero weights using all possible cases and controls. This quantity can appear to
continue to grow without reaching an asymptote even though traditional metrics (e.g. AUC or correlation)
appear to asymptote. However, this definition is obviously impacted by training sample size and difficult
to compare between datasets/biobanks. Assuming infinite data generated by a linear model plus noise,
compressed sensing guarantees complete signal recovery and the sparsity will reach an asymptotic value
corresponding to the underlying model that generated the data [59]. Additionally, for algorithms like LASSO
there is debate as whether to use the maximal metric for hyperparameter selection or to step one standard
deviation “back” (i.e. towards fewer features) in hyperparameter space to avoid over-fitting when applying to
outside true testing sets. (see [10] and references therein).

2. We can use the previous definition but for the training case with the maximum number of equal cases and
controls. The same caveats from definition 1. apply.

3. Because we expect traits not to be 100% heritable, we expect metrics to asymptotically approach a limit
value. We can look at relative increase in these metrics to try to identify the point of largest growth (or
above some cut), i.e. the inflection point. We can do this by looking at a relative metric, i.e. (yi+1 − yi)/yi.
We can look at the sparsity of the predictors at this point as a second version of sparsity.

4. Instead of looking at the metrics, we can instead look at the relative increase in the number of features (SNPs)
at each training size and look for the relative maximum increase (or increase above some cut) in features to
define a sparsity value.

Comparisons for these definitions can be seen in Figure 9.

3.4 Fraction of Variance Explained

Heritability, H2, is traditionally defined as the proportion of phenotypic variance explained by genetic factors. All
the work discussed here involves linear genomic prediction, i.e. that PGS ≡ yPGS =

∑ ~β · X̄. The proportion of
variance explained by a linear model is generally referred to as the narrow-sense or linear heritability, h2linear. There
are several ways we can estimate the fraction of variance explained via the results of a linear predictor. First, we
note that our linear predictors are trained after sex specific z-scoring. Because of this, the overall scale of yPGS (i.e.
the variance) is expected to be of the order of the adjusted phenotype, not the original raw phenotype. Therefore,
we can consider the ratio of the variance of the PGS to the adjusted phenotype (N denotes var(pgs)/var(yadj))
or we can undo the sex specific z-scoring only on the PGS and compute the ratio of variance in this rescaled PGS
to the raw phenotype (• denotes var(y∗pgs)/var(yraw)). Finally, for continuous traits we can simply look at the
correlation between pgs and adjusted phenotype as in [10, 51, 56].

In both section 2.2 and in section 2.3 we refer to the heritability estimated via REML and LDSR. The LDSR
results are reported from [95, 96]. The REML results are produced using the GCTA software[84, 97]. All GCTA

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286870doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286870
http://creativecommons.org/licenses/by-nc/4.0/


computations used 350,000 SNPs and the following number of samples: asthma – 20,469; atrial fibrillation – 9,027;
type 2 diabetes – 11,077; type 1 diabetes –1,755; CAD – 11,077; hypertension 11,659; breast – ; direct bilirubin –
21,544; BMI – 25,118; height – 21,544; lipoprotein A – 21,544.

4 Discussion

Sparse methods optimize prediction while activating as few features (SNPs) as possible during training. In contrast,
non-sparse methods construct predictors in which potentially every SNP in the genome has non-zero (but possibly
very small) effect size. Because sparse predictors perform about as well as predictors constructed using non-sparse
methods [98–100], it is reasonable to conclude that actual genetic architectures are themselves sparse. For all
known complex traits and disease risks, only a small fraction of common SNPs are required to build a predictor
which performs nearly , or equally, as well as any non-sparse predictor.

In this paper we analyzed many aspects of sparse predictors. Within the class of algorithms that produce spare pre-
dictors we find that LASSO, also known as compressed sensing, is competitive with other more complex techniques.
In fact, methodological improvements in predictor training, although important, generally produce improvements
which are relatively small (in rough terms, of order 5 or 10 percent), whereas increases in data size are likely
to produce much larger gains. Additionally, we demonstrate the performance characteristics promised from the
compressed sensing literature. Specifically, we demonstrate phase transition behavior in performance using ac-
tual genotype/phenotype pairs – above a certain data threshold we recover the SNPs which provide the strongest
contribution to performance metrics.

We develop a methodology for projecting the performance of LASSO on larger datasets. This method can be applied
to anticipated future biobanks and to analysis which is forthcoming on existing biobanks. Specifically, we project
that a predictor trained in the Taiwan Precision Medicine Initiative for asthma can achieve an AUC of 0.63(0.02)
and for height a correlation of 0.648(0.009) for a Taiwanese population. For comparison, the measured values are
0.61(0.01) and 0.631(0.008), respectively, for UK Biobank trained predictors applied to a European population. We
also show that, in terms of AUC, atrial fibrillation, type 2 diabetes, CAD, and breast cancer will more than double
their signal if trained on larger datasets.

One of the main challenges of polygenic prediction is that most of the available data comes from studies in which
most of the participants are individuals of European ancestry. Thus the current predictors perform poorly when
applied to other ancestry groups (e.g., East Asians or Africans). The hope of developing methods which “transport”
a predictor trained on one ancestry to other ancestral groups remains, but despite ongoing research efforts the goal
remains elusive. In the absence of such a breakthrough, much larger cohorts of non-Europeans are required to
produce predictors of comparable quality. The new methods developed here allow us to predict, e.g., how well
new predictors trained on biobank-scale data from the Taiwan Precision Medicine Initiative (which is planned to
surpass 1 million genotypes) and the US All of Us project. In the former case, we predict that new predictors will
exceed AUC / correlation metrics for current best-in-class predictors for European ancestry.
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A Data

A.1 Populations

The UK Biobank provides a self-reported ethnic background field (field 21000) on which to filter into various super-
populations – European, American, South Asian, East Asian and African. Self-reported Europeans are identified
by the codes 1001, 1002, 1003 or 1 (White, British, Irish, Any other white background). Self-reported South Asians
are identified by the codes 3, 3001, 3002, 3003, 3004 (Asian or Asian British, Indian, Pakistani, Bangladeshi, Any
other Asian background). Self-reported East Asians are identified by the code 5 (Chinese). Self-reported Africans
are identified by the codes 4, 4001, 4002, 4003, 4004 (Black or Black British, Caribbean, African, Any other Black
background). Additionally code 6 is "Other ethnic group" and codes 2001-2004 are mixed background.

In addition to self-report, genetic ancestry is computed with ADMIXTURE Version 1.3.0 [101] and the 1000
genomes phase 3 as the reference panel. First, 1000 genomes was filtered down to SNPs which overlap the UK
Biobank and then further sampled to 23,326 SNPs for computational ease. With this SNP subset, Admixture was
run unsupervised on the 1000 genomes with 5 populations. The output P files (the allele frequencies of the inferred
ancestral populations) were then applied via projection mode to the UK Biobank in batches - resulting in each
individual with a percentage in each of the 5 super-populations (given by the ancestry fractions Q file).

The 5 different components were verified to correspond to the different super-populations in 1000 genomes. A set
of American ancestry individuals was selected by keeping all individuals who had at least 35% on the American
component of the analysis. This results in 322 individuals who correspond to the following report codes: 6:206,
1003:56, 2004:33, 1001:3, 4001/2003/2002/2001/2/1:1. These 322 individuals are considered the American super-
population test group and are withheld from the other self-reported test sets.

A.2 Siblings

The UK Biobank estimated kinship coefficients for individuals using KING as described in [102]. The UKB records
related pairs of degree 3 or closer and provide the results as a single pairwise kinship table which is provided with
the UK Biobank data. The set of siblings used in this work is identified by filtering this pairwise list on kinship
coefficient and IBS0 in a manner similar done by the UKB (see the supplement of [102]). Specifically, to be included
as a sibling pair, we keep all pairs with kinship coefficient larger than 0.176 and IBS0 larger than 0.0012. This
procedure results in 22,667 sibling pairs, in agreement with [102].

