
Castro Leal, et al., “Crop Filling” 

Crop Filling: a pipeline for repairing memory clinic MRI corrupted by partial brain 

coverage 

Gonzalo Castro Leal1, Tim Whitfield2, Janaki Praharaju3, Zuzana Walker2,4, Neil P. 

Oxtoby1 

1UCL Centre for Medical Image Computing, Department of Computer Science, 

University College London, London, UK 

2Division of Psychiatry, University College London, London, UK 

3Princess Alexandra Hospital NHS Trust, Essex, UK 

4Essex Partnership University NHS Foundation Trust, Essex, UK 

Abstract 

Data-driven solutions offer great promise for improving healthcare. However standard 

clinical neuroimaging data is subject to real-world imaging artefacts that can render the 

data unusable for computational research. T1 weighted structural MRI is used in 

research to obtain volumetric measurements from cortical and subcortical brain 

regions. However, clinical radiologists often prioritise T2 weighted or FLAIR scans for 

visual assessment. As such, T1 weighted scans are often acquired but may not be a 

priority. This can result in artefacts such as partial brain coverage being systematically 

present in memory clinic data.  

Here we present a neuroimaging pipeline to ameliorate such situations by filling the 

missing regions with synthetic data. We validate on artificially cropped scans from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), showing that our pipeline largely 

removes the artefact, improving volumetric biomarker accuracy while also retaining 

statistical differences between diagnostic groups. We demonstrate utility by achieving 

diagnostic classification performance comparable to uncorrupted data. This is an 

important contribution towards moving research from the lab into the real world. 

 

Introduction 

Alzheimer’s disease (AD) is a neurodegenerative condition that affects over 9 million 

people in Europe and has a prevalence of 60-80% among the population living with 

dementia around the world [1]. The contemporary approach to characterising AD in 

research settings comprises the assessment of aggregated β-amyloid (A) and 

pathological tau (T), as well as neurodegeneration (N). Non-invasive imaging techniques 

used to assess these have been described under the AT(N) research framework 

proposed by the NIA-AA in 2018 [2]. According to this framework, neurodegeneration is 

best measured by structural magnetic resonance imaging (sMRI), as volumetric 

measurements of brain regions of interest can be accurately obtained from T1 weighted 

(T1w) sequences.  

The development and improvement of semi-automated tools for brain segmentation 

have allowed for quantitative analysis of neurodegeneration using MRI scans from large 

cohorts in a significantly shorter time compared to manual segmentation. This has also 

enabled the analysis of multiple and/or more specific regions of the brain. Some of the 

most popular software implementations include, but are not limited to, FreeSurfer 

(Martinos Center for Biomedical Imaging, Harvard-MIT, Boston;  
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https://surfer.nmr.mgh.harvard.edu/) and FSL (Analysis Group, FMRIB, Oxford, UK; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). One of the features shared between such brain 

segmentation tools is the use of whole brain atlases or templates. For example, 

FreeSurfer uses brain topology to establish the boundaries of cortical regions [3], while 

FSL-FIRST relies on a whole-head registration to the MNI152 space [4]. These tools 

have been used extensively to study AD from different perspectives: for disease 

clustering and prognosis [5-7], to establish the diagnostic utility of different brain regions 

[8-11], and to estimate regional brain atrophy trends/rates during disease progression 

[12, 13]. 

Image data used in semi-automated brain segmentation tools should be carefully 

selected, as different factors can affect the accuracy and reliability of the results. Quality 

controls often include assessment of technical artifacts such as head coverage, 

radiofrequency noise, signal inhomogeneity, and susceptibility, as well as motion 

artifacts like blurring and ringing [14]. Such technical artifacts are more common in real-

world data than in the highly controlled clinical research studies typically leveraged by 

researchers to develop new quantitative methods for neuroimage analysis. Among these 

factors, partial brain coverage was by far the most prevalent one encountered in the 

CODEC (https://ucl-codec.github.io) dataset of routinely collected data from the Essex 

Memory Clinic, near London in the United Kingdom [15]. This was due to scans from the 

memory clinic prioritising visual ratings on T2-weighted MRI, with the T1w scans field of 

view (FOV) reduced due to time efficiency considerations. 

Here we report on our investigation into cropping-induced artefacts in T1w sMRI 

volumetric measurements obtained from FreeSurfer and our proposed and validated 

solution that enables real-world memory clinic data to be used for quantitative research 

and development. The paper is structured as follows. The following section describes 

the data we analysed, our new crop-filling pipeline, and our experimental design 

including the statistical methodology used to assess the pipeline. In the results section 

we discuss our findings, focusing on the most affected regions in the early stages of AD, 

and a group analysis across all affected regions. In the discussion we summarise the 

key results and present limitations and future work. The final section closes with a 

conclusion and outlook.  

