1 SARS-CoV-2 viral replication persists in the human lung for several weeks after symptom

- 2 onset
- 3

4 **Running title:** Persistence of SARS-CoV-2 in the human lung.

- 5
- 6 Tomasicchio $M^{1,2}$, Jaumdally $S^{1,2}$, Wilson $L^{1,2}$, Kotze $A^{1,2}$, Semple $L^{1,2}$, Meier $S^{1,2}$, Pooran $A^{1,2}$,
- 7 Esmail A^{1,2}, Pillay K⁵, Roberts R⁵, Kriel R⁵, Meldau R^{1,2}, Oelofse S^{1,2}, Mandviwala C^{1,2}, Burns
- 8 $J^{1,2}$, Londt R^{1,2}, Davids M^{1,2}, van der Merwe^{1,2} C, Roomaney A^{1,2}, Kühn L^{1,2}, Perumal T^{1,2},
- 9 Scott A.J^{1,2}, Hale M.J⁶, Baillie V⁷, Mahtab S⁷, Williamson C⁸, Joseph R⁸, Sigal A⁹, Joubert I¹⁰,
- 10 Piercy J¹⁰, Thomson D¹⁰, Fredericks DL¹⁰, Miller MGA¹⁰, Nunes M.C⁷, Madhi S.A⁷, Dheda
- 11 $K^{1,2,3,4}$.
- 12

13 Affiliations:

- ¹Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine,
- 15 University of Cape Town and UCT Lung Institute, FCape Town, South Africa.
- ² South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape
- 17 Town, Cape Town, South Africa.
- ³ Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape
- 19 Town, South Africa.
- ⁴ Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection,
- 21 London School of Hygiene & Tropical Medicine, London, UK.
- ⁵ Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape
- 23 Town, South Africa
- ⁶ Division of Anatomical Pathology, Faculty of Health Sciences, University of the
- 25 Witwatersrand. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

⁷ South African Medical Research Council, Vaccines and Infectious Diseases Analytics 26 27 Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation South 28 African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, 29 University of the Witwatersrand, Johannesburg, South Africa. 30 ⁸ Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, 31 University of Cape Town, Cape Town, South Africa. 32 ⁹ Africa Health Research Institute, Durban, South Africa. 33 ¹⁰ Division of Critical Care, Department of Anaesthesia and Perioperative Medicine, University 34 35 of Cape Town, South Africa.

36

37 Correspondence: Keertan Dheda, Centre for Lung Infection and Immunity, Division of

38 Pulmonology and UCT Lung Institute, Dept of Medicine, University of Cape Town, South

39 Africa. E-mail: keertan.dheda@uct.ac.za

40

42 ABSTRACT

Rationale: In the upper respiratory tract replicating (culturable) SARS-CoV-2 is recoverable
for ~ 4 to 8 days after symptom onset, however, there is paucity of data about the frequency or
duration of replicating virus in the lower respiratory tract (i.e. the human lung).

46 Objectives: We undertook lung tissue sampling (needle biopsy), shortly after death, in 42
47 mechanically ventilated decedents during the Beta and Delta waves. An independent group of
48 18 ambulatory patents served as a control group.

49 Methods: Lung biopsy cores from decedents underwent viral culture, histopathological
50 analysis, electron microscopy, transcriptomic profiling and immunohistochemistry.

51 **Results:** 38% (16/42) of mechanically ventilated decedents had culturable virus in the lung for 52 a median of 15 days (persisting for up to 4 weeks) after symptom onset. Lung viral culture positivity was not associated with comorbidities or steroid use. Delta but not Beta variant lung 53 culture positivity was associated with accelerated death and secondary bacterial infection 54 (p<0.05). Nasopharyngeal culture was negative in 23.1% (6/26) of decedents despite lung 55 culture positivity. This, hitherto, undescribed bio-phenotype of lung-specific persisting viral 56 replication was associated with an enhanced transcriptomic pulmonary pro-inflammatory 57 response but with concurrent viral culture positivity. 58

59 Conclusions: Concurrent, rather than sequential active viral replication continues to drive a 60 heightened pro-inflammatory response in the human lung beyond the second week of illness 61 and was associated with variant-specific increased mortality and morbidity. These findings 62 have potential implications for the design of interventional strategies and clinical management 63 of patients with severe COVID-19 disease.

64

243 words

Keywords: COVID-19, SARS-CoV-2, virus replication, mechanically ventilated patients,
upper respiratory tract, immunology

67 At a Glance Commentary

68 Scientific Knowledge on the Subject:

Investigations to understand SARS-CoV-2 viral shedding (determined by PCR or antigen 69 testing) have extensively focused on samples from the upper respiratory tract. The widely 70 accepted view is that acute severe SARS-CoV-2 infection is characterised by a viral replicative 71 phase in the first week of symptomatic illness followed by a pro-inflammatory 72 immunopathologic phase peaking in the second and third weeks of illness. However, it remains 73 unclear whether detection of SARS-CoV-2 beyond 2 weeks after symptom onset in published 74 studies represent active replication competent virus because it may represent residual genomic 75 or antigenic material in the tissue. 76

77

78 What This Study Adds to the Field:

79 We have identified a, hitherto, undescribed bio-phenotype of acute severe COVID-19 characterised by persisting viral replication in the lung for up to 4 weeks after symptom 80 onset. ~40% of acute severe COVID-19 intensive care unit (ICU) decedents (n=42) had 81 nasopharyngeal swab culture positivity at ~2 weeks post-symptom onset versus only ~5% in a 82 group of ambulatory control patients (n=18). There was compartment-specific (nasopharynx 83 84 versus lung) discordance. The phenotype of lung-specific persisting viral replication was associated with variant-specific accelerated death, an exaggerated inflammatory response, and 85 attenuated T-cell immunity in the lung (based on histopathological and transcriptomic studies). 86 87 This challenges the traditional view that viral replication occurs during the first 5 to 10 days of illness, which is followed by an effector or hyperinflammatory phase. This is the first study, to 88 our knowledge, to systematically culture virus from the human lung and map out its related 89 clinical determinants, and which describes the human lung transcriptomic profile of culture-90 positive versus culture-negative patients with severe COVID-19 disease. 91

92 Introduction.

93 Coronavirus disease-19 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been the foremost killer globally over the last 3 years. Case 94 fatality risk in hospitalised patients, and particularly in mechanically ventilated patients, during 95 the Beta and Delta waves was particularly high [~50%-70%; (1)]. Even with the Omicron-96 related variants, case fatality risk remains significant in the elderly and immunocompromised 97 persons, and in several countries including the UK, Italy, France, Brazil, and prominently in 98 China where there is now an ongoing epidemic of severe COVID-19 disease (2-10). Better 99 therapeutic interventions are needed. However, despite considerable research, the pathogenesis 100 101 of severe COVID-19, relative to viral kinetics, remains incompletely understood.