A.3 Phenotypes

The phenotype definitions used here involve various UKB-fields to define case and control status. The definitions
are inclusive in that if any of the indicated data fields report a diagnoses or self report then the individual is
counted as a case. For continuous phenotypes, the average of all measurements was used. The definitions used the
ICD9, ICD10 and OPCS4 codes in UKB-fields 41271, 41270, 41272; self-reported non-cancer codes from UKB-field
20002 and cancer codes in UKB-field 20001. Additionally, some diseases were specifically included in the intake
questionnaire or otherwise used other UKB-fields, which also are listed below.

There might be some quantitative performance gains that could come from the inclusion of more fields/codes for the
phenotypes. Performance gains might also come from an analysis of related information like medication, lifestyle
choices, and family history.

Training and evaluation of the predictors used a UKB download date of April 2021. The following disease definitions
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were used:

Asthma non-cancer codes: 1111; ICD9: 49300, 49309 ,49310 ,49319 ,49390 ,49399; ICD10: J450,J451,J458

Atrial fibrillation non-cancer codes: 1471, 1483; ICD9: 4273; ICD10: I480-I484, I489

Breast cancer cancer codes: 1002; ICD9: 174, 1749; ICD10: C50, C500-C506, C508, C509; field ID 40001: C50,
C500-C506, C508, C509; field ID40002: C50, C500-C506, C508, C509; field ID 40006: C50, C500-C506, C508,
C509; field ID 40013: 174, 1749

Coronary artery disease non-cancer codes: 1075; ICD9: 410, 4109, 412, 4129; ICD10: I21, I210-I214, I219,
I21X, I22, I220, I221, I228, I229, I23, I230-I236, I238, I241, I252; OPCS4: K401-K404, K411-K414,
K451-K455, K491, K492, K498, K499, K502, K751-K754, K758, K759

Diabetes type I non-cancer codes: 1222; ICD10: E100-E109, 0240

Diabetes type II non-cancer codes: 1223; ICD9: 25000, 25002, 25010, 25012, 25020, 25022, 25030, 25032,
25040, 25042, 25050, 25052, 25060, 25062, 25070, 25072, 25080, 25082, 25090, 25092; ICD10: E11,E110-E119

Hypertension non-cancer codes: 1065,1072,1073; ICD9: 4010,4011,4019,4050,4051,4059,4160,6420,6423,6429;
ICD10: I10

Body Mass Index field ID: 21001

Direct Bilirubin field ID: 30660

Height field ID: 50

Lipoprotein A field ID: 30790

A.4 Disease Prevalence

For asthma, recent surveys have found a prevalence of 10.9% in African Americans [103] (consistent with statistics
from a decade earlier [104]). Recent studies have found the prevalence of asthma greatly increasing in Taiwan
over the past several decades [105] (with rates in children reaching as high as ∼ 20%), however we use the more
conservatively reported number of 7.9% reported in [106]. The prevalence of asthma in Hispanic communities varies
enormously up to ∼ 30% [107], but we use the conservative figure of 4.9% for Mexicans given in [107].

For atrial fibrillation a prevalence of 0.35% has been found for African Americans [108]. In Taiwan, a sex specific
prevalence of 14% for men and 7% for women was found [109]. Because TPMI recruitment is still ongoing, this
was averaged to 10.5%. For Hispanics and Latinos in the USA, after doing a weighted average over prevalences in
sub-ancestry groups, an overall prevalence of just 1% was found[110].

Breast cancer prevalence in Hispanics fluctuates slightly within ancestry subgroups in the USA, but was recently
observed to be 1% [111]. For African Americans the prevalence is much higher at 11.5% [112]. In Taiwan the
prevalence is only .83% [113].

CAD as defined in A.3 is a complex phenotype made up of various self report, ICD, and OPCS codes. While this
definition is widely used, e.g. in [29], it is not necessarily consistent with other definitions of CAD reported in
survey literature. Because of this we use the reported prevalence in UKB, 5%, as the same prevalence in other
biobanks. This is consistent with reports of CAD prevalence in Taiwan (4% sex averaged) [114], African Americans
(5.4%) [115], and Hispanics in the USA (5.1%) [115].

It has been shown that there are differences in the rate and outcomes of hypertension in African Americans and
caucasians in the USA [116]. Here it was found that the sex averaged rate of hypertension in African Americans
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is ∼ 42%. In Taiwan, the prevalence of hypertension is 26.1% according to a 2017 national survey [117]. Among
Hispanics in the USA, the prevalence varies based on ancestry, but affects roughly 30% of the population [118].

The prevalence of type 1 diabetes has been found to be 0.57% among African Americans [119], 0.18% in American
Hispanics [120], and as little as 0.01-0.05% in Taiwan [121, 122]. In contrast, type 2 diabetes is much more prevalent,
being counted in roughly 13% of African Americans [123], 9.5% of American Hispanics [123], and 8.3% of Taiwanese
[124].

For continuous traits—BMI, Direct Bilirubin, height, and Lipoprotein A—we assumed the same reporting rate as
the UKB. For all 4 of these traits, measurements were recorded for 97% of UKB participants. This same rate was
assumed for the other biobanks.

B Uncertainty Analysis

Performance metrics—AUC, correlation, etc.—are often reported with a single measure of uncertainty, e.g. a
standard error. In this work, the uncertainty of the metric estimate is a key ingredient to model predictive
behavior. To this end, in this section we detail exactly how we characterize uncertainty.

B.1 Standard Errors

Standard errors (SE) characterize the precision with which a statistic has been measured. SEs generally tend
toward 0 as the amount of data increases. The exact form of the SEs depend on how the underlying statistic is
modeled. In this work we use the following common definitions uniformly minimum variance unbiased (UMVU)
estimators for a distribution with mean (µ), variance (V ), and standard deviation (σ):

SEµ ≈
σµ√
n
, SEV ≈ σ2

√
2

n− 1
, SEσ ≈

σ√
2(n− 1)

, (B.1)

where n is the number of samples used to estimate the statistic. Similarly, for computing the correlation (ρ)
between two sets of length n data, we can estimate the SE as:

SEρ ≈
√

1− ρ2
n− 2

. (B.2)

These SEs are all defined up to order O(1/n).

For computing AUCs we are not aware of a canonical analytic approximation of the SE. However, we can numerically
approximate the uncertainty via Monte Carlo, i.e. we assume cases and controls are Gaussian distributed and
randomly sample. As can be seen in 11 this was done for 20 different values of AUCs and 3 different ratios of cases
to controls.

The AUC uncertainty can be fit with a simple polynomial. We find very little dependence on the number of
controls, but instead find, after averaging over all 60 draws,

σAUC = 0.000(0.001) + 0.30(0.09)N
−0.51(0.07)
case ≈ 1

3
√
Ncase

, (B.3)

where the right hand side is the approximation we use in the analysis.
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Figure 11: MC AUC error using simulated data. Left, equal cases and controls at different theoretical AUC values. Right,
different ratios of cases of controls shows a very weak dependence on the number of controls.

B.2 Data Uncertainty

Because understanding the uncertainty on our datapoints is critical to the analysis, especially the projection
method, we give some examples here of how error bars/uncertainty was computed.

Odds ratio : the results presented for the LASSO algorithm involve 5-fold cross validation (CV). For each fold,
an inclusive odds ratio (OR) is computed. At a given PGS value we can count how many cases have that PGS
value or greater, n, how many controls have that PGS value or greater, N , and the total number of cases, n0, and
total number of controls, N0. A standard error of the OR can be computed by looking at the log(OR) (for noisy
data, this approach can lead to nonphysical OR bounds as the OR is not a symmetric distribution) and we find

σ
(i)
cnt =

n(i)N
(i)
0

N (i)n
(i)
0

√
1

n(i)
+

1

N (i)
+

1

n
(i)
0

+
1

N
(i)
0

, (B.4)

where we have added the superscript 1
n(i) to indicate this contribution comes from the i-th CV fold. We use the label

“cnt” to indicate that this quantity depends on the counts of cases and controls themselves. To compute the OR we
take the mean over the folds, µ. This average itself has a standard deviation, σµ. The total uncertainty associated
with µ then has a contribution directly from the distribution of CV values and from the counts themselves,

σOR =

√√√√σ2µ +
1

ncv

ncv∑
i=1

σ
(i) 2
cnt , (B.5)

where ncv is the number of CV folds. The first term comes from the distribution of OR values over CV folds and
the second term is an average uncertainty from the counts of cases and controls

AUC : computing the uncertainty of an AUC measurement is similar to that for the OR: there is one piece
coming from averaging over the CV folds and a second piece that comes from the size of the data sample used.
Using eq. (B.3), and the fact that each validation set is the same size, we have

σAUC =

√
σ2µ +

1

9Ncase
. (B.6)

Correlation : the uncertainty is analogous to that computed for AUC but now using eq. (B.2),

σcorr =

√
σ2µ +

1− ρ2
n− 2

. (B.7)
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In all these examples, the second contribution is always dependent on the sample size used to compute the quantity.
In practice, the size of this contribution compared to the size of the first contribution can be used as an indicator
of whether enough data was used for validation/testing. In the results shown in this work the second term is
consistently the smaller contribution indicating that the distribution over folds is the limiting factor.