 

Materials and Methods 

Participants were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 
https://adni.loni.usc.edu/) observational research study, and the CODEC dataset was 
used to inform the cropping artefact and the clinical scenario. The ADNI sample included 
all participants having both a T1w and T2w 3D 1.5T MRI scan at the baseline visit, which 
included 173 cognitively normal (CN); 262 with Mild Cognitive Impairment (MCI); and 
114 diagnosed with probable AD dementia. The T1w and T2w MRI scans had resolutions 
of 1x1x1.25 mm and 1x1x3 mm, respectively. The CODEC sample comprises real-world 
neuroimaging and clinical data, including neurocognitive test scores. The 3D MRI 
acquisitions are T1w (1x1x1 mm), T2w (0.5x0.5x5 mm) and FLAIR (0.5x0.5x5 to 
0.9x0.9x6 mm) scans. The FOV of T1w sequences is 120x256x224 mm. The ADNI data 
were pre-processed to resemble the CODEC memory clinic data, which included 
artificially cropping the T1w scans to a lateral FOV of 120 mm and down-sampling the 
T2w scans to have an axial slice thickness of 5 mm. Some demographics of included 
ADNI participants are summarized in Table 1. 
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Table 1: Participant demographics from ADNI. 

 CN MCI AD 

N (Female) 180 (89) 274 (108) 123 (58) 

Age (Mean ± STD) 75.34 ± 4.87 74.19 ± 7.07 74.43 ± 7.74 

MMSE (Mean ± STD) 29.1 ± 1.0 27 ± 1.80 23.13 ± 2.10 

Experiments. The proposed pipeline flow-chart is displayed in Figure 1. It fills a cropped 

T1w MRI with voxels synthesized from a T2w sMRI using FreeSurfer’s ‘SynthSR’ and 

‘SynthSR Hyperfine’ tools [16, 17]. Both tools output synthetic T1w MPRAGE 1mm 

isotropic scans from a given input of any contrast or spatial resolution. The former could 

use a T2w or FLAIR scan while the later uses the combination of a T1w plus a T2w to 

give a more refined output.  In the process of filling the missing data, registration and 

resampling are often needed. The “Registration” steps use FreeSurfer’s 

‘mri_robust_registration’ [18]. “Filling” involves resampling synthetic images to the 

cropped scan spatial resolution and adjusting shape, prior to filling the edges of the 

image with the recovered data. The resampling was performed using FreeSurfer’s 

‘mri_convert’ tool. 

All images were then processed with ‘recon-all’ [19-27] from FreeSurfer version 7.1.1 

(https://surfer.nmr.mgh.harvard.edu/fswiki/rel7downloads). This pipeline involves 

motion, intensity and bias field correction, skull stripping, volumetric labelling and 

registration, grey/white matter segmentation and registration to predefined atlases. All 

scans considered for this study had passed a quality check performed by ADNI when 

analysed with previous versions of FreeSurfer, so no further visual inspection for 

segmentation errors was performed. The volumetric measurements of the cortical 

regions, defined by the Desikan-Killiany atlas [3] stored in the aparc.stats file, and 

subcortical structures, from the aseg.stats file, were compared. To reduce dimensionality 

in the analysis, cortical segmentations were grouped into their respective cortical lobes 

according to the Klein and Tourville [28] description. 

Statistical Analysis. Correlation, bias and statistical tests were used to evaluate 

regional brain volumes obtained from cropped, crop-filled and hyperfine synthetic (SRH) 

MRI volumes against the ground truth volumes from unprocessed (the original ADNI 

images). Correlation was assessed as r2 where r is the Pearson’s coefficient. Bias is 

reported as mean percentage error. Pipeline performance was also assessed using 

statistical tests for group differences both within and between diagnostic groups — to 

ensure that disease signal was not affected by the artefact removal process. 
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Student’s t-test was used for intra-group comparisons (original vs processed within 

CN/MCI/AD respectively). Welch’s t-test was used for the comparison of original CN vs 

processed MCI/AD groups. We controlled for age, sex, and head size (intracranial 

volume) in the statistical tests using robust linear models. 

Classification Analysis. We also investigated the influence of cropping (and filling) on 

an example clinical application of interest: classification of diagnostic groups using 

regional brain volumes in Support Vector Machines (SVM) [29]. ANOVA was used to find 

the best combination of features for each classification task: CN vs AD, CN vs MCI and 

 

Figure 1: Filling pipeline, depicting every step. “T2ds” is the down-sampled T2w scan, “T1 cropped” is the 

artificially cropped T1w scan, “SRT2” is the synthetic image obtained from ‘SynthSR’, “SRT2reg” is the SRT2 

image registered to the T1 cropped, “Filled_V1” is the first filled image obtained by filling the missing data 

in the T1 cropped scan with the SRT2reg image, “SRH” is the synthetic image obtained from ‘Hyperfine 

SynthSR’, “Filled” is the final result from the pipeline. 

