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Abstract (169 words) 34 

Background: Polymerase chain reaction (PCR) cycle threshold (Ct) values can be used to 35 

estimate the viral burden of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-36 

CoV-2) and predict population-level epidemic trends. We investigated the use of machine 37 

learning (ML) and epidemic transmission modeling based on Ct value distribution for SARS-38 

CoV-2 incidence prediction during an Omicron-predominant period. 39 

Methods: Using simulated data, we developed a ML model to predict the reproductive number 40 

based on Ct value distribution, and validated it on out-of-sample province-level data. We also 41 

developed an epidemiological model and fitted it to province-level data to accurately predict 42 

incidence. 43 

Results: Based on simulated data, the ML model predicted the reproductive number with highest 44 

performance on out-of-sample province-level data. The epidemiological model was validated on 45 

outbreak data, and fitted to province-level data, and accurately predicted incidence.  46 

Conclusions: These modeling approaches can complement traditional surveillance, especially 47 

when diagnostic testing practices change over time. The models can be tailored to different 48 

epidemiological settings and used in real time to guide public health interventions. 49 
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Introduction 55 

SARS-CoV-2 viral burden can be quantitated by the use of polymerase chain reaction (PCR) 56 

cycle threshold (Ct) values, which are inversely proportional to the amount of target viral 57 

sequence present in the patient sample. Although this information is frequently available from 58 

routine molecular methods for the diagnosis of SARS-CoV-2 infection, clinical results are 59 

almost universally reported qualitatively as present or absent due to sources of sampling 60 

variability, lack of inter-test standardization, insufficient supporting clinical correlation data, and 61 

lack of regulatory approval for purposes other than qualitative reporting, all of which limit 62 

interpretation of Ct values for clinical care. Though the use of Ct values to guide individual-level 63 

management is not currently routinely recommended (1, 2), the assessment of aggregated Ct 64 

values at a population level may be useful to help assess early epidemiological transmission 65 

trends to improve epidemic forecasting (3-5), and parallels the concept of measuring community 66 

viral load used for other viruses (6-8). Accurate projection of epidemic trends is critical to 67 

effectively plan public health efforts including healthcare resource allocation. Indeed, an 68 

epidemic in the growth phase is more likely to be associated with high viral load burden at a 69 

population level; conversely, the decline phase of an epidemic is likely to demonstrate lower 70 

viral burden. A modeling approach was previously published to inform epidemic SARS-CoV-2 71 

trajectory based on aggregated Ct value data (3), and supported the usefulness of population-72 

level Ct value analysis. However, SARS-CoV-2 testing practices globally have evolved 73 

substantially during the pandemic, most frequently by restricting testing to symptomatic 74 

individuals, which limits the usefulness of modeling approaches that rely on stable population 75 

sampling strategies. Starting in December 2021 in British Columbia (BC), use of PCR testing 76 

was partially restricted in the context of roll-out of rapid antigen tests, limiting understanding of 77 
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population trends. New tools are needed to estimate incidence in a manner that is independent of 78 

the biases associated with testing guidance. This includes modeling approaches robust to varying 79 

testing guidelines, sample selection strategies and epidemiologic settings, and that account for 80 

other variables that impact viral burden such as variant of concern (VoC) and vaccination status. 81 

The main variants of concern (VoC) described to date have been associated with varying impact 82 

on viral burden, with the Delta and certain Omicron subvariants associated with highest viral 83 

load (9-14). Furthermore, evidence suggests that SARS-CoV-2 vaccination is associated with a 84 

reduction in viral burden, and correspondingly higher Ct values and potentially lower 85 

transmission risk, in individuals who develop post-vaccination infection (14-19). In this study, 86 

we investigated two modeling approaches based on Ct value distribution of asymptomatic 87 

individuals, machine learning and epidemic transmission modeling, to predict SARS-CoV-2 88 

incidence based on province-wide data and an outbreak in a long-term care facility in British 89 

Columbia, Canada. We assessed the novel application of five machine learning models (Lasso, 90 

LGBM, XGBoost, CatBoost, RF), and validated two previously-described epidemic models 91 

(SEIR) (3), to determine the highest performing models across a range of epidemiological 92 

settings to predict SARS-CoV-2 incidence. 93 

 94 

Methods 95 

Study design 96 

Individuals with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection by 97 

nasopharyngeal swab or saline gargle between November 19th 2021 and January 8th 2022 were 98 

included, capturing emergence of Omicron wave in the province. Descriptive analyses of Ct 99 

value distribution included the two main specimen type categories: nasopharyngeal swabs and 100 
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saline gargles, while modeling analyses focused on nasopharyngeal swabs given the higher 101 

diagnostic yield and collection standardization. Analysis was based on province-wide data 102 

incorporating all SARS-CoV-2 diagnostic tests based on the E gene target performed in BC. 103 