C Projection functions

The value of any metric will depend on the number of samples (cases and controls, or total number for continuous
phenotype) used in training and validation/testing. It is not a priori known what functional form various metrics
should take as a function of training samples. From a biological perspective it is true whatever function used should
be bounded from above and below, i.e., there should be a lower limit to reflect that linear SNP genetics is playing
no role and an upper limit to reflect that you have completely captured linear genetic effects.

Here we collect a group of bounded functions that are used in the main analysis

name functional form min max

sigmoid a+ b
1+ec(x+d) a

a+ b

inverse tangent a+ 2b
π
tan−1 [c(x+ d)]

a− berror function a+ b erf [c(x+ d)]

hyperbolic tangent a+ b tanh [c(x+ d)]

Table 3: Various bounded functions used for fitting. Here, x is the log10 of the number of cases included in training. Note
that all functions are centered at x = −d which implies that for x < −d there is faster than linear growth in AUC.

Figure 12: Growth of AUC as a function of training size in the UKB for diabetes type 1 and diabetes type 2. Colored,
curved bands come from fitting data with various 4 parameter functions. Width of the bands corresponds to a ∼ 68% , or 2
standard deviations, confidence interval on the predictions. Vertical bars represent projections for de novo training in other
biobanks using literature prevalences.
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func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.7066 0.0510 0.0007 0.0019
arctan4 0.7024 0.0347 0.0005 0.0013
erf4 0.7260 0.0680 0.0010 0.0030
tanhyp4 0.7062 0.0495 0.0007 0.0018

Table 4: Asymptotic central values, and uncertainty, from fitted curves for asthma.

func χ2/dof p-value
sigmoid4 0.72 0.65
arctan4 0.95 0.46
erf4 0.66 0.71
tanhyp4 0.72 0.65

Table 5: Fit results for asthma. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.61 0.01 0.61 0.01 0.61 0.02 0.61 0.02 0.612 0.009
AFR in AoU 0.54 0.02 0.54 0.01 0.55 0.02 0.54 0.02 0.540 0.010
EAS in TPMI 0.63 0.02 0.63 0.02 0.63 0.03 0.63 0.02 0.630 0.020
AMR in AoU 0.52 0.01 0.52 0.01 0.52 0.02 0.52 0.01 0.520 0.010

Table 6: Various functional predictions, and uncertainties, for asthma.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.832 0.099 0.005 0.013
arctan4 0.815 0.105 0.004 0.011
erf4 0.821 0.104 0.004 0.011
tanhyp4 0.820 0.102 0.004 0.011

Table 7: Asymptotic central values, and uncertainty, from fitted curves for atrial fibrillation

func χ2/dof p-value
sigmoid4 0.71 0.66
arctan4 0.59 0.76
erf4 0.78 0.60
tanhyp4 0.73 0.65

Table 8: Fit results for atrial fibrillation. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.62 0.05 0.62 0.07 0.61 0.03 0.61 0.04 0.61 0.03
AFR in AoU 0.51 0.02 0.52 0.03 0.51 0.01 0.51 0.02 0.51 0.01
EAS in TPMI 0.58 0.03 0.58 0.04 0.58 0.02 0.58 0.02 0.58 0.02
AMR in AoU 0.52 0.02 0.52 0.03 0.51 0.01 0.51 0.01 0.52 0.01

Table 9: Various functional predictions, and uncertainties, for atrial fibrillation.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.831 0.099 0.005 0.012
arctan4 0.832 0.101 0.004 0.010
erf4 0.828 0.095 0.003 0.009
tanhyp4 0.823 0.102 0.004 0.009

Table 10: Asymptotic central values, and uncertainty, from fitted curves for type 2 diabetes.
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func χ2/dof p-value
sigmoid4 2.16 0.03
arctan4 2.03 0.05
erf4 2.23 0.03
tanhyp4 2.18 0.03

Table 11: Fit results for type 2 diabetes. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.62 0.04 0.62 0.05 0.62 0.03 0.62 0.04 0.62 0.02
AFR in AoU 0.57 0.02 0.57 0.03 0.57 0.02 0.57 0.02 0.57 0.01
EAS in TPMI 0.68 0.08 0.70 0.10 0.69 0.07 0.68 0.07 0.69 0.06
AMR in AoU 0.56 0.02 0.57 0.03 0.57 0.02 0.57 0.02 0.57 0.01

Table 12: Various functional predictions, and uncertainties, for type 2 diabetes.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.6640 0.0074 0.0001 0.0003
arctan4 0.6755 0.0134 0.0002 0.0005
erf4 0.6634 0.0073 0.0001 0.0003
tanhyp4 0.6637 0.0076 0.0001 0.0003

Table 13: Asymptotic central values, and uncertainty, from fitted curves for type 1 diabetes.

func χ2/dof p-value
sigmoid4 0.18 0.99
arctan4 0.12 1.00
erf4 0.21 0.98
tanhyp4 0.18 0.99

Table 14: Fit results for type 1 diabetes. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.67 0.02 0.67 0.03 0.66 0.02 0.66 0.02 0.67 0.02
AFR in AoU 0.63 0.03 0.63 0.03 0.63 0.03 0.63 0.03 0.63 0.02
EAS in TPMI 0.67 0.03 0.67 0.03 0.66 0.02 0.67 0.02 0.67 0.02
AMR in AoU 0.50 0.10 0.50 0.10 0.52 0.09 0.50 0.10 0.52 0.06

Table 15: Various functional predictions, and uncertainties, for type 1 diabetes.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.821 0.107 0.005 0.013
arctan4 0.815 0.111 0.004 0.010
erf4 0.821 0.102 0.004 0.009
tanhyp4 0.824 0.104 0.004 0.009

Table 16: Asymptotic central values, and uncertainty, from fitted curves for CAD.

func χ2/dof p-value
sigmoid4 1.65 0.12
arctan4 1.70 0.10
erf4 1.63 0.12
tanhyp4 1.65 0.12

Table 17: Fit results for CAD. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible over-fitting.

33

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286870doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286870
http://creativecommons.org/licenses/by-nc/4.0/


sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.61 0.05 0.61 0.06 0.61 0.03 0.61 0.04 0.61 0.03
AFR in AoU 0.53 0.02 0.54 0.03 0.54 0.02 0.54 0.02 0.54 0.01
EAS in TPMI 0.68 0.09 0.70 0.10 0.65 0.06 0.67 0.08 0.67 0.05
AMR in AoU 0.53 0.02 0.54 0.03 0.53 0.02 0.53 0.02 0.53 0.01

Table 18: Various functional predictions, and uncertainties, for CAD.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.6317 0.0093 0.0001 0.0003
arctan4 0.6434 0.0084 0.0001 0.0003
erf4 0.6299 0.0102 0.0001 0.0004
tanhyp4 0.6321 0.0095 0.0001 0.0003

Table 19: Asymptotic central values, and uncertainty, from fitted curves for hypertension.

func χ2/dof p-value
sigmoid4 2.34 0.02
arctan4 2.30 0.02
erf4 2.47 0.02
tanhyp4 2.34 0.02