102

SARS-CoV-2 detection (ascertained through PCR positivity or antigen detection) can persist 103 104 for several weeks from symptom onset (11). Post-mortem studies have shown persistence of SARS-CoV-2 in tissues detected by PCR and immunohistochemistry for up to several weeks 105 after symptom onset (12, 13). However, detection of SARS-CoV-2 in these studies may not 106 represent replication competent virus (detectable only by viral culture) but residual genomic or 107 108 antigenic material in the tissues. Shedding of replicating virus confirmed through serial viral 109 culture (i.e. in vitro replication in human cell lines) from the upper respiratory tract (URT) has been shown to persist for only ~ 2 to 8 days after symptom onset (11, 14-23). These findings 110 have been confirmed in human lung challenge studies with viable pathogen where virus was 111 112 cultured from the URT until a median of 4 days (and a maximum of 10 days) from symptom onset (24). However, hardly anything is known about the compartment-specific duration of 113 114 actively replicating virus in the lower respiratory tract (LRT), particularly in acute severely ill hospitalised patients undergoing mechanical ventilation. We hypothesised that there is 115 compartment-specific uncoupling of viral replication in severe COVID-19 i.e. replicating virus 116

can persist in the LRT beyond 10 days from symptoms onset, independent of its persistence inthe URT, and this persistence may be associated with an altered pulmonary immunity.

119

120 Methods.

121 **Patients.**

The decedents (n=42) were recruited from Chris Hani Baragwanath Academic Hospital, 122 123 Johannesburg, South Africa (n=18; Beta group) and Groote Schuur Hospital, Cape Town, South Africa (n=24; Delta group). Figure 1A outlines an overview of the study plan. Ambulatory 124 controls (n=18) were recruited at diagnosis (baseline; ~5 days from symptom onset), 7 days and 125 126 14 days post diagnosis. Minimally invasive tissue samples (MITS) and nasopharyngeal swabs 127 from decedents (n=42) in the Beta and Delta waves (Figure 1B) were taken immediately after death. In addition, heart, liver, kidney, and adipose tissue samples were also taken from the 128 Delta variant decedent cohort only. Ethical approval was obtained from the Human Research 129 Ethics Committee (HREC) of the University of Cape Town (HREC approval number 866/2020) 130 and University of Witwatersrand (HREC approval number M200313). Biosafety approvals 131 were obtained from the Faculty Biosafety Committee of the University of Cape Town (IBC008-132 133 2021).

134

135 Viral culture.

To establish the *in vitro* viral culture model, a SARS-CoV-2 viral stock was used to infect the human lung carcinoma cell line, H1299 ACE2, in a BSL3 laboratory and infection was confirmed by light microscopy (as assessed by cytopathic effects of the virus on the cell line) and confocal microscopy (Figure S1A and B). Serial dilutions of the viral stock were used to establish the limit of detection of the PCR assay at 1×10^1 copies/ml (Figure S1C). Viral culture was performed on the nasopharyngeal swab and lung biopsy samples as indicated in the study

overview (Figure 1) and detailed in the online supplement. Viral culture result reproducibilitywas good (see online supplement).

144

145 Multiplex PCR to detect secondary bacterial infections.

The lung biopsy cores, stored in universal transport medium, were briefly homogenised and 200µl of the supernatant was applied to the BioFire FilmArray Pneumonia panel (Bioméieux, South Africa). The panel was run using protocol BAL v3.3 according to the manufacturer's instructions, thus generating RT-PCR readouts for 33 bacterial and viral pathogens. Bronchopneumonia was defined as histological evidence of a neutrophilic alveolar infiltration together with the detection of bacterial genomic material in the biopsy cores.

152

153 Immunohistochemistry.

Immunohistochemical staining was performed using the Roche Ventana Automated platform
(Ventana XT autostainer) as indicated by the manufacturer. Tissue sections were prepared,
stained, and viewed using standard techniques (25). Antibodies included anti-CD3 (2GV6),
and anti-CD8 (SP57) (Roche USA).

158

159 Haematoxylin & eosin (H&E) staining and transmission electron microscopy (TEM).

H&E staining and TEM were performed according to standard procedures (25). H&E-stained
slides were viewed using an Olympus BX43 microscope. TEM tissue sections were viewed
using a Carl Zeiss EM109 microscope.

163

164 SARS-CoV-2 whole genome sequencing.

165 Total SARS-CoV-2 RNA was extracted from lung biopsy samples and whole genome 166 sequencing was performed. The generated reads were analysed with the Exatype

(https://exatype.com) software to identify minor and major variants. The assembled consensus
sequences were analysed using Nextclade Web (https://clades.nextstrain.org) for further quality
control and clade assignment.

170

171 RNAseq.

Total RNA was extracted from lung biopsy samples from the Delta group, sequenced and 172 mapped consecutively to the human and COVID reference genomes using the Spliced 173 Transcripts Alignment to a Reference (STAR) software [version 2.7.7a, (26)]. A differential 174 expression (DE) analysis was performed on the generated raw read count file with the edgeR 175 176 (Version 3.38.4) R package (27). The DE results were ranked by fold change and the gseGO 177 function, from the clusterProfiler R clusterProfiler [Version 4.0, (28)] R package was used to perform a gene set enrichment analysis (GSEA) for the Gene Ontology Biological Process 178 pathways. Pathways with an FDR <0.05 were considered significant. 179

180

181 Confocal microscopy.

The H1299 ACE2 cells were plated, infected with SARS-CoV-2 and allowed to adhere to coverslips slides overnight at 37°C. The next day the cells were stained with or without anti-SARS-CoV-2 S1 spike protein (ThermoFisher, USA) and the slides were mounted in Mowiol (Calbiochem, USA) containing n-propyl gallate (Sigma-Aldrich, Germany) as an anti-fading agent. Confocal microscopy was performed with a Zeiss Axiovert 200M LSM510 Meta NLO Confocal Microscope.

188

189 Sample size calculation and statistical analysis.

We hypothesised that we would detect lung culture positivity at 14 days post-symptom onset
in ~33% of decedents. A sample size of ~40 participants would allow us to ascertain that level

of positivity with a 15% margin of error using 95% confidence and 80% power (OpenEpi,Version 3, opensource calculator).

194

195 The Fisher Exact test was employed for categorical variables and for continuous variables, 196 Mann-Whitney test was used for non-parametrically distributed data between the culture-197 negative and culture-positive groups (Stata version 17 or GraphPad, Version 9.4.1). A p-value 198 of < 0.05 was considered significant for all statistical analyses.

199

The multivariable analysis was performed in R by fitting a binomial Generalized Linear Model (GLM) to assess the association between steroid use and the presence of secondary bacterial infection on culture status. The tidymodels (version, 1.0.0) R package was used to perform predictive modelling using the glm binomial classification algorithm. To account for the small sample size, 1000 bootstraps were performed for each analysis using the "bootstraps" function (non-parametric) from the rsample package (version1.2.0).