Three pandemic phases in BC were considered based on vaccination roll-out and VoC 104 

distribution (Supplemental Table 1). To capture the largest representation of asymptomatic 105 

individuals in BC throughout the pandemic, the study focused on phase 3. These individuals 106 

were tested in the context of occupational screening or pre-travel. The study population sampled 107 

thus represented a heterogeneous mix of vaccinated and unvaccinated individuals, and 108 

predominantly Omicron (BA.1) variant (Figures 1A and 1B). 109 

 110 

Given the importance of population composition in informing model selection, the selected 111 

models were chosen based on several factors including sampling type and frequency, sample 112 

size, and computational complexity. Current models which make use of cross-sectional Ct values 113 

to infer epidemic trajectories (3) rely on random sampling of the population to accurately predict 114 

epidemic trends. However, in the context of symptom-based testing, the distribution of Ct values 115 

is not a complete representation of the infected population. Thus, this study was performed on a 116 

population of asymptomatic individuals as they served as the best proxy for frequent non-117 

symptom-based sampling.  118 

 119 

Testing practices and public health measures 120 

COVID-19 diagnostic testing and laboratory test guidelines changed in BC over the course of the 121 

pandemic, and can be summarized as follows: 1) exposure-based testing (onset of the pandemic), 122 

2) targeted testing (starting March 16, 2020), 3) expanded testing (starting April 9, 2020), 4) 123 
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symptom-based testing (starting April 21, 2020), 5) revised symptom-based testing (starting 124 

December 17, 2020), and 6) High risk/targeted population testing  (increased risk of severe 125 

disease or work in a high-risk setting) (starting January 18, 2021) (20, 21). Thus, asymptomatic 126 

and mildly symptomatic testing was initiated starting in December 2021 with the organized roll-127 

out of rapid antigen tests, which corresponds with the current study. While COVID-19 testing 128 

was initially centralized at the BCCDC Public Health Laboratory (PHL), testing capacity and 129 

data capture reflects results from all provincial testing laboratories which generate E gene Ct 130 

values.  131 

 132 

Laboratory data - SARS-CoV-2 diagnostic testing 133 

SARS-CoV-2 diagnostic testing was performed in laboratories throughout all five health 134 

authorities in BC, and only assays based on the E gene target were included for this study. The 135 

testing strategy and test result interpretation criteria used for the participating laboratories are 136 

described separately (Supplemental Table 2), and included the BCCDC PHL laboratory-137 

developed test (LDT) (22), LightMix SarbecoV E-gene plus EAV control assay (TIB Molbiol, 138 

Berlin, Germany), Alinity m SARS-CoV-2 (Abbott, Chicago, IL), BD SARS-CoV-2 (Becton, 139 

Dickinson and Co., Franklin Lakes, NJ), cobas 6800 and 8800 (Roche Diagnostics, Basel 140 

Switzerland), GeneXpert Xpress SARS-CoV-2 (Cepheid, Sunnyvale, CA), Panther Fusion 141 

(Hologic, San Diego, CA) and Allplex SARS-CoV-2 (Seegene, Seoul, South Korea). For 142 

individuals having undergone repeat SARS-CoV-2 testing within a one-week period, only the 143 

first positive test per person was included.  144 

 145 

Laboratory data - Variant of Concern identification 146 
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The BCCDC Public Health Laboratory  (PHL) continuously monitors for variants of concern 147 

(VOCs), variants of interest (VOIs), and variants under monitoring (VUMs). Various approaches 148 

were used over time including VoC screening and confirmation by whole genome sequencing 149 

(WGS) when applicable at the BCCDC PHL as previously described (22). Testing strategy is 150 

optimized based on available capacity and clinical and public health needs, and changed over the 151 

course of the SARS-CoV-2 pandemic. One such strategy included deployment of in brief, a 152 

subset of samples in the earlier phase of the epidemic (January 2021 to May 2021) was tested by 153 

targeted single nucleotide polymorphism (SNP) quantitative polymerase chain reaction (qPCR) 154 

for VoC screening, followed by confirmation by WGS. From June 2021 onward, sample VoC 155 

status was detected by WGS alone. From September 2021, owing to increased case burden and 156 

limited capacity, there was a transition from WGS of all samples to a subset positive SARS-157 

CoV-2 samples. This subset comprised of targeted surveillance (cases from outbreaks, vaccine 158 

escape, reinfection and travel-related), and representative baseline surveillance. In addition, 159 

100% of positive samples underwent WGS in the first week of each month. Starting November 160 

15 2021 in the context of the Omicron variant emergence, WGS was resumed for all samples. 161 

Owing to the high transmissibility of Omicron and the surge in case load, starting December 21 162 

2021, there was transition from full sequencing to sequencing a subset of representative positive 163 

samples in addition to priority cases (including outbreaks, long-term care, vaccine escape, travel-164 

related, hospitalization)). Full VoC characterization for the province of BC is described 165 

separately (Supplemental Figure 2). 166 

 167 

Vaccination status 168 
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Vaccination status was defined based on the date of vaccine receipt relative to the date of the 169 

sample collection included for the study (Supplemental Figure 3) (23). For primary dose series 170 

all mRNA (Pfizer, Moderna) and viral vector vaccines (AstraZeneca, Janssen) were considered. 171 