 

   

(Original T1w) (T1 cropped) (Filled) 

  

(SRT2) (SRH) 
Figure 2: The original (Original T1w), artificially cropped (T1 cropped) and filled (Filled) scans in the top row. The 

synthetic T1w image (SRT2) obtained from only the T2w scan with ‘SynthSR’, and the hyperfine synthetic one 

(SRH) from ‘Hyperfine SR’ in the bottom row. 
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MCI vs AD. The best combination of parameters (kernel: linear, polynomial, or radial 

basis function [RBF]; gamma, C, degree, and nu) was evaluated through Bayesian 

Optimization. Repeated 10-fold cross-validation was used to evaluate classification 

performance with training performed on ground truth data and testing on cropped, filled 

and ground truth data. Both AUC and balanced accuracy are used as metrics for 

performance comparison.  

 

Results 

Figure 3 shows cropping severity for regions that lost on average more than 3% of 

volume. The reduction in the FOV affected the left lobe (orange box plots) slightly more 

than the right (blue) in the middle temporal region for all diagnostic groups and the 

superior temporal region for CN and MCI groups (all p values < 0.05, Student’s t-test). 

 

Figure 3: Cropping severity in affected regions. Box plots of the remaining percentage of volume in cropped T1w 

sMRI across diagnostic groups. Left hemisphere (orange) and right hemisphere (blue). 

The results of correlation and bias within diagnostic groups are summarized in Figure 4 

for cropped, filled and synthetic scans. Only three AD-specific regions of interest are 

displayed (ventricles, temporal lobes, and hippocampus), in addition to the combined 

metrics from cortical and subcortical structures. Fully synthetic images had the worst 

results overall, except in the temporal lobes (cropped images were worst), with filled 

images consistently showing high correlation and low bias. 
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Figure 4: Bias and correlation plotted as value ± standard deviation. 

The statistical differences between original and processed scans are depicted visually in 

Figure 5 and Figure 6. Figure 5 shows that crop-filling (right) almost completely 

recovers ground truth volumes affected by cropping (left), in each diagnostic group. 

Figure 6 shows that regional disease signal (CN vs AD and CN vs MCI) corrupted due 

to cropping (1st and 3rd rows) is almost completely recovered by our crop-filling pipeline 

(2nd and 4th rows).  

 

Figure 5: Brain-painter [30] outputs displaying the regions with a p-value < 0.05 in red as a result of the t-test 
performed between original data and cropped/filled data. Looking at the last four rows, from top to bottom, the 

odd ones include the right hemisphere and, the even ones the left. 
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Figure 6: Brain-painter [30] outputs highlighting the loss (gain) of significant difference in regions of the brain that 
are (are not) supposed to be significantly different according to t-test performed between CN and AD/MCI original 

data. Red indicates a severe change, while yellow indicates a milder alteration. There is some asymmetry. 

Table 2 shows AUC and balanced accuracy for each classification task (CN vs AD, CN 

vs MCI and MCI vs AD) using original, cropped, and filled data. Cropping reduced clinical 

classification performance to the level of random guessing, and our crop filling pipeline 

almost completely repairs this. Feature selection (see Methods) chose a unique 

combination of regional volumes for each classification task. CN and MCI were best 

separated by using volumetric measurements of left entorhinal cortex, bilateral 

hippocampus, and bilateral amygdala. CN and AD subjects were best separated by using 

left inferotemporal, left entorhinal, right middle temporal cortexes, bilateral hippocampus, 

and bilateral amygdala. MCI and AD subjects are best separated by using bilateral 

inferotemporal, right fusiform gyrus, right hippocampus, and right amygdala. These 

findings align well with what is described about the progression of AD according to 

Braak’s stages [31], with earlier stages (CN vs MCI) involving the entorhinal cortex and 

middle to late stages (MCI vs AD) involving the fusiform gyrus and other temporal regions 

(inferior, middle and superior).  

Table 2: AUC and Balanced Accuracy for each of the classification tasks on the different volumetric data. 

 Data AUC Balanced Acc. 