206

207 **Results**

208 Demographics and clinical characteristics of the decedents.

The demographics of patients enrolled in the study are shown in Table S1. The median age of the patients was 53 years with 48% being males (20/42). 40.5% (17/42) had a secondary bacterial infection and 11% (4/38) had bacterial bronchopneumonia (microbiologically and histopathological confirmed). The median time from onset of symptoms to death, ICU admission to death and high flow oxygen admission to death was 17 (IQR; 9-22), 5 (2-12) and 11 (6-15) days, respectively.

SARS-CoV-2 replicating persistence in the human lung of mechanically ventilated decedents.

We first ascertained the frequency and duration of replicating virus in lung tissue (which to our 218 knowledge has not been previously undertaken). Culturable virus in the lung was present in 219 220 38.1% (16/42; Figure 2A) of mechanically ventilated ICU decedents, at a median of 15 days (and up ~4 weeks; Figure S2) from symptom onset to sampling/death (Figure 3A). As expected, 221 222 56% (10/18) of a prospectively recruited control group of ambulatory patients had culturable virus, using nasopharyngeal swab samples, at day 5 from symptom onset (Figure 2B). In the 223 same group of patients after 12- and 19- days after symptom onset, only 5.5% (1/18) and 0% 224 225 (0/18), respectively, had culturable virus from their nasopharyngeal swab (Figure 2B). By 226 contrast, 38% of nasopharyngeal swabs from the mechanically ventilated ICU descendants had culturable virus (Figure 2B), at a median of 13 days from symptom onset to sampling/death 227 228 (Figure S3B). Additionally, SARS-CoV-2 could be detected by PCR in multiple organs in lung 229 culture-positive decedents in the Delta cohort (biopsies other than the lung was not performed in the Beta cohort) suggesting widespread multi-organ viral dissemination (Figure 2C). SARS-230 CoV-2 was also detected in adipose tissue of culture-positive decedents (hitherto undescribed). 231 232 We did not culture virus from the organs of the decedents other than the lung. Thus, viral genetic 233 material was only detectable by PCR in the lung culture-positive patients in the other organs. This probably indicates that the virus disseminated systemically in these patients, who had 234 chronic replicative disease in the lung and not in the other organs. We therefore only presented 235 236 the PCR results from the other organs for the lung-culture positive patient samples in Figure 2C. Clinical characteristics, such as, age and comorbidities were similar in the lung culture-237 positive versus culture-negative groups (Table S1). We found no association between viral 238 genetic variant and the phenotype of replicating viral persistence (although this might have been 239 a factor of the limited sample size; Table S5). 240

241

242 Time to death in the Delta and Beta groups and predictors of lung culture positivity.

Next, we evaluated variant-specific relationships to clinical outcomes. Mechanically ventilated patients who were SARS-CoV-2 lung culture-positive in the Delta, but not the Beta group, had a higher proportion of accelerated death (i.e. shorter duration from symptom onset to death; Figure 3C versus 3B; p=0.004), and a higher proportion of lung-specific secondary bacterial infection (Figure 3F versus 3E; p=0.032) compared to culture-negative decedents. Similarly, to the lung culture data, the nasopharyngeal swab culture-positive Delta, but not the Beta group, had a higher proportion of accelerated death (Figure S3D versus S3C; p=0.026).

250 The bacterial species identified from the lung biopsies of both the Beta and Delta groups 251 included Streptococcus, Staphylococcus, Haemophilus, Acinetobacter, Proteus spp, Escherichia, Klebsiella, Enterobacter and Serratia (Table S4). Overall, both groups were 252 253 infected with one or more bacteria that were sensitive or resistant to β -lactams and/or 254 carbapenems (Table S4). Key clinical and demographic characteristics such as differences in co-morbidities (age, obesity, diabetes, HIV positivity etc; Table S1) associated as drivers of 255 severe COVID-19 disease and poor prognosis, could not explain these observations, despite the 256 257 lower population-level vaccination and pre-existing COVID-19 exposure rates in the Beta 258 cohort. Steroid usage (proportion) was similar in the culture-positive and culture-negative groups (Table S1; though the duration of steroid usage was significantly higher in the culture 259 negative group), and there was no significant (p>0.05) association between steroid use and lung 260 261 culture positivity or the presence of secondary bacterial infection in a multivariable analysis. If anything, there was a trend (p=0.06) to greater steroid exposure in the lung culture negative 262 263 group (in the multivariable analysis) arguing against its role in driving viral replication.

Next, we interrogated whether nasopharyngeal PCR characteristics (Ct value), either at admission or close to death, could identify the phenotype of lung replicating viral persistence. However, nasopharyngeal Ct neither at admission, nor at the time of death was associated with lung culture positivity (Figure 3G). This suggests that the kinetics of viral replication was different in the upper and the lower respiratory tract.

270

271 Lung immunity and histology of the culture-negative versus culture-positive groups.

We then ascertained whether the phenotype of replicating viral persistence was associated with 272 attenuated or modulated lung immunity in the Delta decedents (transcriptomic and flow 273 274 cytometric studies were only carried out in Cape Town, i.e the Delta decedents, due to locationspecific availability of assays and limited Beta group biopsy cores that had been used for 275 unrelated studies). Immunohistochemical staining indicated that there was significantly less 276 277 infiltration of CD3+ T-cells, specifically CD8+ T-cells in the alveoli and interstitium of the SARS-CoV-2 culture-positive compared with the culture-negative individuals in the Delta 278 279 decedents (Figure 4A and B).

280

The typical histological features of severe COVID-19 (e.g. diffuse alveolar damage and 281 282 microvascular thrombosis) were similar in the SARS-CoV-2 culture-positive and the culturenegative phenotype suggesting that these events occurred in the early rather than the persistent 283 viral replication phase (Figure 4C, D and S4; Table S2, S3). Interestingly, we observed that 284 285 some features of leukocyte hyperactivation (i.e., hemophagocytic syndrome) were more common in the SARS-CoV-2 culture-negative versus the culture-positive group, potentially in 286 287 keeping with an aberrant immune response characterised by a lack of immune regulation, as outlined above (Figure 4C and 4D; p=0.013). 288

The transcriptional analysis of post-mortem lung tissue after adjustment for multiple testing, 289 290 identified a total of 11 up- and 4 down-regulated genes in the culture-positive versus culturenegative groups (FDR<0.05; specific genes discussed further in the online supplement; Figure 291 S6). To ensure that the transcriptional signal was uniform, lung biopsy cores from each decedent 292 293 were placed in 1 tube containing RNA later to ensure that enough genetic material was obtained. The lung-culture-positive group expressed higher levels of carbonic anhydrase 12 (CA12) than 294 295 the lung culture-negative group (Figure S6 and Table S6). This protein induces a phenotype 296 similar to high-altitude pulmonary ordema with a decreased ratio of arterial oxygen, partial pressure to fractional inspired oxygen, and a reduction of the carbon dioxide levels (29). This 297 298 was associated with increased tachypnoea and fibrinogen levels/fibrin formation and the presence of hypoxia leading to acute respiratory distress syndrome [ARDS; (29)]. 299