For the Janssen vaccine only, fully vaccinated status was defined as having received one dose 14 172 

days or more prior to sample collection. For all other vaccines, Unvaccinated status was defined 173 

as having received no SARS-CoV-2 vaccine, or having received a SARS-CoV-2 vaccine less 174 

than 21 days prior to the sample collection date. Partially vaccinated status was defined as 175 

having received the SARS-CoV-2 vaccine dose 1 greater or equal to 21 days prior to sample 176 

collection, but having received dose 2 less than 14 days prior to the sample collection. Fully 177 

vaccinated status was defined as greater or equal to 14 days since the receipt of dose 2, but 178 

having received dose 3 less than 14 days prior to the sample collection. Cross-over vaccination 179 

was considered in the same category as homologous vaccine schedules.  180 

 181 

Outbreak case study 182 

To further validate the models, a separate analysis was performed using a well-characterized 183 

outbreak in a long-term care facility that occurred in BC.  This outbreak was selected on the 184 

basis of time of occurrence of pre-vaccination roll-out to the general population, large size and 185 

generalizability of the affected population. This outbreak included large-scale asymptomatic 186 

testing. Testing was done weekly until no additional cases were identified within 14 days of the 187 

last exposure. There were 7 rounds of weekly testing at the outbreak facility, all negative 188 

residents and staff were tested for each round. Anyone who developed symptoms was also tested. 189 

The epidemiologic data and curve describing the outbreak are presented separately 190 

(Supplemental Figure 4). As for the main study, analysis was based on SARS-CoV-2 191 
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diagnostic tests based on the E gene target. However, due to missing data in the long-term care 192 

facility data, wherever the E gene target was unavailable the ORF1 gene target was used instead. 193 

 194 

Data sources 195 

Two main data sources were employed for this study: 1) the Provincial Health Laboratory 196 

Viewer and Reporter (PLOVER) database which includes the laboratory diagnostic datasets, and 197 

2) the Provincial Immunization Registry (PIR) dataset which includes vaccination data. The 198 

laboratory datasets house data on SARS-CoV-2 testing (including date of collection, specimen 199 

type, diagnostic quantitative PCR gene target results, VoC screening, and SARS-CoV-2 lineage 200 

based on WGS), and individual-level epidemiological data (including age, sex, patient as well as 201 

ordering physician health authority). Gene target results include Ct values of the E and ORF1 202 

targets, and the internal control RNAseP. The PIR dataset includes individual-level vaccination 203 

data (including number, type, series, dose and date of each vaccine received). Both of these 204 

datasets form the basis of the covariates which inform the ML models in the study. For the 205 

outbreak case study, additional data were directly gathered from public health partners 206 

(Supplemental Figure 4) as these were not otherwise available through provincial datasets. Data 207 

linkages were performed between the laboratory and PIR datasets through a sequential 208 

deterministic linkage based on a minimum of three personal identifiers (personal health number, 209 

last name with first three digits of first name, and date of birth). These linkages were performed 210 

prospectively on a weekly basis, and specimens with unsuccessful linkages were excluded from 211 

the study.  212 

 213 

Data & Code Availability  214 
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The genomic sequencing data are publicly available in GISAID under the submitter British 215 

Columbia Center for Disease Control Public Health Laboratory (BCCDC PHL). The individual 216 

level demographic and epidemiological data can be made accessible following the data 217 

governance and data access policy guidelines (http://www.bccdc.ca/about/accountability/data-218 

access-requests). Code for this study is available (https://github.com/Afraz496/Vital-E-paper). 219 

 220 

Ethics 221 

This research was approved by University of British Columbia Research Ethics (H20-0297 222 

BCC19C-COVID-19 Research). 223 

 224 
Models 225 

Machine learning and epidemic transmission models 226 

This study compared two different approaches for inference, machine learning (ML) and 227 

epidemic transmission modeling, both of which were used to predict the reproductive number 228 

(Rt) to estimate incidence. The first modeling approach was based on a collection of ML 229 

approaches, including Lasso (24), Random Forest (RF), Light Gradient Boosting Modeling 230 

(LGBM), eXtreme Gradient Boosted Modeling (XGBM) and CatBoost. Due to the testing 231 

guidelines which were tailored for mainly symptomatic individuals, and given the absence of 232 

sufficiently-large random samples, analysis was pursued with simulated data instead. Ct data 233 

were generated to simulate a sufficiently large random sample of a population using the 234 

virosolver package (R software, version 4.1.2). This was applied on varying sample sizes (100, 235 

1000 and 10000) on a simulated population of 50,000 individuals. The simulation horizon was 236 

set at 140 calendar days to encompass a typical single COVID-19 wave. These data were used to 237 

create summary statistics of the Ct distribution including mean, median, variance, skewness and 238 
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kurtosis. The trained data was generated from a unique simulation file with a fixed random seed 239 

and three distinct sample sizes, so three models were investigated in this study. Hyperparameter 240 

tuning was performed via a grid search of hyperparameters on each model (Supplemental Table 241 

5).  The best performing model was chosen by finding the optimal set of hyperparameters for 242 

which the Mean squared error (MSE) between the true simulated Rt and Predicted simulated Rt 243 

was minimized. SHapley Additive exPlanation (SHAP) analysis was performed for feature 244 

ranking and importance (25). The second modeling approach was adapted from an existing 245 

methodology (3), and is based on a single epidemic model. The compartmental SEIR model 246 

captures different stages in individual infections (namely Susceptible, Exposed, Infectious and 247 

Recovered). The SEIR model was validated on a patient outbreak facility in BC where point 248 

prevalence testing was done in infrequent intervals. The SEIR model was then fitted to 249 

provincial data from asymptomatic individuals. Modifications to the viral kinetics for the SEIR 250 

model were applied to these provincial data to account for the specific nature of the Omicron 251 

(BA.1) variant.   252 

 253 

Results 254 

Cohort description 255 

During the study period, a total of 331,785 SARS-CoV-2 tests were performed in BC, of which 256 