Table 20: Fit results for hypertension. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.61 0.01 0.610 0.010 0.62 0.01 0.62 0.01 0.615 0.006
AFR in AoU 0.55 0.01 0.550 0.010 0.55 0.01 0.55 0.01 0.551 0.006
EAS in TPMI 0.55 0.01 0.540 0.010 0.55 0.01 0.55 0.01 0.546 0.006
AMR in AoU 0.53 0.01 0.528 0.009 0.53 0.01 0.53 0.01 0.528 0.005

Table 21: Various functional predictions, and uncertainties, for hypertension.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.748 0.104 0.002 0.005
arctan4 0.769 0.098 0.002 0.004
erf4 0.746 0.098 0.002 0.005
tanhyp4 0.747 0.099 0.002 0.005

Table 22: Asymptotic central values, and uncertainty, from fitted curves for breast cancer.

func χ2/dof p-value
sigmoid4 0.84 0.56
arctan4 0.89 0.51
erf4 0.82 0.57
tanhyp4 0.84 0.56

Table 23: Fit results for breast cancer. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

sigmoid σ arctan σ erf σ tanh σ pred σ
EUR/SIB in UKB 0.58 0.03 0.58 0.02 0.58 0.02 0.58 0.03 0.58 0.01
AFR in AoU 0.57 0.03 0.57 0.02 0.57 0.02 0.57 0.03 0.57 0.01
EAS in TPMI 0.57 0.03 0.58 0.02 0.57 0.02 0.58 0.03 0.57 0.01
AMR in AoU 0.52 0.02 0.52 0.02 0.52 0.02 0.52 0.02 0.52 0.01

Table 24: Various functional predictions, and uncertainties, for breast cancer.
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func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.5226 0.0274 0.0004 0.0010
arctan4 0.5249 0.0240 0.0003 0.0009
erf4 0.5279 0.0324 0.0005 0.0013
tanhyp4 0.5218 0.0270 0.0004 0.0010

Table 25: Asymptotic central values, and uncertainty, from fitted curves for direct bilirubin.

func χ2/dof p-value
sigmoid4 0.64 0.72
arctan4 0.63 0.73
erf4 0.65 0.72
tanhyp4 0.64 0.72

Table 26: Fit results for direct bilirubin. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.

Corr σ heritability σ
GCTA 0.660 0.080 0.40 0.40
LDSR 0.711 0.006 0.51 0.02
Asymp 0.520 0.010 0.27 0.01

Table 27: Comparison of known correlation and heritability methods to the asymptotic prediction for direct bilirubin.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.50 0.04 0.49 0.03 0.52 0.06 0.50 0.04 0.50 0.02
AFR in AoU 0.51 0.05 0.50 0.03 0.53 0.07 0.51 0.05 0.51 0.03
EAS in TPMI 0.50 0.04 0.49 0.03 0.51 0.05 0.50 0.04 0.50 0.02
AMR in AoU 0.51 0.05 0.50 0.03 0.53 0.07 0.51 0.05 0.51 0.03

Table 28: Various functional predictions, and uncertainties, for direct bilirubin.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.4553 0.0246 0.0003 0.0009
arctan4 0.4836 0.0180 0.0003 0.0007
erf4 0.4669 0.0332 0.0005 0.0012
tanhyp4 0.4554 0.0252 0.0004 0.0009

Table 29: Asymptotic central values, and uncertainty, from fitted curves for BMI.

func χ2/dof p-value
sigmoid4 0.20 0.98
arctan4 1.11 0.35
erf4 0.18 0.99
tanhyp4 0.20 0.98

Table 30: Fit results for BMI. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible over-fitting.

Corr σ heritability σ
GCTA 0.499 0.001 0.249 0.008
LDSR 0.540 0.003 0.290 0.020
Asymp 0.460 0.020 0.210 0.020

Table 31: Comparison of known correlation and heritability methods to the asymptotic prediction for BMI.
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sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.36 0.01 0.36 0.01 0.36 0.01 0.36 0.01 0.36 0.01
AFR in AoU 0.16 0.01 0.16 0.02 0.17 0.01 0.16 0.01 0.16 0.01
EAS in TPMI 0.40 0.03 0.39 0.02 0.40 0.03 0.40 0.03 0.40 0.02
AMR in AoU 0.14 0.01 0.13 0.01 0.14 0.01 0.14 0.01 0.14 0.01

Table 32: Various functional predictions, and uncertainties, for BMI.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.66702 0.00618 0.00009 0.00022
arctan4 0.75880 0.00990 0.00010 0.00040
erf4 0.65413 0.00550 0.00008 0.00020
tanhyp4 0.66715 0.00609 0.00009 0.00022

Table 33: Asymptotic central values, and uncertainty, from fitted curves for height.

func χ2/dof p-value
sigmoid4 1.48 0.1700
arctan4 4.43 0.0001
erf4 0.99 0.4400
tanhyp4 1.48 0.1700

Table 34: Fit results for height. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible over-fitting.

Corr σ heritability σ
GCTA 0.697 0.005 0.49 0.02
LDSR 0.717 0.006 0.51 0.02
Asymp 0.663 0.003 0.439 0.005

Table 35: Comparison of known correlation and heritability methods to the asymptotic prediction for height.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.631 0.008 0.63 0.008 0.631 0.008 0.631 0.008 0.631 0.006
AFR in AoU 0.470 0.010 0.48 0.010 0.470 0.010 0.470 0.010 0.470 0.008
EAS in TPMI 0.650 0.010 0.65 0.010 0.650 0.010 0.650 0.010 0.648 0.009
AMR in AoU 0.430 0.010 0.44 0.010 0.430 0.010 0.430 0.010 0.434 0.009

Table 36: Various functional predictions, and uncertainties, for height.

func Asymp Mean Asymp Stand Dev SEM 99% CI of Mean
sigmoid4 0.7721 0.0100 0.0001 0.0004
arctan4 0.7992 0.0192 0.0003 0.0007
erf4 0.7690 0.0082 0.0001 0.0003
tanhyp4 0.7722 0.0101 0.0001 0.0004

Table 37: Asymptotic central values, and uncertainty, from fitted curves for lipoprotein A.

func χ2/dof p-value
sigmoid4 0.13 1.0
arctan4 0.12 1.0
erf4 0.14 1.0
tanhyp4 0.13 1.0

Table 38: Fit results for lipoprotein A. Note, for a fit pvalue → 1 indicates a poor fit and pvalue → 0 indicates possible
over-fitting.
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Figure 13: Growth of AUC as a function of training size in the UKB for hypertension and coronary artery disease. Colored,
curved bands come from fitting data with various 4 parameter functions. Width of the band corresponds to a confidence
interval on the predictions: on the right 2 standard deviations or ∼ 68% and on the left 4 standard deviations or ∼ 95%.
Vertical bars represent projections for de novo training in other biobanks using literature prevalences.

Figure 14: Growth of AUC (left: breast cancer) and correlation (right: lipoprotein A) as a function of training size in the
UKB. Colored, curved bands come from fitting data with various 4 parameter functions. Width of the band corresponds to a
confidence interval on the predictions: on the left 2 standard deviations or ∼ 68% and on the right 4 standard deviations or
∼ 95%. Vertical bars represent projections for de novo training in other biobanks using literature prevalences. On the right,
horizontal lines indicate the correlation predicted from GCTA and LDSR.

Corr σ heritability σ
GCTA 0.356 0.006 0.13 0.09
LDSR 0.670 0.005 0.45 0.02
Asymp 0.779 0.007 0.61 0.01

Table 39: Comparison of known correlation and heritability methods to the asymptotic prediction for lipoprotein A.

sigmoid σ arctan σ erf σ tanh σ pred σ
SIB in UKB 0.73 0.03 0.75 0.02 0.68 0.09 0.73 0.04 0.72 0.03
AFR in AoU 0.72 0.04 0.74 0.02 0.67 0.09 0.72 0.04 0.71 0.03
EAS in TPMI 0.74 0.03 0.75 0.02 0.68 0.09 0.74 0.04 0.73 0.03
AMR in AoU 0.72 0.04 0.73 0.02 0.67 0.09 0.72 0.04 0.71 0.03

Table 40: Various functional predictions, and uncertainties, for lipoprotein A.
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Figure 15: Growth of correlation as a function of training size in the UKB for direct bilirubin and height. Colored, curved
bands come from fitting data with various 4 parameter functions. Width of the band corresponds to a ∼ 95% confidence
interval, or 4 standard deviations. Vertical bars represent projections for de novo training in other biobanks using literature
prevalences. Horizontal lines indicate the correlation predicted from GCTA and LDSR.