Another gene that was highly overexpressed in the culture-positive cohort was CD177, a 300 301 glycosylphosphatidylinositol (GPI)-anchored protein expressed by neutrophils. CD177 plays a key role in neutrophil activation, transmigration and adhesion to the endothelium and is 302 associated with the severity of COVID-19 disease (Figure 6, S6 and Table S6) (30). Fu et al 303 (31) reported a high neutrophil to lymphocyte ratio in the alveolar spaces of the lung from 304 305 deceased patients with COVID-19. Elevated levels of CD177 were recently identified by 306 transcriptomics in the peripheral blood (32) and by proteomics in bronchoalveolar lavage cells (33) of COVID-19 patients with mild and severe disease, which supports our data of an 307 upregulation of CD177 in the lung culture-positive decedents. 308

309

Syndecan binding protein 2 was significantly upregulated in the culture-positive versus the culture-negative group (Figure S6 and Table S6). The protein is a family member of the syndecans (SDC) which are transmembrane proteoglycans that facilitate the cellular entry of SARS-CoV-2 (34). Endothelial cells express SDC2 and during virus internalization and

syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Hudak
et al (34) reported that entry via SDCs enabled efficient gene transduction with SARS-CoV-2
pseudovirus which implied that SDC-mediated internalisation pathway maintained the viral
particles biological activity. Viruses that target SDCs in the lung may therefore interfere with
SDC-dependent signalling as inhibitors to both ACE2 and syndecan reduced the cellular entry
of SARS-CoV-2, thus supporting the complex nature of internalization.

320

The GSEA performed using the full list of differentially expressed genes ranked by fold-change, 321 identified activated pathways that were associated with a proinflammatory response related to 322 323 cytokine signalling, neutrophil and monocyte chemotaxis/recruitment, and viral entry/defence, 324 all of which are implicated in COVID-19-related hypercytokinaemia (35) (Figure 5, 6, S5, S6, Table S6 and S7A). Significantly repressed pathways were generally associated with body 325 326 homeostasis (Figure 5A and B). There was also in tandem upregulation of Th1 and Th17 327 signalling pathways (Table S7B) but to a substantially lesser extent than that of innate cellular and signalling pathways (IL-1, IL-6 and neutrophil-related; Table S7A). These features may be 328 consistent with an aberrant immune response including a lack of activation of regulatory and 329 330 immune-suppressive pathways. T-cell exhaustion consistent with upregulation of PD-1, CTLA-331 4 and LAG (Table S7C) known to be associated with severe COVID-19, was not observed.

332

The differential expression (DE) results also revealed that a number of SARS-CoV-2 genes were significantly upregulated (FDR<0.01) in the culture-positive versus the culture-negative group including *nucleocapsid phosphoprotein* (log2 FC=8.4) and *ORF3a* (log2 FC=5.5) while the *surface/spike glycoprotein* encoding gene had a log2 FC of 5.3 and an FDR of 0.067 (Table S6). A visual inspection of the mapped SARS-CoV-2 reads revealed that those that mapped to the 5' end of the genes were spliced with a portion mapping to the 5' leader sequence of the

genome. This suggests the reads originated from sub-genomic mRNA (sgRNA) rather than
genomic RNA which is consistent with the active viral replication observed in the culturepositive group.

342

Finally, we evaluated whether any of the DE genes could act as biomarkers discriminating between lung culture-positive and negative-individuals. Logistic regression predictive modelling revealed that *GREM1* and *FGFBP1* were associated with a sensitivity and specificity above 90% (Figure S6). Future studies are warranted to determine if these lung-based biomarkers can predict patient culture status in blood samples.

348

349 Discussion.

The widely accepted view in severe acute COVID-19 is that resolution of the initial viral 350 351 replication phase in the first week after symptom onset is followed by an effector or hyperinflammatory phase in the second and third week of illness, which is characterised by 352 diffuse alveolar damage, thrombo-inflammation, and endotheliopathy (36). Indeed, the 353 Infectious Disease Society of America (IDSA) recommends the use of remdesivir for only 5 354 355 days in patients with severe illness and not at all in mechanically ventilated patients (37). 356 However, our results, based on post-mortem lung biopsies obtained using minimally invasive tissue sampling methods (MITS) shortly after death indicated that, in contradistinction to the 357 URT where replication often ceases within ~8 days from symptom onset, in the human lung 358 virus is culturable in ~40% of mechanically ventilated patients until death (median of 15 days 359 and up to 4 weeks after symptom onset; see Figure 1 for the study overview). To ensure 360 reproducibility of the lung biopsy procedure, histological analysis was performed to confirm 361 that the tissue was derived from the lung only (to ensure that there was no contamination from 362 other tissue or muscle, which would have been detected on histopathological analysis at the 363

least to some extent). The upregulation of muscle-associated gene pathways may have been related to virus-associated myositis or ICU-associated myopathy. The culture-positive group in the Delta cohort had accelerated death and a higher proportion of secondary bacterial infection in the lung compared to the culture-negative group. This may be explained by the Delta variant being more transmissible (38), associated with enhanced replication, higher viral load (39) and greater immune escape (40) than the Beta variant.

Nasopharyngeal SARS-CoV-2 viral load (based on Ct value) neither at admission nor at death, was predictive of lung culture-positivity. SARS-CoV-2 culture-positivity in the lung of decedents was associated with attenuated pulmonary T-cell immunity and an exaggerated proinflammatory phenotype. Importantly, this was concurrent with, rather than sequential to the viral replication or viral culture-positive phase.