79,443 were positive. Restricting these to the first positive test per person, there were 71,642 257 

included in the study (Figures 1A and 1B). Of these, 35,369 were nasopharyngeal specimens 258 

and 36,108 were saline gargle specimens (Table 1 and Figure 2). The cohort was predominantly 259 

composed of adults aged 18-59 years (72.2%), followed by adults aged 60 years and above 260 

(12.1%), and children 0-17 years (15.7%). Over half the cases resided in two of the five health 261 

authorities accounting for 35.9% and 30.9%, respectively. The Omicron (BA.1) variant 262 
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predominated throughout the study (Table 1 and Supplemental Figure 2). By the end of the 263 

study period, a total of 18,459 (27.3%) were unvaccinated, 1,540 (2.3%) had received 1 dose of 264 

vaccine, and 47,580 (70%) were fully vaccinated. 265 

 266 

First modeling approach: machine learning 267 

The fitted ML models were applied to out-of-sample Ct data from the simulated Ct values 268 

(Figure 3). With increasing sample sizes, the MSE across each model reduced by 82% showing 269 

an increased ability in higher moments (mean, median, variance, skewness and kurtosis) of the 270 

Ct distribution to predict epidemic trends. Random Forest showed the largest improvement in 271 

MSE performance while demonstrating lowest performance in smaller sample size. Besides the 272 

smallest sample size, all models generally perform similarly across an increased sample size 273 

(Figure 3). For the largest sample size, apart from Lasso all other models have a much tighter 274 

IQR and smaller MSE median score (at around 0.03). Across all sample sizes, the variance of the 275 

Ct distribution was the top ranking feature (Supplemental Figure 5).  276 

 277 

Second modeling approach: epidemic transmission models 278 

SEIR 279 

The most precise results were observed with sampling from a total of five horizons. The model 280 

posteriors indicated an incidence peak from December 27 2021 to January 1 2022, which 281 

overlapped with the observed peak of reported cases in the province (Figure 4). Similarly, the 282 

exponential growth phase coincided with the increase in reported cases from our cohort from 283 

December 20 2021 to December 27 2021, and the decline of the incidence coincided with the 284 

decline in cohort cases from January 1 2022 to January 5 2022. The posterior predictive Ct 285 
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distribution also closely matched the observed Ct distribution on each of the time horizons, 286 

supporting accurate incidence projection independent of biases of testing guidance. 287 

Outbreak case study 288 

This outbreak occurred in a long-term care facility, and resulted in a total of 156 individuals (93 289 

residents and 63 staff) infected with SARS-CoV-2 (Supplemental Figure 4). Of these 290 

individuals, 58.1% of infections were asymptomatic in the residents, whereas 9.5% were 291 

asymptomatic within the staff. There were 26 (28.0%) deaths in the residents group, and no 292 

deaths among the staff. A multiple cross-section SEIR model was fitted to the outbreak data, and 293 

showed a peak in incidence on the 12th day of the outbreak which preceded by two days the 294 

observed peak at the outbreak facility (Figure 5). The real incidence fell within the 95% credible 295 

interval of the predicted MCMC chains of the SEIR model. The model also accurately predicted 296 

the decline in cases by the 20th day of the outbreak (Figure 5).  297 

 298 

Discussion 299 

In this study, we demonstrated the utility of two distinct modeling approaches based on 300 

aggregated cycle threshold values, machine learning and epidemic transmission modeling, to 301 

predict epidemic trends across varying sampled patient populations, random, and targeted and 302 

non-random testing. Based on out-of-sample mean squared error (MSE) change in the 303 

reproduction number between the true and predicted values, the ML model performed best on 304 

randomly-sampled province-level data. Within epidemic transmission models, the SEIR model 305 

performed highest with randomly-sampled outbreak data. Taken together, these approaches 306 

accurately predicted epidemic transmission dynamics at the outbreak case study level, and at a 307 

provincial level for the province of BC, Canada. Early in the pandemic, SARS-CoV-2 diagnostic 308 
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molecular testing was more largely based on random sampling which, despite possible 309 

underascertainment due to lack in testing access, could be used to estimate full case counts to 310 

monitor and predict transmission dynamics. As testing needs overwhelmed laboratory capacity 311 

with increasing case burden and the emergence of variants of concern, molecular testing practice 312 

recommendations shifted to testing individuals who were symptomatic and/or with a minimal 313 

illness severity, resulting in sampling of a selected population. These changes in testing 314 

indications, foremost predicated on symptom-based testing, led to substantially more limited 315 

capacity to assess case counts for epidemic monitoring, generating a critical unmet need for other 316 

approaches to infer epidemic trends to support clinical and public health planning.  317 

 318 

This study comprehensively investigated varying sampling types and modeling approaches, 319 

drawing on both previously-published work and description of the novel application of machine 320 

learning modeling for SARS-CoV-2 transmission dynamics prediction. Our work identified that 321 

diagnostic testing indication, sampling type, and the individual population tested are critical 322 

factors, and that model selection must be tailored to the epidemiological circumstances of 323 

testing. More specifically, random vs targeted or non-random sampling must be accounted for to 324 

ensure appropriate model selection, as SEIR modeling was only suitable for random sampling. 325 