Figure 16: Growth of AUC as a function of training size in the UKB for atrial fibrillation. Colored, curved bands come
from fitting data with various 4 parameter functions. Width of the band corresponds to a ∼ 68% confidence interval, or
two standard deviations, on the predictions. Vertical bars represent projections for de novo training in other biobanks using
literature prevalences.
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D Sparse methods comparisons on various phenotypes

Figure 17: Comparison of sparse methods for atrial fibrillation and breast cancer predictors with a comparison
to prediction bands for more diverse biobanks. Both trait predictors are trained on a UKB white population. Predictors
are built with LASSO, L1-penalized Logistic regression, Elastic Net, and PRScs with UKB and 1,000 Genomes LD matrices.
The specific parameters for the Elastic Net and PRScs are described in section 3.

Figure 18: Comparison of sparse methods for type 1 diabetes and type 2 diabetes predictors with a comparison
to prediction bands for more diverse biobanks. Both trait predictors are trained on a UKB white population. Predictors
are built with LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000 Genomes LD matrices.
The specific parameters for the Elastic nets and PRScs are described in section 3.
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Figure 19: Comparison of sparse methods for hypertension and coronary artery disease predictors with a
comparison to prediction bands for more diverse biobanks. Both trait predictors are trained on a UKB white
population. Predictors are built with LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000
Genomes LD matrices. The specific parameters for the Elastic nets and PRScs are described in section 3.

Figure 20: Comparison of sparse methods for BMI and direct bilirubin predictors with a comparison to
prediction bands for more diverse biobanks. Both trait predictors are trained on a UKB white population. Predictors
are built with LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000 Genomes LD matrices.
The specific parameters for the Elastic nets and PRScs are described in section 3.

Figure 21: Comparison of sparse methods for lipoprotein A predictors with a comparison to prediction bands
for more diverse biobanks. The trait predictors are trained on a UKB white population. Predictors are built with
LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000 Genomes LD matrices. The specific
parameters for the Elastic nets and PRScs are described in section 3.
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E Sibling Tests

Figure 22: Affected sibling pair (ASP) selection rate for breast cancer and coronary artery disease. Pairs of siblings, where
one person is a case and the other a control, are used and the rate corresponds to the number of times the case sibling has
the higher PGS. The rate of correct selection, and uncertainty, increases if the siblings are also separated by at least 1.5, 2,
or 2.5 standard deviations in PGS.

Figure 23: Affected sibling pair (ASP) selection rate for type 1 diabetes and type 2 diabetes. Pairs of siblings, where one
person is a case and the other a control, are used and the rate corresponds to the number of times the case sibling has the
higher PGS. The rate of correct selection, and uncertainty, increases if the siblings are also separated by at least 1.5, 2, or
2.5 standard deviations in PGS.
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Figure 24: Affected sibling pair (ASP) selection rate for hypertension and atrial fibrillation. Pairs of siblings, where one
person is a case and the other a control, are used and the rate corresponds to the number of times the case sibling has the
higher PGS. The rate of correct selection, and uncertainty, increases if the siblings are also separated by at least 1.5, 2, or
2.5 standard deviations in PGS.

Figure 25: Rank order selection rate for height and lipoprotein A. The rate corresponds to frequency of the sibling with the
larger phenotype also having the larger PGS. The selection rate, and uncertainty, increase if you require that the siblings
phenotype is separated by at least 0.5, 1, or 1.5 standard deviations.
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Figure 26: Rank order selection rate for direct bilirubin. The rate corresponds to frequency of the sibling with the larger
phenotype also having the larger PGS. The selection rate, and uncertainty, increase if you require that the siblings phenotype
is separated by at least 0.5, 1, or 1.5 standard deviations.
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F Impact Regions

Here we collect, in table form, the most impactful regions for LASSO predictors for each phenotype. The impactful
SNPs are found by looking at SSV for each SNP. Associated genes are identified by using www.ncbi.nlm.nih.gov/
gene/ gene database, for primary build GRCh37, and extending the gene region by 2 million base pairs in both
directions to capture possibly associated SNPs.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
Affx-35292235 1 12,175,658 4 1.8E-07 rs146597587 9 6,255,967 4 3.8E-14 IL33
rs496451 1 55,553,568 1 1.7E-03 rs12413578 10 9,049,253 2 3.3E-34
rs12123821 1 152,179,152 2 7.4E-23 FLG rs144497064 10 75,305,340 3 5.8E-04
rs150597413 1 152,277,622 3 7.4E-06 FLG rs145065400 11 6,912,921 1 5.2E-02
rs138726443 1 152,280,023 2 3.7E-05 FLG rs11041171 11 7,110,751 1 2.1E-02
Affx-52112636 1 155,691,351 1 3.5E-04 Affx-35631493 11 48,387,855 1 1.8E-02
rs112674836 1 169,822,140 1 3.8E-03 rs150131716 11 77,774,947 1 5.9E-03
rs141099682 1 186,083,113 1 7.0E-03 rs57224706 12 50,480,285 1 1.6E-03
rs116178033 1 207,751,640 1 2.1E-02 rs1059513 12 57,489,709 1 1.9E-22
rs35784105 2 7,017,943 1 2.4E-02 rs144880038 14 74,422,599 1 7.3E-03
rs72823646 2 102,954,213 4 1.7E-60 IL1RL1 rs11071559 15 61,069,988 1 1.6E-15 RORA
rs144641723 2 209,308,236 1 1.7E-03 rs17293632 15 67,442,596 1 2.3E-36 SMAD3
rs189756911 3 24,522,932 1 2.9E-04 rs36045143 16 11,224,966 2 5.5E-27 CLEC16A
rs62323888 4 123,057,411 1 6.6E-12 rs140980200 17 3,840,797 1 4.9E-04
rs148087185 4 166,978,362 1 1.6E-03 rs144535413 17 3,844,344 1 1.0E-03
rs116351845 5 44,034,122 1 1.5E-06 rs115065009 17 8,215,755 1 1.3E-02
rs1837253 5 110,401,872 2 2.1E-37 TSLP rs75865341 17 55,262,828 1 3.8E-02
rs3104413 6 32,582,650 1 6.4E-67 HLA-DQ rs35250503 17 71,160,703 1 7.6E-03
rs58156640 6 62,472,822 2 6.6E-03 rs59181893 17 76,887,003 4 5.8E-03
rs4875777 8 3,569,431 1 3.6E-04 rs12964116 18 61,442,619 1 3.0E-08 SERPINB7
rs7827037 8 39,284,717 1 4.2E-03