375

376 These findings challenge the traditional paradigm of an initial viral replicative phase in the first week of severe illness sequentially followed by an effector or inflammatory phase (36). Our 377 data suggest that in ~40% of ventilated patients, viral replication persisted until death (i.e. 3rd 378 and 4th week of illness and a median of 15 days after symptom onset) compared to ~2 to ~8 379 days in the URT as outlined in several studies including a live virus human challenge study (11, 380 381 14-24). One outlier study reported culturing virus from the URT for up to 3 weeks after symptom onset (41). However, a large proportion of patients were immunocompromised, 382 samples at diagnosis and follow-up were combined (skewing the results), a high proportion of 383 participants were healthcare workers (re-infection may have been a confounder), and as the 384 authors suggested a limitation was that the Vero cell line used was overtly permissive to 385 infection compared to the human lung carcinoma cell line, H1299 ACE2, which is a biologically 386 representative cell line (and one that we used). Another recent study showed that infectious 387 virus production peaked in the human lung within 2 days, but this model used ex vivo agarose 388

infused devascularised and explanted human lung slices, which are not representative of what 389 390 is occurring in freshly harvested human lung (42). The culture-based findings in the aforementioned studies must be explicitly distinguished from studies that detected residual free viral 391 genomic RNA (but not replicating virus) embedded in the respiratory tract tissue of patients 392 that had severe disease for an extended period of time (13, 43, 44). Indeed, SARS-CoV-2 RNAs 393 have been detected in patient tissue many months after recovery from acute infection (45-47). 394 It was initially suggested that sgRNA (sub-genomic RNA; small strands of reversely 395 transcribed RNA) could be used as a proxy to infer viral replication. However, several recent 396 studies have indicated that it has poor predictive value as a proxy for viral replication (48, 49). 397 398 Indeed, Stein et al (13) detected sgRNA in multiple post-mortem organ biopsies, including the 399 brain, several months after symptom onset. Thus, the data presented in this manuscript is the first to do so conclusively and comprehensively using viral culture from lung tissue (the gold 400 401 standard to detect viral replication) beyond two weeks after symptom onset.

402

We demonstrated active viral replication in the lungs of acutely ill ventilated patients for up to 403 ~4 weeks after symptom onset. This challenges the current practice of using antivirals like 404 405 remdesivir for only 5 days and suggests that a longer duration of treatment may be required in 406 critically ill patients. Furthermore, antivirals like remdesivir are not recommended for use by IDSA in mechanically ventilated patients (conditional recommendation) as they felt that such 407 patients (often in the third week of their illness) are no longer in the viral replicative phase, and 408 409 published controlled trial data showed no mortality benefit of remdesivir in such patients (37, 50). However, these studies demonstrated a group effect, and the analyses did not adjust for 410 411 disease severity or the time from symptom onset to death in mechanically ventilated patients (51). Our data suggest that a significant number of patients may likely benefit from antivirals 412 during mechanical ventilation. Indeed, several observational studies have found a survival 413

benefit using remdesivir in mechanically ventilated patients, but this requires further clarification in appropriate trials (51-53). It is also possible that the very advanced immunopathology in some patients may render antivirals redundant. In a multivariate analysis we found no association between steroid usage and lung viral culture positivity - in fact, steroid usage was lower in the viral culture-positive group (and there was a trend to an inverse relationship in the multivariable analysis, and often culture positivity persisted beyond the 10 days of steroid usage.

421

The transcriptomic data suggested that, in a significant number of patients, the 422 hyperinflammatory and viral replication phase occur concurrently in the 3rd and 4th week of 423 illness, in contradistinction to the widely held view that these are sequential phases. Antiviral 424 and selective proinflammatory responses were over-represented in the SARS-CoV-2 culture-425 426 positive compared with the culture-negative decedents, and we did not detect attenuated type 1 427 interferon responses at the site of disease compared with other reports (54-58). Three prior studies (one that enrolled 5 COVID-19 patients) evaluated transcriptomic lung responses in 428 patients with severe COVID-19 versus healthy controls (54, 55, 59). These first level studies 429 430 logically attempted to address the significance of transcriptomic changes specific to COVID-431 19 by using healthy controls or non-diseased parts of the lung from lung cancer patients. However, we specifically sought to compare culture-positive versus culture-negative groups 432 (hitherto not undertaken) to dissect out pathways that facilitate permissiveness to ongoing viral 433 434 replication.

435

We identified two lung-based biomarkers (*GREM1* and *FGFBP1*) that could predict culturepositivity. Although these are lung-specific biomarkers, this preliminary analysis in a limited number of samples suggests that in the future, RT-PCR of tracheal aspirates or blood (if they

are concordant with lung findings), could potentially serve as biomarkers to identify and direct
appropriate treatment protocols to culture-positive persons but further investigation is needed.

There are several limitations to our findings. Firstly, our findings are relevant to acute severe 442 443 COVID-19 ARDS/pneumonia requiring mechanical ventilation and may not be applicable to milder forms of disease seen in hospitalised patients or chronic infection seen in 444 immunocompromised patients. Second, we only studied patients with the Beta and Delta 445 variants as these were the predominant variant at the time of the study. However, Omicron has 446 also been associated with severe disease in several settings including the surge of severe 447 448 COVID-19 unfolding in China. Third, we did not study a control group comprising severe 449 ARDS due to other causes because our express aim was to investigate the presence and duration of viral replication in the LRT in severe COVID-19 disease. Fourth, the sample size limited our 450 451 ability to make conclusions about several aspects. However, the highly resource intensive and demanding nature of the study limited our ability to recruit higher numbers of participants. 452 Fifth, it could be suggested that there may have been sampling error and variability of the viral 453 culture assay. However, the reproducibility of the viral culture technique using 6 samples across 454 455 2 separate runs had a low standard error, which was indicative of high reproducibility. Sixth, 456 we did not compare the culture status of the lower respiratory tract in the ambulatory controls 457 versus the decedents. This was due to ethical reasons and the potential risks of viral transmission to the medical and research staff during bronchoscopic procedures. Finally, the transcriptional 458 459 signature and flow cytometric findings may have been affected by post-death sampling, but several detailed studies have shown (60) that most protein and RNA species are preserved and 460 stable for several hours after death. Given that biopsies for the transcriptional studies were taken 461 \sim 2 hours after death, we feel they are broadly representative of the picture at the time of death. 462

In summary, our data suggests that in COVID-19 disease there is considerable heterogeneity in 464 465 the frequency and duration of viral replication in the upper versus the lower respiratory tract (i.e. lungs) beyond the 2nd week of illness, and that in a significant proportion of seriously ill 466 patients, persisting viral replication occurs concurrently and may drive an exaggerated 467 proinflammatory response (higher than in culture-negative persons), rather than sequentially as 468 469 it is widely believed. These findings have potential implications for the use of antiviral therapy 470 in seriously ill patients with COVID-19 and suggest that better biomarkers are needed to identify patient phenotypes and subsets that might benefit from concurrent anti-inflammatory 471 472 and antiviral therapy.

473 Figure legends.

474

Figure 1. Study overview including SARS-CoV-2 PCR-positive ambulatory controls (A) and mechanically ventilated decedents (B) recruited during the Beta and Delta waves. Nasopharyngeal (NP) swabs from ambulatory COVID-19 controls were obtained approximately 5 days after symptom onset (diagnosis), and then at 12- and 19-days post symptom onset. Minimally invasive tissue samples (MITS) and NP swabs were retrieved from decedents shortly after death.

481

Figure 2. Active replicating virus was recovered from the lungs of over one third of decedents (16/42). (A) Proportion of lung biopsy samples that were culture-positive from the decedents. (B) Proportion of ambulatory patient and decedent NP swab samples that were culture-positive. (C) PCR positivity of organs of lung culture-positive decedents from the Delta cohort (organs other than the lung were not culture positive). NP= nasopharyngeal.