For example, performance of the SEIR model in this study was robust across sample sizes and 326 

the long-term care facility dataset. Results from this modeling approach demonstrated a slight 327 

difference in incidence peak timing and amplitude. This is likely explained due to the lag time 328 

between onset of the infectious period and reporting given that site-wide facility testing was 329 

performed at set time periods rather than on a daily basis, and represents a pragmatic approach to 330 

real-world settings. Thus, this approach is well suited for long-term care or assisted living or 331 
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community-living facility outbreak investigations such as shelters, or within small hospital 332 

systems. In contrast, the novel application of machine learning approaches described in this 333 

study performed the best with large datasets (>1,000 COVID-19 positive cases), making this the 334 

approach of choice for large population settings such as at the province, state or large hospital 335 

network system level. Indeed, machine learning models can offer greater flexibility by 336 

incorporating different summary statistics and other data as features, fully harnessing the 337 

potential of larger datasets.  338 

 339 

Importantly, all approaches described in this study could predict future trends within a one to 340 

four-week timeframe, demonstrating utility for timely prediction of SARS-CoV-2 transmission 341 

dynamics that could be harnessed to help inform future outbreak resource allocation and 342 

decision-making. Thus, use of these models can be used to support critical decision-making 343 

across several settings, including hospitals, long-term care facilities, public health departments 344 

and others, to help inform planning of resource allocation, vaccination efforts, and isolation 345 

practices. More specifically, this approach lays the groundwork for a sentinel surveillance 346 

monitoring strategy that could be automated and alert appropriate authorities at pre-determined 347 

signals of predicted incidence changes, and may be expanded to other infections for which 348 

testing is widespread and predictive tools are needed. 349 

 350 

This study focused on a time period of Omicron (BA.1) predominance, and revealed that despite 351 

its shorter incubation period compared to other variants of concern, the Ct distribution of this 352 

variant could successfully be described through an SEIR compartmental model and machine 353 

learning approaches. Furthermore, in the context of a sampled population with heterogeneous 354 
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vaccination status, the current study demonstrated accurate prediction of incidence based on 355 

overall Ct distribution and viral kinetics without incorporating individual-level vaccination 356 

status. Further work is necessary to study the impact of vaccination status on accuracy of 357 

incidence prediction. 358 

 359 

The main strength of this study is that it provides a comprehensive modeling toolkit that can be 360 

leveraged across population and sampling settings, and that may incorporate covariates such as 361 

variant of concern and vaccination status. This approach could predict transmission dynamics in 362 

a way that could not be performed through case count analysis from biased sampling as was 363 

occurring in the province of BC. This modeling is also advantageous as it can be performed in 364 

real-time, rather than rely on monitoring of clinical indicators of severity such as hospitalization 365 

and intensive care unit admission which considerably lag behind true incidence rise. A limitation 366 

of previous studies is the use of a single or limited methodology for analysis that may perform 367 

well in a specific setting such as long-term care facilities, but lacked flexibility and predictive 368 

performance for generalizability to larger settings and in the context of changing testing practices 369 

(3). Our body of work filled this gap and further presented a methodology to incorporate 370 

assessment of variant of concern and vaccination status, two important potential confounders on 371 

Ct value distribution, although these characteristics were noted to be less important than the 372 

moments of infection (mean, median, variance, skewness and kurtosis of the aggregated Ct 373 

distribution). Additional strengths of this study also include the independent assessment of the 374 

models in a long-term care facility outbreak to validate the previously-published models (3). 375 

Furthermore, the main analysis drew on a provincial dataset linking laboratory data and 376 

vaccination status in real-time, thus leveraging the design for the highest possible public health 377 
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uptake and impact. Taken together, this approach lays the framework for expansion to use for 378 

other pathogens for which surveillance needs are critical including other respiratory pathogens 379 

and monkeypox. Indeed, further work may also build on this approach and further integrate 380 

complementary datasets including wastewater Ct distribution to further enhance prediction 381 

ability. 382 

 383 

However, there are several limitations. Firstly, the methodology is based on the assumption of 384 

random or random sampling which is challenging to confirm. Indeed, testing practices were 385 

modified following clinical and public health guidance of the province, and may have led to bias 386 

in sampling. Restriction of the study population to the asymptomatic subgroup consisting of 387 

travelers and occupational health testing led to greater confidence in the employed sampling 388 

strategy tested and the validity of this assumption. The need for random sampling remains a 389 

limitation for broader uptake of this approach, though it may be more attainable in the context of 390 

outbreak investigation where full populations are sampled at once. Nonetheless, even when a full 391 

population is sampled there may be specific population-level characteristics that need to be 392 

accounted for. One such limitation in the current work is that although the long-term care 393 

environment provides more a consistent testing environment, it tends to be a highly vaccinated 394 

population which may introduce bias. Finally, this study aggregated Ct-level data across multiple 395 

laboratories and assays, which may not adequately capture intra- and inter-assay variation.  396 