Table 41: Asthma SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs61730486 1 117,146,319 1 2.5E-03 rs150511464 7 127,235,385 1 6.7E-03
rs13376333 1 154,814,353 1 2.7E-29 KCNN3 PMVK LMNA rs149775276 8 42,587,435 1 3.2E-03
rs140707188 1 156,169,862 1 2.6E-03 KCNN3 PMVK LMNA rs16938829 8 75,157,149 1 5.2E-03
rs6011 1 169,500,178 2 5.0E-04 KIFAP3 rs62521286 8 124,551,975 1 2.4E-10 FBXO32
rs72700121 1 170,195,607 2 1.9E-19 KIFAP3 rs112892337 8 135,614,553 1 2.8E-04
rs1332965 1 170,283,751 2 1.0E-08 rs116352541 9 126,144,262 1 4.7E-03
rs145618145 2 63,220,672 1 2.2E-02 rs6584555 10 105,299,611 2 4.7E-17 SH3PXD2A
rs35955389 2 173,825,951 1 4.7E-02 rs75053469 10 105,351,996 1 3.2E-09 SH3PXD2A
rs10176633 2 188,361,675 1 4.3E-03 rs79307606 11 132,861,210 2 4.4E-05
rs146955672 3 24,200,787 1 2.3E-03 rs139258361 12 15,803,861 1 2.4E-03
rs17079534 3 39,847,072 1 2.5E-02 SCN5A SCN10A rs112129104 12 89,752,523 1 1.3E-05
rs11574440 3 46,449,164 1 5.5E-02 rs189018671 13 97,639,878 1 5.8E-03
rs2942857 4 69,687,987 1 1.2E-02 rs6576507 15 26,288,394 3 2.8E-03
rs2200733 4 111,710,169 1 1.8E-140 PITX2 rs7164883 15 73,652,174 1 1.7E-13 HCN4
rs6843082 4 111,718,067 4 1.8E-160 PITX2 rs138423783 15 81,180,069 1 4.6E-03
rs3853445 4 111,761,487 1 1.1E-32 PITX2 rs11858667 15 88,022,696 1 1.3E-02
rs111334323 4 111,910,151 3 4.0E-06 PITX2 rs140703991 16 1,820,683 2 6.6E-05
rs200747616 4 152,550,918 2 2.4E-03 rs147972626 16 1,997,064 1 1.1E-05
rs138408376 5 140,801,426 1 3.8E-03 rs140185678 16 2,003,016 3 3.7E-14 RPL
rs114183232 6 1,401,166 1 7.4E-04 rs143944741 16 19,883,375 1 3.5E-03
rs16893699 6 28,105,889 1 4.2E-03 rs2106261 16 73,051,620 3 2.2E-35 ZFHX3
rs181511246 6 75,848,630 1 1.7E-04 rs2649402 17 18,566,055 1 4.8E-03
rs117984853 6 149,399,100 1 5.0E-14 rs111681839 17 79,176,142 1 3.9E-02
rs7807549 7 43,917,465 1 5.5E-03 rs61731848 19 9,060,774 1 5.4E-03
rs2229107 7 87,138,659 1 6.0E-03 rs10425706 19 53,741,219 1 3.8E-03
rs3807989 7 116,186,241 1 1.7E-18 CAV1 rs115547861 22 31,032,704 1 1.4E-03

Table 42: Atrial fibrillation SNPs with SSV > 1% of total SSV.
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Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs77316894 1 90,804,699 1 1.4E-05 rs3780548 9 99,525,487 2 8.6E-06
rs138421943 1 152,192,110 3 9.8E-04 rs74541872 9 116,798,596 4 5.4E-03
rs150343459 2 54,021,461 4 1.1E-04 rs1219648 10 123,346,190 1 7.5E-100
rs72951831 2 217,957,699 2 1.4E-12 rs2295878 10 123,996,934 1 8.2E-03
rs7575022 2 237,964,265 2 1.2E-03 rs7943891 11 48,843,790 1 8.2E-03
rs74371893 3 4,345,484 3 1.6E-03 rs75296154 11 69,343,815 2 9.3E-22
rs76997204 3 20,027,251 1 1.9E-03 rs151013524 11 134,062,648 1 3.7E-03
rs75783758 4 137,761,414 1 1.3E-03 rs3803466 15 75,648,650 1 1.7E-03
rs148833559 5 172,755,066 2 9.3E-05 rs75531903 16 3,613,720 2 8.5E-03
rs16893699 6 28,105,889 4 1.5E-05 rs4784227 16 52,599,188 1 2.3E-69
rs2841646 6 43,270,326 1 1.6E-03 rs61757659 16 88,951,594 1 7.1E-05
rs41302073 9 12,709,125 1 1.7E-03 rs16989263 21 33,694,195 4 5.0E-04

Table 43: Breast cancer SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs74066236 1 37,919,465 2 5.5E-03 rs7074231 10 3,304,976 1 7.9E-03
rs156258 1 45,042,530 1 3.4E-03 rs75106042 10 114,651,604 1 1.4E-07 TCF7L2
rs116473331 1 50,486,231 3 7.5E-05 rs7903146 10 114,758,349 3 4.4E-143 TCF7L2
rs139971696 1 150,935,216 1 1.3E-02 rs34796596 11 67,414,455 4 1.1E-03
rs145020579 1 223,972,058 2 2.1E-03 rs61001398 12 22,040,823 1 2.6E-03
rs79802002 1 247,654,493 1 1.1E-01 rs139495835 12 57,642,464 1 4.7E-02
rs200225276 2 27,262,648 2 3.9E-05 GCKR rs73380117 12 100,346,464 2 7.3E-03
rs143491198 2 27,695,208 2 8.8E-04 GCKR rs79111014 13 43,463,378 1 2.3E-03
rs6715188 2 125,359,946 1 8.6E-03 rs35716003 14 22,580,806 1 8.8E-03
rs78499613 2 210,705,365 2 5.7E-05 rs143602956 14 101,201,112 1 9.3E-03
rs72628104 3 24,006,497 1 2.7E-02 rs74553953 15 49,048,132 2 1.4E-05 SLC12A1
rs150271072 3 57,631,400 1 2.1E-04 rs34437030 16 29,859,305 1 8.9E-03
rs146206905 3 120,347,344 2 3.2E-04 rs6500304 16 48,134,784 1 2.6E-03
rs16837181 3 125,878,980 1 1.4E-04 rs6500305 16 48,134,856 2 2.8E-03
rs61753468 3 129,156,151 1 5.1E-04 rs35840072 16 83,288,120 2 1.3E-04
rs144574896 4 22,456,492 1 3.0E-04 rs149760662 17 5,291,126 1 5.0E-04
rs75978835 4 120,501,178 1 4.1E-03 rs9748611 18 14,763,987 1 3.5E-02
rs146886108 5 14,751,305 2 9.2E-08 rs35554127 18 21,736,486 1 3.8E-02
rs141074846 5 132,209,649 2 1.0E-03 rs150579280 19 16,006,361 2 6.2E-04
rs115673052 6 83,106,667 1 2.8E-02 rs114897412 20 4,162,837 1 8.7E-03
rs3802177 8 118,185,025 1 3.7E-21 SLC30A8 rs141568926 20 9,434,049 1 1.6E-03
Affx-52298270 9 87,338,515 1 4.9E-03 rs34875296 22 26,423,535 2 3.9E-03

Table 44: Type 2 diabetes SNPs with SSV > 1% of total SSV

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs17098940 1 76,878,097 1 2.0E-02 rs115469976 6 32,986,508 1 1.7E-30 MICA HLA-DRB1
rs6679677 1 114,303,808 1 1.5E-14 rs112222457 6 47,658,337 2 2.2E-02
rs6587601 1 149,773,350 2 5.3E-05 rs112609906 6 66,204,970 1 5.2E-02
rs16861531 2 14,398,052 1 4.6E-02 rs28382660 7 44,112,996 1 3.8E-02
rs7588635 2 112,722,854 1 4.3E-03 rs116376908 7 151,079,054 1 1.4E-01
rs116825611 2 167,298,015 1 1.6E-02 rs79108638 9 91,292,717 1 6.6E-02
rs192447754 2 207,171,050 1 1.2E-02 rs2702693 11 19,530,851 2 1.0E-01
rs76844281 3 24,392,632 1 3.6E-02 rs45438191 11 62,763,544 2 2.9E-03
rs199768782 4 15,542,617 1 1.1E-01 rs11837049 12 22,168,032 1 4.1E-04
rs1136511 4 70,898,903 1 1.9E-01 rs1669885 12 42,839,836 1 1.4E-02
rs2219222 5 114,737,846 1 4.7E-03 rs17592 15 42,678,464 3 2.5E-03
rs116763857 6 31,141,482 3 1.6E-05 HLA-A TRIM26 MICA HLA-DRB1 rs80229418 16 31,412,772 1 6.7E-02
rs3806155 6 32,373,378 2 4.7E-53 MICA HLA-DRB1 rs13338753 16 55,903,548 1 8.4E-02
rs9268577 6 32,395,942 1 1.2E-16 MICA HLA-DRB1 rs35554127 18 21,736,486 1 5.1E-03
rs146733600 6 32,573,760 4 1.1E-45 MICA HLA-DRB1 rs8107847 19 763,508 1 7.4E-03
rs9273363 6 32,626,272 3 1.3E-114 MICA HLA-DRB1 rs146265828 20 12,619,601 2 1.3E-02 FLRT3
rs115018313 6 32710407 3 1.1E-57 MICA HLA-DRB1