487

Figure 3. The phenotype of replicating viral persistence, compared to the culture-negative 488 participants, was associated with accelerated death and a higher frequency of bacterial 489 490 bronchopneumonia in the Delta but not the Beta group. (A) The days from symptom onset to death for the culture-negative (-ve; green) and culture-positive (+ve; red) groups for both 491 groups combined, and for the Beta (B) and Delta (C) groups alone. Proportion of 492 493 samples/participants with a secondary bacterial infection in culture-negative and culturepositive decedents overall i.e. the combined groups (Beta and Delta) (**D**), Beta group only (**E**), 494 495 and Delta group only (F). (G) PCR cycle threshold (Ct) value at the time of death or at admission could not discriminate or predict lung culture status. The nasopharyngeal swab PCR 496 Ct values at admission or death were missing for some participants because they were either 497

diagnostically confirmed by antigen testing or the Ct value was not recorded. Due to the nature of the pandemic and the burden of the disease on the healthcare infrastructure at the time, Ct values at peak periods were not recorded. We have conducted sensitivity and imputation analyses indicating that these missing data points are redundant.

502

Figure 4. A higher proportion of T-cells, macrophages and pneumonocytes infiltrate into 503 504 the lung of the culture-negative versus culture-positive decedents in the Delta group. (A) More CD3+ and CD8+ T-cells infiltrate into the alveoli and interstitial space of the lung culture-505 negative versus culture-positive group in the Delta decedents as assessed by 506 507 immunohistochemistry. (B) Representative images (immunohistochemistry) at $200 \times$ 508 magnification showing increased T-cell infiltration into the interstitial space (blue arrow) in the lung culture-negatives versus the culture-positives in the Delta cohort. The density of CD3+ or 509 510 CD8+ T-cells in the alveoli or interstitial tissue were assessed and scored as medium or high. A magnitude of 10%-50% or >50% was defined as medium or high infiltration, respectively. 511 Histopathology findings (C) and representative images (D) associated with diffuse alveolar 512 damage and microvascular thrombosis in the Delta decedents. The black arrows indicate key 513 514 histopathological features. The magnification settings were either set at $200 \times$ or $400 \times$. The 515 relative magnification of each light microscopy image is shown.

516

Figure 5. The transcriptomic analysis revealed that the culture-positive group, in comparison to the culture-negative group, had enrichment of activated pathways associated with inflammation, innate immunity, responses to cytokines, and responses to virus/ bacterial stimuli in the Delta descendants. Dot plot illustrating the significantly activated and suppressed pathways along with the gene count and ratio for each pathway (A),

enrichment map illustrating the significantly activated and suppressed pathways along with thegene count and ratio for each pathway (**B**).

524

Figure 6. Transcriptomic analysis showing the association between the innate immune
response, response to virus, response to cytokine, inflammatory pathways and genes
upregulated in the culture-positive group versus the culture-negative group. The cnetplot
illustrates the overlap of genes and their fold changes for selected activated pathways.
Significant genes (p.adjust <0.05) that are annotated to the pathways are highlighted in red.

530

531 Contributions

532 K.D, MT, S.J, A.P, A.E, M.D, M.N and S.M conceived and designed experiments. K.D, A.E,

533 S.O, L.K, T.P, A.S, I.J, J.P, D.T, D.F, M.M, M.N and S.M arranged medical ethical approval,

recruitment of study participants and collection of study material. MT, S.J, L.W, A.K, S.M, ,

535 A.P, K.P, R.R, R.K, R.M, C.M, J.B, R.L, M.D, C vdM, A.R, M.H, V.B, S. M, C.W, and R.J

536 performed the experiments. M.T, S.J, A.P and M.D set up experimental assays. A.S provided

the cell line. K.D, M.T, S.J, L.W, A.K, L.S, S.M, A.P, K.P, R.R, R.L, M.H, V.B, S.M, R.J, and

538 N.M analysed and interpreted data. K.D, M.T, L.S, and S.M wrote the manuscript with input

539 from all listed authors.

540

541 **Declaration of interests**

542 The authors have no competing interests.

543

544 Acknowledgments

545 The authors would like to thank Arnold-Day C, Crowther M, Fernandes N, and Mitchell L from

546 the Division of Critical Care, Department of Anaesthesia and Perioperative Medicine,

547 University of Cape Town, South Africa for identifying and referring potential patients into the548 study.

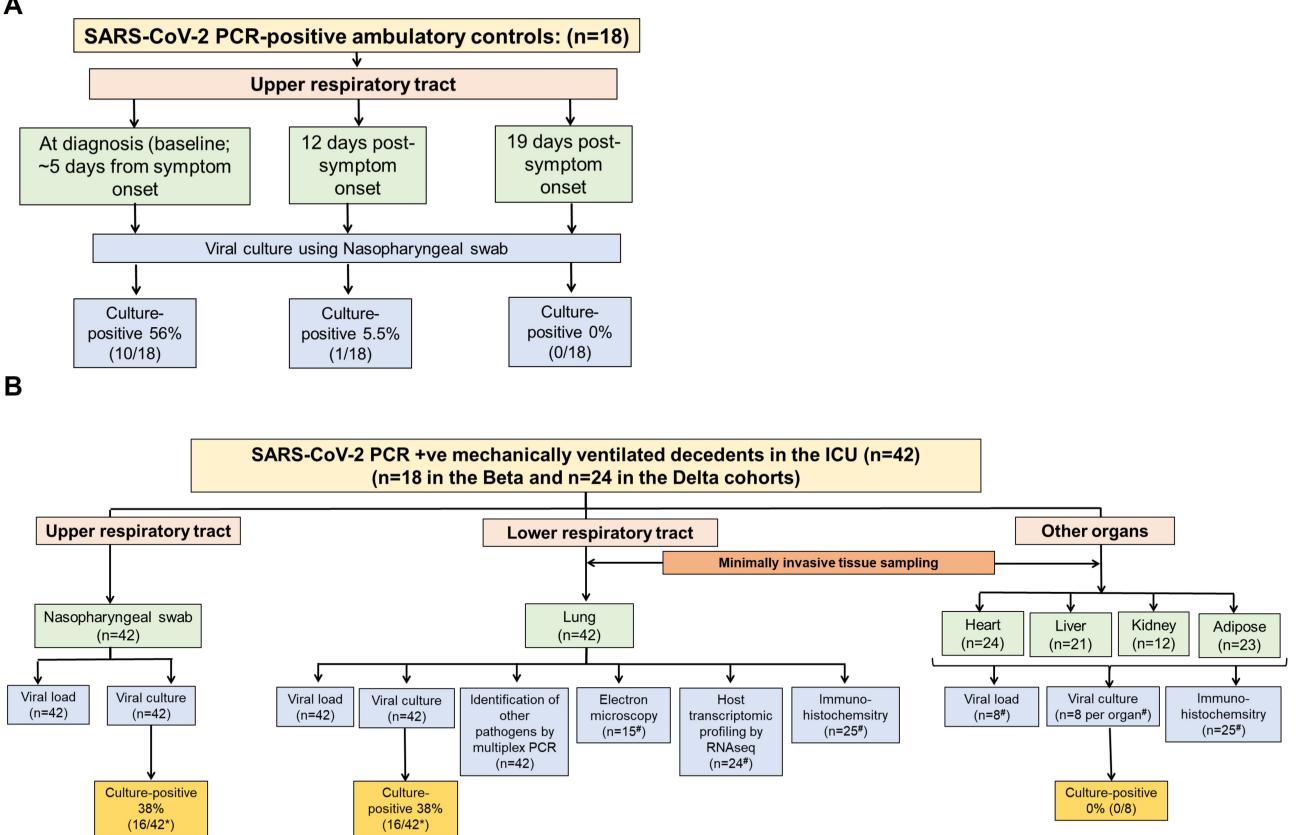
- The study was funded by the Bill & Melinda Gates Foundation (grant number INV-017282) 549 and the South African Medical Research Council (grant number SHIP NCD 96756) with partial 550 551 support from the Department of Science and Technology and National Research Foundation: 552 South African Research Chair Initiative in Vaccine Preventable Diseases. The KD lab 553 acknowledges funding from the SA MRC (RFA-EMU-02-2017), EDCTP (TMA-2015SF-1043, 554 TMA-1051-TESAIII, TMA-CDF2015), UK Medical Research Council (MR/S03563X/1), NIH (CRDF-OISE-16-62105) and the Wellcome Trust (MR/S027777/1). This work was co-funded 555 556 by The Wellcome Centre for Infectious Diseases Research in Africa is supported by core funding from the Wellcome Trust (230135/Z/16/Z) and the European Union's Horizon Europe 557 Research and Innovation Actions (101046041) for genomic surveillance. 558 559 The authors would like to thank the families of the deceased who gave us permission to conduct 560 the study, which may advance our understanding of SARS-CoV-2 pathogenesis to inform future 561 clinical management of respiratory pathogen pandemics. 562 563 564 565 566 567 568 569
- - -
- 570
- 571