 397 

In summary, this study proposes a comprehensive suite of modeling strategies based on 398 

population-level Ct values to accurately predict SARS-CoV-2 transmission dynamics across 399 

epidemiological settings. These modeling approaches can be used in real time to guide clinical 400 
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and public health interventions. Such tools are needed to estimate incidence in a manner that is 401 

independent of the biases associated with testing guidance, and to complement traditional 402 

surveillance based on case numbers or clinical indicators.  Further work will be needed to expand 403 

validation of the machine learning models based on larger datasets and different settings with 404 

newly-emerging variants, to assess real-time predictive power for direct clinical and public 405 

health impact. 406 

 407 
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Table 1. Epidemiological, clinical and laboratory data of the cohort of asymptomatic individuals 517 

tested during the test period of the study. 518 

 519 
Group Subgroup Phase 3 

Testing 

First positives 71642 

Negatives 252342 

Repeats 7801 

Specimen type 

NP 35369 

SG 36108 

Other 165 

No E gene result 21068 

Age (years) 

0-4 1963 

5-18 9161 

19-39 31914 

40-59 19864 

60-79 7453 

80+ 1279 

Sex 

Male 33415 

Female 37653 

Unknown 574 

Patient health authority 

1 31841 

2 8951 

3 3635 
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4 17202 

5 9752 

Unknown 261 

Vaccination status** 

Unvaccinated 18459 

1 dose 1540 

Fully vaccinated 47580 

Unknown 4063 

VoC lineage 

Alpha 0 

Beta 0 

Delta 9049 

Gamma 0 

Omicron (BA.1) 12945 

Unknown 28580 

*For all group variables except testing, data presented as first positive result per person 520 
**Does not include individuals who received ≥3 doses of vaccine 521 
 522 
NP: nasopharyngeal; SG: saline gargle; VoC: variant of concern  523 
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Table 2. SEIR and ML model comparisons for SARS-CoV-2 incidence prediction 524 
 525 

Model SEIR ML 

Sampling type Random sampling 

Number of COVID-positive samples Small (~30) Large (>1000) 

Sampling frequency Single/multiple 
snapshots 

Daily snapshots 

Flexibility: 
 
 

i) Modeling of 
Transmission 

i) Fixed in time 
 

i) Time-independent 
 

ii) Ability to add in 
multiple predictors 

ii) Unable to 
incorporate multiple 

predictors 

ii) Allows 
incorporation of 

various predictors 
and is flexible in their 

representation 

Scalability Single outbreak 
setting 

Population level 

Computational Complexity* Low Low-moderate 

Predictive power requirements Good in single setting 
with well-mixed 

population and stable 
contact 

behavior/infection 
control 

No requirements 
other than sufficient 
sample size for Ct 

summary statistics by 
snapshot 

Additional Sampling Requirements None Ordered in time, 
restricted to fixed 
interval sampling 

* Relative computational complexity based on assumed sample size provided in scalability row 526 

COVID-19: coronavirus disease 2019; SEIR: susceptible-exposed-infected-recovered; ML: 527 
machine learning; Ct: cycle threshold 528 

  529 
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A.  530 

 531 
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B. 533 

 534 

 535 

Figure 1. Overall design (A) and flowchart (B) of the study. 536 

BC: British Columbia; E gene: Envelope gene; SARS-CoV-2: Nov: November; Rt: reproductive 537 

number; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2 538 
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A. 540 

 541 

B. 542 

 543 

Figure 2. Violin plots demonstrating the cycle threshold value distribution (A) and absolute 544 

number of cases of confirmed SARS-CoV-2 infection (B) in British Columbia across different 545 

time points of the study period.  546 

Ct. e: Envelope (E) gene cycle threshold value; SARS-CoV-2: SARS-CoV-2: severe acute 547 

respiratory syndrome coronavirus type 2 548 

 549 
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 551 

Figure 3. Boxplot representation of MSE scores across models on out-of-sample simulated cycle 552 

threshold data. 553 

LGBM: Light Gradient Boosting Model; MSE: Mean squared error; XGBM: eXtreme Gradient 554 

Boosting Model, ML: Machine Learning 555 
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 557 

 558 

Figure 4. Overall population modeling findings. A multiple-cross section SEIR model was fitted 559 

to the overall population-level data (I), and showed an incidence peak from December 27 2021 to 560 

January 1 2022, which overlapped with the observed peak of reported cases in the province. The 561 

Monte Carlo chain model-predicted incidence curve is represented (black lines), and was 562 

overlaid with the reported number of confirmed SARS-CoV-2-positive (yellow bars) cases. 563 

Violin plots of the viral kinetic parameters for the SEIR model are presented (II). Three unique 564 

time horizons were chosen, each of which is depicted by a different color. The MCMC approach 565 

searches over the viral kinetic parameters presented above, and is based on prior values 566 

described separately (Supplemental Table 6). To align with the described Omicron viral 567 

kinetics, the incubation period was fixed and set at three days, and the infectious viral kinetic 568 
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parameter was fixed. An upper bound of I0 was set at 0.100. The fit to detectable cycle threshold 569 

distribution and the fit to proportion variable are presented over different time points (A).  570 

 571 

Ct: cycle threshold; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2; SEIR: 572 

susceptible-exposed-infected-recovered 573 

 574 

Figure 5. Long-term care facility outbreak investigation modeling findings. a multiple-cross 575 

section SEIR model was fitted to the outbreak data (I), and showed a peak in incidence on the 576 
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12th day of the outbreak which preceded by two days the observed peak at the outbreak facility. 577 

The population included in this outbreak investigation was sampled at three pre-determined time 578 

points (dashed red lines). The Monte Carlo chain model-predicted incidence curve is represented 579 

by black lines, and was overlaid with the reported number of confirmed SARS-CoV-2-positive 580 

cases in this outbreak setting (yellow bars). Violin plots of the viral kinetic parameters for the 581 

SEIR model are also presented in the outbreak case study (II). 582 

 583 

Ct: cycle threshold; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2; SEIR: 584 

susceptible-exposed-infected-recovered 585 

  586 
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Supplemental Table 1. Vaccination phase definitions used for the study 587 

SARS-
CoV-2 
phase 

Vaccination 
Phase* 

Wave** Target population 

Phase 1 Phase 1 Waves 1, 2, 3
Dec 14 2020 
- Mar 7 2021 

Residents, staff and essential visitors to long-term 
care settings; individuals assessed and awaiting a 
long-term care placement; health care workers 

providing care for COVID-19 patients; and remote and 
isolated Indigenous communities.  