Table 45: Type 1 diabetes SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs78426182 1 2,519,810 2 9.2E-04 rs3734280 6 134,215,690 1 9.6E-03 TCF21
rs34561376 1 55,464,986 1 1.7E-03 PCSK9 rs3798220 6 160,961,137 2 3.0E-44 SLC22A3 LPAL2 LPA PLG
rs11591147 1 55,505,647 2 5.9E-11 PCSK9 rs10455872 6 161,010,118 3 1.8E-73 SLC22A3 LPAL2 LPA PLG
rs142460316 1 117,619,377 1 1.3E-04 rs17847173 7 8,181,578 1 1.7E-04
rs76443098 1 155,657,890 1 1.2E-02 IL6R rs60659894 8 94,772,183 3 2.2E-02
rs76329326 1 222,803,199 1 9.8E-05 MIA3 rs116930274 8 144,590,049 1 1.2E-03
rs73949680 2 74,756,242 3 1.4E-02 rs7126678 11 48,505,913 1 2.0E-01
rs115370220 2 87,016,830 2 1.4E-02 VAMP5 rs34796596 11 67,414,455 1 4.4E-02
rs79904664 2 144,699,925 3 7.8E-03 ZEB2 rs58168448 12 109,895,854 1 4.9E-02 SH2B3
rs9827335 3 3,840,868 1 8.8E-03 rs200297509 12 124,835,279 1 7.5E-03
rs13326552 3 44,948,480 5 7.1E-06 rs41561818 12 133,220,454 1 3.2E-04
rs144662307 3 195,481,129 3 2.1E-04 rs144567652 14 45,667,921 1 7.6E-03
rs142412240 4 68,925,094 1 1.7E-04 rs150953383 15 73,994,895 1 3.3E-04
rs73786670 5 130,766,542 1 2.1E-02 SLC22A4/A5 rs16942445 16 57,935,443 1 6.5E-03 CETP
rs80263204 5 140,627,509 1 1.3E-02 rs58981829 19 51,738,465 1 2.4E-02
rs2120783 5 161,007,916 1 9.8E-04

Table 46: CAD SNPs with SSV > 1% of total SSV.
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Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs41270291 1 15,994,251 1 2.4E-01 rs11016690 10 130,940,735 1 3.3E-01
rs115862221 1 17,249,858 1 5.1E-02 rs138242314 11 45,955,752 1 1.2E-02
rs11466111 1 115,829,178 1 9.9E-06 rs8187661 11 66,133,643 1 2.1E-02
rs145467872 1 150,973,013 1 4.4E-02 rs16914280 11 88,321,724 1 1.8E-01
rs55909005 1 156,838,432 1 2.5E-01 rs11838918 13 79,410,574 1 3.9E-01
rs9661539 1 248,040,293 1 1.9E-01 rs7317657 13 92,171,706 1 4.0E-01
rs45612738 2 31,602,841 1 2.6E-01 rs73296180 14 53,619,369 1 2.2E-02
rs61731210 3 13,659,649 1 5.3E-01 rs112118955 14 73,996,947 1 1.5E-01
rs17051692 3 40,931,175 1 1.9E-01 ULK4 rs116488414 14 74,006,004 1 6.6E-02
rs4234213 3 123,024,733 1 9.1E-02 rs149239345 14 96,761,321 1 1.3E-01
rs57958890 4 70,276,699 1 2.2E-01 rs6576507 15 26,288,394 1 6.4E-01
rs143057152 4 149,075,755 1 4.9E-03 NR3C2 rs114231576 16 2,016,184 1 5.9E-02
rs6915612 6 32,218,625 1 2.8E-01 PRRC2A rs4889238 16 81,151,122 1 5.1E-02
rs112460091 6 63,995,477 1 1.0E-01 rs112966915 17 80,223,554 1 1.9E-01
rs59147126 7 15,601,393 1 2.8E-01 rs150705131 19 288,123 1 3.1E-02
rs3735533 7 27,245,893 1 4.2E-08 rs61740630 19 2,352,964 1 1.8E-01
rs115281203 7 123,672,179 1 1.6E-01 rs36078704 19 19,039,030 1 2.3E-01
rs11977216 7 150,324,976 1 3.2E-01 NOS3 rs73932907 19 38,039,946 1 2.0E-01
rs116751013 7 158,415,596 1 7.3E-02 rs201635014 19 38,379,680 1 1.2E-01
rs10958553 8 39,290,593 1 2.9E-01 rs61760904 19 50,139,932 1 1.1E-03
rs148545964 8 94,772,206 1 5.8E-01 rs55641738 20 60,293,875 1 2.8E-01
rs3847170 8 140,423,147 1 4.2E-01 rs28587162 21 16,337,538 1 1.5E-01
rs3025380 9 136,501,756 1 1.4E-03 rs6003859 22 24,057,206 1 2.7E-01
rs73270587 10 35,929,350 1 1.9E-01 rs28915381 22 43,089,658 1 2.6E-01

Table 47: Hypertension SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs17131137 1 91,172,059 2 3.2E-04 Affx-52351697 12 21,008,080 4 1.1E-39 SLCO1B3 SLCO1B1
rs4019811 1 203,822,304 4 1.8E-05 rs34691116 12 21,027,327 3 2.3E-89 SLCO1B3 SLCO1B1
rs908327 1 235,092,600 4 1.6E-02 rs76737149 12 21,235,850 2 2.0E-16 SLCO1B3 SLCO1B1
rs6755571 2 234,627,536 3 0.0E+00 UGT1A1 rs11045819 12 21,329,813 2 1.6E-28 SLCO1B3 SLCO1B1
rs34622615 2 234,652,308 4 0.0E+00 UGT1A1 rs4149056 12 21,331,549 2 7.9E-308 SLCO1B3 SLCO1B1
rs10929302 2 234,665,782 2 0.0E+00 UGT1A1 rs73117071 12 41,582,272 3 1.2E-03
rs3755319 2 234,667,582 4 0.0E+00 UGT1A1 rs61742753 16 1,614,147 3 4.3E-05
rs887829 2 234,668,570 5 0.0E+00 UGT1A1 rs114221795 20 42,086,724 2 1.5E-07
rs4148323 2 234,669,144 5 6.6E-03 UGT1A1 rs8132639 21 27,012,154 5 2.7E-06
rs2290189 3 13,677,946 1 1.2E-03 rs16989263 21 33,694,195 2 1.1E-05
rs142626656 8 41,575,677 2 1.8E-07 rs35946782 21 40,763,754 1 1.9E-03

Table 48: Direct bilirubin SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs201703264 1 3428144 2 4.2E-04 rs77620102 8 21986657 2 2.9E-03
rs74066236 1 37919465 2 5.5E-03 rs74062407 12 11083647 2 4.9E-03
rs62106258 2 417167 3 1.2E-70 TMEM18 rs141556486 12 132404616 1 4.3E-05
rs73019479 2 171627219 1 8.6E-03 rs1421085 16 53800954 2 3.0E-262 FTO
rs4685689 3 3886580 3 5.3E-03 rs143242388 16 70380869 1 9.2E-03
rs9843741 3 99568737 2 4.7E-04 rs1060250 16 87874736 4 2.5E-03
rs2871630 3 129372880 1 6.7E-03 rs10405385 19 55856147 1 3.7E-04
rs72976362 3 133567847 1 7.3E-03 rs112799437 19 58609112 2 7.6E-04
rs76693682 5 180482838 2 4.1E-03 rs62224618 22 16057417 2 6.9E-01
rs2229107 7 87138659 2 1.1E-03 rs34379045 22 19511476 3 6.0E-03

Table 49: BMI SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs201823506 1 51,871,568 1 1.4E-03 ORC1 rs35796392 9 129,595,583 2 1.8E-05
rs10019684 4 69,383,874 1 2.5E-03 rs10987622 9 130,133,619 1 2.3E-03
rs142228984 5 32,786,413 1 8.9E-09 rs28407189 15 89,400,680 2 3.0E-135 ACAN
rs148833559 5 172,755,066 2 4.9E-29 rs141308595 15 89,424,870 4 9.2E-30 ACAN
rs41271299 6 19,839,415 1 1.6E-157 rs1362317 16 6,250,379 2 8.3E-05
rs74841643 6 34,163,292 2 3.4E-37 COL11A2 FANCE rs4889238 16 81,151,122 3 2.9E-04
rs9470004 6 35,341,850 1 2.1E-07 FANCE rs202127176 16 88,782,205 1 5.7E-15 ANKRD11 CDK10 CDT1 FANCA GALNS RPL13
Affx-29864875 7 142,331,582 1 4.7E-04 BRAF rs58680048 19 51,870,706 1 1.2E-03
rs112892337 8 135,614,553 1 8.7E-49

Table 50: Height SNPs with SSV > 1% of total SSV.