572 **References.**

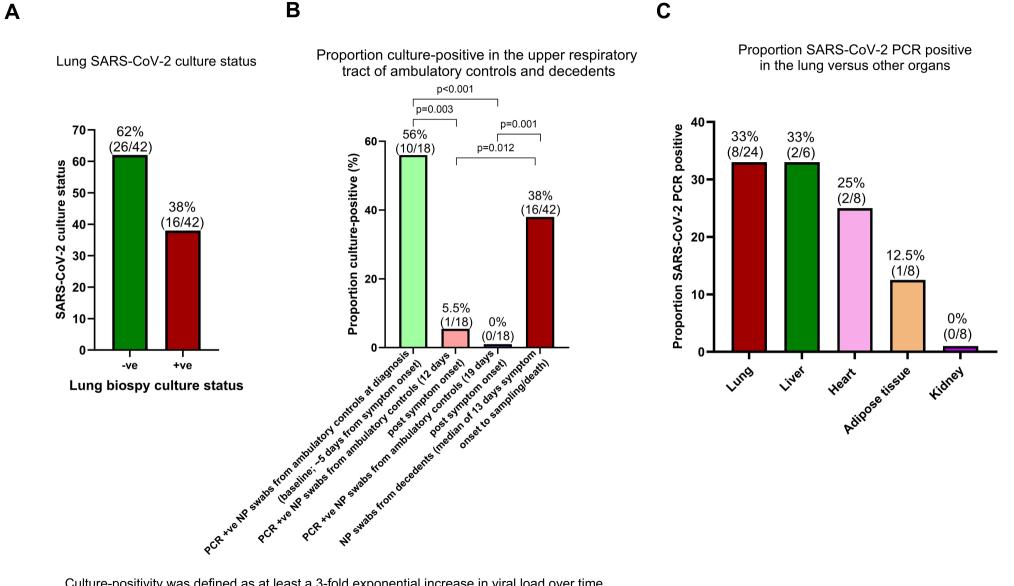
- 573 1. Davies MA, Morden E, Rosseau P, Arendse J, Bam JL, Boloko L, Cloete K, Cohen C, Chetty N, Dane P, Heekes A, Hsiao NY, Hunter M, Hussey H, Jacobs T, Jassat W, Kariem S, Kassanjee 574 575 R, Laenen I, Roux SL, Lessells R, Mahomed H, Maughan D, Meintjes G, Mendelson M, 576 Mnguni A, Moodley M, Murie K, Naude J, Ntusi NAB, Paleker M, Parker A, Pienaar D, Preiser 577 W, Prozesky H, Raubenheimer P, Rossouw L, Schrueder N, Smith B, Smith M, Solomon W, 578 Symons G, Taljaard J, Wasserman S, Wilkinson RJ, Wolmarans M, Wolter N, Boulle A. 579 Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by 580 Omicron lineages BA.4 and BA.5 compared with previous waves in the Western Cape Province, South Africa. Int J Infect Dis 2022; 127: 63-68. 581
- 582 2. Johns Hopkins University Center for Systems Science and Engineering. Accessed on: 18 December 583 2022. Available at: https://coronavirus.jhu.edu/map.html 2022.
- 3. Cai J, Deng X, Yang J, Sun K, Liu H, Chen Z, Peng C, Chen X, Wu Q, Zou J, Sun R, Zheng W, Zhao 584 585 Z, Lu W, Liang Y, Zhou X, Ajelli M, Yu H. Modeling transmission of SARS-CoV-2 Omicron 586 in China. Nat Med 2022; 28: 1468-1475.
- 587 4. Chen X, Yan X, Sun K, Zheng N, Sun R, Zhou J, Deng X, Zhuang T, Cai J, Zhang J, Ajelli M, Yu H. 588 Estimation of disease burden and clinical severity of COVID-19 caused by Omicron BA.2 in 589 Shanghai, February-June 2022. Emerg Microbes Infect 2022; 11: 2800-2807.
- 5. Colnago M, Benvenuto GA, Casaca W, Negri RG, Fernandes EG, Cuminato JA. Risk factors 590 associated with mortality in hospitalized patients with COVID-19 during the Omicron wave in 591 592 Brazil. Bioeng 2022; 9.
- 6. Gautret P, Hoang VT, Jimeno MT, Lagier JC, Rossi P, Fournier PE, Colson P, Raoult D. The severity 593 594 of the first 207 infections with the SARS-CoV-2 Omicron BA.2 variant, in Marseille, France, 595 December 2021-February 2022. J Med Virol 2022; 94: 3494-3497.
- 7. Jassat W, Mudara C, Ozougwu L, Tempia S, Blumberg L, Davies MA, Pillay Y, Carter T, Morewane 596 597 R, Wolmarans M, von Gottberg A, Bhiman JN, Walaza S, Cohen C, group Da. Difference in 598 mortality among individuals admitted to hospital with COVID-19 during the first and second 599 waves in South Africa: a cohort study. Lancet Glob 2021; 9: e1216-e1225.
- 8. Maruotti A, Ciccozzi M, Jona-Lasinio G. COVID-19-induced excess mortality in Italy during the 600 601 Omicron wave. IJID Reg 2022; 4: 85-87.
- 602 9. Maslo C MA, Laubscher A, Toubkin M, Sitharam L, Feldman C, Richards GA. COVID-19: A 603 comparative study of severity of patients hospitalized during the first and the second wave in 604 South Africa. MedRXiv 2021.
- 605 10. Ward IL, Bermingham C, Ayoubkhani D, Gethings OJ, Pouwels KB, Yates T, Khunti K, Hippisley-606 Cox J, Banerjee A, Walker AS, Nafilyan V. Risk of covid-19 related deaths for SARS-CoV-2 607 Omicron (B.1.1.529) compared with Delta (B.1.617.2): retrospective cohort study. BMJ 2022; 608 378: e070695.
- 609 11. Fontana LM, Villamagna AH, Sikka MK, McGregor JC. Understanding viral shedding of severe 610 acute respiratory coronavirus virus 2 (SARS-CoV-2): Review of current literature. Infect 611 Control Hosp Epidemiol 2021; 42: 659-668.
- 612 12. Ramos-Rincon JM, Herrera-Garcia C, Silva-Ortega S, Portilla-Tamarit J, Alenda C, Jaime-Sanchez FA. Arenas-Jimenez J, Fornes-Riera FE, Scholz A, Escribano I, Pedrero-Castillo V, Munoz-613 614 Miguelsanz C, Orts-Llinares P, Marti-Pastor A, Amo-Lozano A, Garcia-Sevila R, Ribes-615 Mengual I, Moreno-Perez O, Concepcion-Aramendia L, Merino E, Sanchez-Martinez R, Aranda I. Pathological findings associated with SARS-CoV-2 on postmortem core biopsies: 616 617 correlation with clinical presentation and disease course. Front Med 2022; 9: 874307.
- 13. Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, Sun J, Dickey JM, 618 Ylaya K, Ko SH, Platt AP, Burbelo PD, Quezado M, Pittaluga S, Purcell M, Munster VJ, 619 620 Belinky F, Ramos-Benitez MJ, Boritz EA, Lach IA, Herr DL, Rabin J, Saharia KK, Madathil 621 RJ, Tabatabai A, Soherwardi S, McCurdy MT, Consortium NC-A, Peterson KE, Cohen JI, de Wit E, Vannella KM, Hewitt SM, Kleiner DE, Chertow DS. SARS-CoV-2 infection and 622 623 persistence in the human body and brain at autopsy. Nature 2022; 612: 758-763.
- 624 14. Basile K, McPhie K, Carter I, Alderson S, Rahman H, Donovan L, Kumar S, Tran T, Ko D, 625 Sivaruban T, Ngo C, Toi C, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Dwyer DE,