Phase 2 3 
Mar 8 2021 - 

Apr 2021 

Individuals age ≥80; Indigenous peoples age ≥65 and 
Indigenous Elders; Indigenous communities; hospital 
staff, community general practitioners and medical 

specialists; vulnerable populations in select 
congregate settings; and staff in community home 

support and nursing services for seniors. 

Phase 3 3 
Apr 15 2021 - 
May 10 2021 

Individuals aged 60-79 years, Indigenous peoples 
aged 18-64 and people aged 16-74 who are clinically 

extremely vulnerable. 

Phase 2.1 Phase 4 Waves 3, 4 
May 11 

2021- Jul 17 
2021  

  

Everyone aged ≥12 years-old. From September 2021, 
third vaccine dose available for people who are 

clinically extremely vulnerable 

Phase 2.2 Phase 4 4 
Jul 18 2021 - 
Nov 18 2021 

Phase 3* Phase 5 4 
Nov 19 2021 
- Jan 8 2022 

Everyone aged ≥5 years-old. From the end of 
November 2021, children aged 5-11 are eligible for 
vaccination. Everyone aged ≥18 and invited to get a 

‘booster’ (third vaccine dose) within 6-8 months after 
receipt of their second dose. 

*The current study included Phase 3 only 588 
**Vaccination phases were defined by vaccine eligibility of the target populations in BC, and are 589 
detailed separately (21) 590 
 591 
SARS-CoV-2: SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2592 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.23286837doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286837
http://creativecommons.org/licenses/by/4.0/


Supplemental Table 2. SARS-CoV-2 diagnostic testing strategy based on the envelope (E) gene target and test result interpretation 593 

criteria used for the participating laboratories  594 

Type of assay Assay used 
(manufacturer) 

Extraction PCR Ct 
Interpretation 

criteria 

Laboratory-developed 

 
BCCDC PHL LDT 

MagMax ABI 
7500 

Ct threshold for 
positivity: 38 

MagNa 
Pure 24 

ABI 
7500 

Commercial 

LightMix SarbecoV E-gene plus EAV control 
assay (TIB Molbiol) 

MagNA 
Pure 

Compact or 
MagNA 
Pure 96 

LightCyc
ler 480 

 
Manufacturer 
recommended 

threshold 

Allplex SARS-CoV-2 assay (Seegene) STARlet 
 

CFX 96 

Cobas 6800 and 8800 SARS-CoV-2 Test (Roche Molecular Diagnostics) 
Xpert Xpress SARS-CoV-2 (Cepheid) 
BD MAX SARS-CoV-2 (BD) 
Respiratory Panel 2.1 (BioFire) 
Panther Fusion (Hologic) 

 595 

BCCDC PHL: British Columbia Centre for Disease Control Public Health Laboratory; Ct: cycle threshold; FHA: Fraser Health 596 
Authority; IHA: Interior Health Authority; LDT: laboratory-developed test; NHA: Northern Health Authority; PCR: polymerase chain 597 
reaction; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2; SPH: St. Paul’s Hospital; VCH: Vancouver Coastal 598 
Health.  599 
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Supplemental Table 3. Epidemiological, clinical and laboratory data of the earlier British Columbia SARS-CoV-2 pandemic phases 600 

Group Subgroup 

Phase 1 
(Dec 14 2020 

- May 10 
2021) 

Phase 2.1 
(May 11 2021 

- July 17 
2021) 

Phase 2.2 
(July 18 2021 

- Nov 18 
2021) 

Testing 

Positives 55291 6529 31613 

Negatives 815993 190679 599953 

Repeats 53740 5263 18758 

No E gene Result 1623 257 1611 

Age 

0-4 4203 712 3200 

5-18 23586 2849 12866 

19-39 15437 1709 8173 

40-59 7950 821 4366 

60-79 2150 181 1391 

80+ 6183 2312 47 

Sex 
 

Male 29102 3492 16357 

Female 25729 2969 14573 

Unknown 460 68 683 
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Patient health 
authority 

1 31045 3387 7851 

2 4233 987 9761 

3 1922 275 4317 

4 337 45 230 

5 15370 1680 6065 

Vaccination 
status 

Unknown 2384 155 2389 

1 dose 100 99 9665 

Fully 
vaccinated 

16293 2462 16174 

VoC lineage 

Alpha 74 10 0 

Beta 253 483 22220 

Delta 4595 2134 99 

Gamma 0 0 0 

Omicron 293 39 307 

 601 
VoC: variant of concern602 
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Supplemental Table 5. Hyperparameter selection 603 