CN vs MCI 

Original 0.80 ± 0.06 0.71 ± 0.06 

Filled 0.78 ± 0.06 0.70 ± 0.06 

Cropped 0.54 ± 0.04 0.52 ± 0.08 

CN vs AD 

Original 0.93 ± 0.04 0.88 ± 0.06 

Filled 0.93 ± 0.05 0.87 ± 0.07 

Cropped 0.55 ± 0.10 0.54 ± 0.09 

MCI vs AD 

Original 0.67 ± 0.10 0.62 ± 0.07 

Filled 0.67 ± 0.11 0.60 ± 0.06 

Cropped 0.50 ± 0.10 0.50 ± 0.06 
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Discussion and Limitations 

This work focussed on developing a pipeline that can solve the systematic reduction in 

the FOV of T1w MRI scans (“cropping”) seen in real-world data from a memory clinic in 

the UK. This was motivated by allowing such data to be used in quantitative research 

and development, which is critical for addressing the current lack of ethnic and 

sociodemographic diversity [32, 33] in the large neuroimaging data sets such as ADNI 

that are currently driving innovations including data-driven disease progression 

modelling [34, 35]. The cropping issue is essentially a missing data problem, and thus 

the approach implemented was to recover the data in a sensible way.  

Our experiments focussed on recovering image-derived features in a routinely collected 

imaging modality relevant to Alzheimer’s disease progression modelling, i.e., regional 

brain volumes from T1w MRI. To validate the proposed pipeline, we used ADNI data as 

ground truth and artificially cropped T1w sMRI and down-sampled T2w MRI to mimic the 

real-world data. The method made use of other FreeSurfer tools, 

‘mri_robust_registration’ and ‘SynthSR’, to estimate the missing data from both scan 

modalities and fill-in the gaps to obtain a “filled” version of the original scan. Original, 

cropped and filled scans were then processed with FreeSurfer ‘recon-all’ tool, and the 

results were analysed. 

The loss of FOV mostly affected a few cortical regions from the temporal and parietal 

lobes, with the middle temporal cropped by an average of 24% and 28% in the right and 

left hemispheres, respectively. In general, the left hemisphere was significantly more 

cropped than the right. This could be specific to the ADNI scanning protocol and 

deserves further investigation. As might be expected in a neurodegenerative disease, 

the percentage of tissue preserved increased with disease severity from CN to MCI to 

AD groups. 

Remarkably, FreeSurfer-estimated volumes of subcortical structures were also affected 

by the cropping of the cortical regions. This might be due to FreeSurfer’s use of the whole 

brain when parcellating all regions using recon-all. The average bias and correlation for 

estimated subcortical volumes were comparable between cropped and filled scans, but 

the variance in bias was significantly higher in cropped scans, showing that crop-filling 

can reduce this source of variation that would likely confound quantitative statistical 

analyses of disease progression. 

Our results show that the crop filling pipeline almost completely recovers artifact-

corrupted disease signal. For example, cropping removes group differences in regional 

brain volumes between diagnostic groups (e.g., frontal lobe grey matter volume CN vs 

MCI uncropped), or introduces statistically significant group differences where they are 

known not to exist (e.g., cingulate grey matter volume MCI vs AD uncropped). 

For practical demonstration of how crop-filling can help with statistical analyses of 

disease progression in real world data, we performed classification experiments using 

support vector machines. Our results showed that data from cropped scans severely 

reduced classification performance to little better than random guessing of diagnosis, 

whereas crop-filled data matches ground truth data performance (in terms of AUC and 

balanced accuracy).  

Our study has some limitations that open avenues for important future work in training 

disease progression models for real-world applications in dementia. Firstly, there might 

exist other tools for performing steps in our pipeline that could improve results, including 

emerging deep-learning methods for robust registration (MONAI – https://monai.io/) and 
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replacing FreeSurfer’s ‘SynthSR’ tool with an alternative image synthesiser such as 

DANI-Net [36]. Secondly, different models/methods of assessing disease progression 

might require alternative performance metrics — for example, structural similarity metrics 

might be more appropriate for voxel-wise analyses. Third, the imperfect matching of 

ADNI MRI protocols to the real-world data might confound our results (although we don’t 

think so), so future work will explore using real-world data in otherwise unchanged 

experiments (artificial cropping, etc.) once the reduced FOV has been corrected in the 

hospital protocol. This would also address the possibility that the ADNI research data 

may have a higher SNR than real-world data. Fourth, image synthesis may benefit from 

adding other imaging modalities such as FLAIR. 

 

Conclusion 

Motivated by artefacts seen in real-world data, we have presented a new method to 

recover missing voxels from brain MRI having partial coverage (lateral cropping) due to 

a reduced field of view. Our pipeline leverages freely available tools in the FreeSurfer 

software suite and was validated in publicly available data from the ADNI study that was 

artificially cropped to match the observed real-world artefacts. Experimental results show 

that the pipeline recovers the missing data almost completely, and in a manner useful 

for disease progression modelling. Making real world neuroimaging data useable for 

research and development in this manner is an important step towards the goal of 

improving inclusivity and diversity in computational medicine and healthcare.  
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