Chromo- GRCh37 # of Average Near known Chromo- GRCh37 # of Average Near known
SNP -some position CV folds gwas p-val assoc. genes SNP -some position CV folds gwas p-val assoc. genes
rs146534110 6 160,578,069 2 0.0E+00 LPA LPAL2 SLC22A3 rs74617384 6 160,997,118 2 0.0E+00 LPA LPAL2 SLC22A3
rs16891156 6 160,608,804 4 0.0E+00 LPA LPAL2 SLC22A3 rs41272114 6 161,006,077 1 3.0E-209 LPA LPAL2 SLC22A3
rs8177505 6 160,679,656 2 0.0E+00 LPA LPAL2 SLC22A3 rs41272112 6 161,006,105 1 1.4E-31 LPA LPAL2 SLC22A3
rs10080815 6 160,687,412 1 0.0E+00 LPA LPAL2 SLC22A3 rs147936725 6 161,007,619 3 1.3E-13 LPA LPAL2 SLC22A3
rs421913 6 160,742,369 1 1.3E-09 LPA LPAL2 SLC22A3 rs10455872 6 161,010,118 5 0.0E+00 LPA LPAL2 SLC22A3
rs540713 6 160,766,321 3 2.2E-117 LPA LPAL2 SLC22A3 rs41272078 6 161,010,150 2 1.3E-89 LPA LPAL2 SLC22A3
rs3918291 6 160,828,142 2 0.0E+00 LPA LPAL2 SLC22A3 rs140306630 6 161,013,826 3 6.4E-09 LPA LPAL2 SLC22A3
rs12214416 6 160,910,517 1 0.0E+00 LPA LPAL2 SLC22A3 rs73596816 6 161,017,363 5 0.0E+00 LPA LPAL2 SLC22A3
rs72501790 6 160,915,856 3 1.6E-18 LPA LPAL2 SLC22A3 rs41259144 6 161,022,107 2 6.9E-62 LPA LPAL2 SLC22A3
rs41267807 6 160,952,816 1 3.0E-149 LPA LPAL2 SLC22A3 rs143079629 6 161,128,812 1 1.1E-33 LPA LPAL2 SLC22A3
rs3798220 6 160,961,137 5 0.0E+00 LPA LPAL2 SLC22A3 rs4252128 6 161,152,819 3 1.6E-11 LPA LPAL2 SLC22A3
rs116089584 6 160,962,370 1 6.7E-65 LPA LPAL2 SLC22A3 rs4252152 6 161,159,366 5 0.0E+00 LPA LPAL2 SLC22A3
rs7767084 6 160,962,503 1 1.8E-76 LPA LPAL2 SLC22A3

Table 51: Lipoprotein A SNPs with SSV > 1% of total SSV.
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G Predictor variance

G.1 Fraction of variance explained

Figure 27: Fraction of variance explained estimates for BMI and height. Red band is the result from using GCTA.

Figure 28: Fraction of variance explained estimates for lipoprotein A and direct bilirubin. Red band is the result from using
GCTA.
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Figure 29: Fraction of variance explained estimates for diabetes. Red band is the result from using GCTA.

Figure 30: Fraction of variance explained estimates for atrial fibrillation and CAD. Red band is the result from using GCTA.

Figure 31: Fraction of variance explained estimates for breast cancer and hypertension. Red band is the result from using
GCTA.
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Figure 32: Fraction of variance explained estimates for height. Red band is the result from using GCTA.
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G.2 SSV vs total variance

Figure 33: Comparison of SSV to total LASSO predictor variance for asthma and atrial fibrillation.
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Figure 34: Comparison of SSV to total LASSO predictor variance for type 1 and 2 diabetes.

Figure 35: Comparison of SSV to total LASSO predictor variance for CAD and hypertension.
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Figure 36: Comparison of SSV to total LASSO predictor variance for breast cancer and BMI.

Figure 37: Comparison of SSV to total LASSO predictor variance for height and lipoprotein A.
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Figure 38: Comparison of SSV to total LASSO predictor variance for direct bilirubin.
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G.3 Predictor impact regions
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Figure 39: Atrial fibrillation active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls.
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Figure 40: Atrial fibrillation active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size.
Left axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The
right axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number
of cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 41: Coronary artery disease active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left
axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 42: CAD active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis
represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of cases
used in training. All possible controls were used in each fold. While features generally appear consistent across folds, i.e.,
the presence of a bump in the SSV line, the size of the bump varies.
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Figure 43: Breast cancer active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 44: Breast cancer active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left
axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of
cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 45: Type 1 diabetes active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 46: Type 1 diabetes active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size.
Left axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The
right axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number
of cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 47: Type 2 diabetes active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 48: Type 2 diabetes active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size.
Left axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The
right axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number
of cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 49: Hypertension active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controlse
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Figure 50: Hypertension active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left
axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of
cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 51: BMI active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis shows the β
value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis represents
the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The “training” label
represents the number of cases used in training. The first 10 (from the top) training sizes use equal number of cases and
controls. The final training size uses all possible remaining controlse
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Figure 52: BMI active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis
represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of cases
used in training. All possible controls were used in each fold. While features generally appear consistent across folds, i.e.,
the presence of a bump in the SSV line, the size of the bump varies.
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Figure 53: Direct bilirubin active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 54: Direct bilirubin active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left
axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of
cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.
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Figure 55: Height active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis shows the β
value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis represents
the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The “training” label
represents the number of cases used in training. The first 10 (from the top) training sizes use equal number of cases and
controls. The final training size uses all possible remaining controls
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Figure 56: Height active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right axis
represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of cases
used in training. All possible controls were used in each fold. While features generally appear consistent across folds, i.e.,
the presence of a bump in the SSV line, the size of the bump varies.
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Figure 57: Lipoprotein A active SNPs – i.e., SNPs with non-zero β weights– as training size is increased. The left axis
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the cumulative SSV. The
“training” label represents the number of cases used in training. The first 10 (from the top) training sizes use equal number
of cases and controls. The final training size uses all possible remaining controls
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Figure 58: Lipoprotein A active SNPs – i.e., SNPs with non-zero β weights– for 5 CV folds at maximum training size. Left
axis shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. The right
axis represents the single SNP variance (SSV) normalized to the total SSV. The “training” label represents the number of
cases used in training. All possible controls were used in each fold. While features generally appear consistent across folds,
i.e., the presence of a bump in the SSV line, the size of the bump varies.

74

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286870doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286870
http://creativecommons.org/licenses/by-nc/4.0/


Figure 59: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.

Figure 60: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.

Figure 61: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.
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Figure 62: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.

Figure 63: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.
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Figure 64: Sparsity as a function of training size, after keeping SNPs that account for 50% - 99% of SSV.

Figure 65: Fraction of SSV per chromosome for max training and near-max number of cases and equal number of controls.

Figure 66: Fraction of SSV per chromosome for max training and near-max number of cases and equal number of controls.
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Figure 67: Fraction of SSV per chromosome for max training and near-max number of cases and equal number of controls.

Figure 68: Fraction of SSV per chromosome for max training.

Figure 69: Fraction of SSV per chromosome for max training.
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H Odds ratios

Figure 70: Odds ratio for atrial fibrillation and breast cancer.

Figure 71: Odds ratio for hypertension and CAD.
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Figure 72: Odds ratio for type 1 and 2 diabetes.

I Computing details

Figure 73: Time and memory usage as a function of training size for LASSO training.
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Figure 74: CPU utilization as a function of training size for LASSO training.
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