Hyperparameter Lasso RF LGBM XGBoost Catboost 

Alpha [0.001,0.01,0.1] - - - - 

Max Depth - [2,4,8,16,32] [2,4,8] [6,10] - 

Number of 
Estimators 

- [4,16,64,256] - - - 

Minimum Sample 
Split 

- [2,4,8,16,32] - - - 

Number of Leaves - - [4,8,16,32,6
4,128] 

- - 

Minimum Data in 
Leaf 

- - [2,4,8,16,32
] 

- - 

Depth - - - - [1,5,10] 

Iterations [500,1000,2000] - - - [250,500,10
00] 

Learning Rate - - - - [0,001, 
0.01, 0.1] 

L2 Regularization - - - - [1,5,10] 

Min child weight - - - [1,3] - 

 604 

RF: Random Forest; LGBM: Light Gradient Boosting Model; XGBM: eXtreme Gradient 605 

Boosting Model 606 

  607 
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Supplemental Table 6. Control table of priors for SEIR model 608 

Values Names* Fixed 
Lower 
bound 

Upper 
bound Steps 

Lower 
start 

Upper 
start 

0 tshift 1 0 3 0.1 0 10 

5 desired_mode 1 0 7 0.1 0 10 

19.73 viral_peak 0 0 40 0.1 15 25 

5 obs_sd 0 0 25 0.1 1 10 

0.79 sd_mod 1 0 1 0.1 0.4 0.6 

14 sd_mod_wane 1 0 14 0.1 0 14 

40 true_0 1 40 100 0.1 40 100 

40 intercept 1 35 100 0.1 35 100 

3 LOD 1 0 10 0.1 0 10 

5 incu 1 0 10 0.1 0 10 

13.29 t_switch 0 0 30 0.1 10 30 

38 level_switch 0 0 40 0.1 33 40 

1000 wane_rate2 1 0 10000 0.1 10 50 

0.103 prob_detect 0 0 1 0.1 0.01 0.1 

1 t_unit 1 0 1 0.1 0 1 

2 R0 0 1 10 0.1 1.5 3 

4 infectious 1 0 25 0.1 5 10 

3 incubation 1 0 25 0.1 5 10 

1 t0 1 0 100 0.1 0 50 

0.0001 I0 0 0 0.1 0.1 0 0.001 

*Adapted parameters (3) 609 
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 610 

SEIR: susceptible-exposed-infected-recovered  611 

  612 
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 613 
 614 
Supplemental Figure 1. Violin plot demonstrating the overall cycle threshold value distribution 615 

for saline gargle compared to nasopharyngeal specimens for the entire study period. 616 

Ct. e: Envelope (E) gene cycle threshold value; NP: nasopharyngeal 617 

 618 
 619 
  620 
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 621 

 622 

Supplemental Figure 2. Twenty most prevalent SARS-CoV-2 variant of concern lineages in 623 

British Columbia from January 2021 to January 2022. The current study was performed during a 624 

time of Omicron variant predominance, from November19 2021 to January 8 2022. 625 

BCCDC: British Columbia Centre for Disease Control; SARS-CoV-2: severe acute respiratory 626 

syndrome coronavirus type 2 627 

 628 

  629 
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 630 

Supplemental Figure 3. Vaccination status definitions. Vaccination status was defined based on 631 

the date of vaccine receipt relative to the date of the sample collection included for the study. For 632 

the Janssen vaccine only, fully vaccinated status was defined as having received one dose 14 633 

days or more prior to sample collection. For all other vaccines, Unvaccinated status was defined 634 

as having received no SARS-CoV-2 vaccine, or having received a SARS-CoV-2 vaccine less 635 

than 21 days prior to the sample collection date. Partially vaccinated status was defined as 636 

having received the SARS-CoV-2 vaccine dose 1 greater or equal to 21 days prior to sample 637 

collection, but having received dose 2 less than 14 days prior to the sample collection. Fully 638 

vaccinated status was defined as greater or equal to 14 days since the receipt of dose 2, but 639 

having received dose 3 less than 14 days prior to the sample collection.  640 

 641 

SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2 642 

  643 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.06.23286837doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286837
http://creativecommons.org/licenses/by/4.0/


A. 644 

 Residents 
(n=93) 

Staff 
(n=63) 

Age  
(Median, range) 

89 (46-100) 42 (19-71) 

Female (%) 68 (73.1%) 54 (85.7%) 

Asymptomatic at the time of 
assessment (%) 

54 (58.1%) 6 (9.5%) 

Ever hospitalized 3 (3.2%) 0 

Deceased 26 (28.0%) 0 

 645 

B. 646 

 647 

Supplemental Figure 4. Case study epidemiological data (A) and epidemic curve (B) for the 648 

156 infected individuals in the long term care facility outbreak. 649 

 650 
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Size = 100 Size = 1,000 Size = 10,000 
 651 

Supplemental Figure 5. SHAP summary outputs explaining the machine learning output based 652 

on simulated cycle threshold (Ct) data. Results are presented stratified by three different 653 

population sizes: 100, 1,000 and 10,000 with each column in descending order of performance. 654 

Of the five features explored, the top ranking feature across all models was the variance of the Ct 655 

data.  656 

SHAP: SHapley Additive exPlanations; LGBM: Light Gradient Boosting Model; XGBM: 657 

eXtreme Gradient Boosting Model 658 
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 659 

 660 
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