- 626 Kok J. Cell-based culture informs infectivity and safe de-isolation assessments in patients with 627 coronavirus disease 2019. Clinical infectious diseases : an official publication of the Infectious 628 Diseases Society of America 2021; 73: e2952-e2959.
- 15. Berengua C, Lopez M, Esteban M, Marin P, Ramos P, Cuerpo MD, Gich I, Navarro F, Miro E, 629 630 Rabella N. Viral culture and immunofluorescence for the detection of SARS-CoV-2 infectivity 631 in RT-PCR positive respiratory samples. J Clin Virol 2022; 152: 105167.
- 632 16. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, Boodman C, Bello A, Hedley A, 633 Schiffman Z, Doan K, Bastien N, Li Y, Van Caeseele PG, Poliquin G. Predicting infectious 634 severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis 2020; 635 71: 2663-2666.
- 17. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, Xu H. Positive RT-PCR test results in patients recovered 636 637 from COVID-19. JAMA 2020; 323: 1502-1503.
- 638 18. Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ, Dai FH, Wu F, Song ZG, Huang W, Chen J, Hu BJ, Wang 639 S, Mao EQ, Zhu L, Zhang WH, Lu HZ. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J 2020; 133: 1039-1043. 640
- 641 19. Santos Bravo M, Berengua C, Marin P, Esteban M, Rodriguez C, Del Cuerpo M, Miro E, Cuesta G, 642 Mosquera M, Sanchez-Palomino S, Vila J, Rabella N, Marcos MA. Viral culture confirmed 643 SARS-CoV-2 subgenomic RNA value as a good surrogate marker of infectivity. J Clin 644 Microbiol 2022; 60: e0160921.
- 20. Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, Ladhani S, Zambon M, 645 Gopal R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in 646 cases of COVID-19, England, January to May 2020. Euro Surveill 2020; 25. 647
- 648 21. van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, van den Akker JPC, Endeman H, Gommers D, Cornelissen JJ, Hoek RAS, van der Eerden MM, Hesselink DA, 649 650 Metselaar HJ, Verbon A, de Steenwinkel JEM, Aron GI, van Gorp ECM, van Boheemen S, 651 Voermans JC, Boucher CAB, Molenkamp R, Koopmans MPG, Geurtsvankessel C, van der Eijk 652 AA. Duration and key determinants of infectious virus shedding in hospitalized patients with 653 coronavirus disease-2019 (COVID-19). Nat Commun 2021; 12: 267.
- 654 22. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, 655 Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S, Schneider J, Ehmann R, Zwirglmaier 656 K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. 657 Nature 2020; 581: 465-469.
- 658 23. Young BE, Ong SWX, Ng LFP, Anderson DE, Chia WN, Chia PY, Ang LW, Mak TM, Kalimuddin 659 S, Chai LYA, Pada S, Tan SY, Sun L, Parthasarathy P, Fong SW, Chan YH, Tan CW, Lee B, Rotzschke O, Ding Y, Tambyah P, Low JGH, Cui L, Barkham T, Lin RTP, Leo YS, Renia L, 660 Wang LF, Lye DC, Singapore Novel Coronavirus Outbreak Research T. Viral dynamics and 661 immune correlates of coronavirus disease 2019 (COVID-19) severity. Clin Infect Dis 2021; 73: 662 663 e2932-e2942.
- 664 24. Killingley B, Mann AJ, Kalinova M, Boyers A, Goonawardane N, Zhou J, Lindsell K, Hare SS, Brown J, Frise R, Smith E, Hopkins C, Noulin N, Londt B, Wilkinson T, Harden S, McShane 665 666 H, Baillet M, Gilbert A, Jacobs M, Charman C, Mande P, Nguyen-Van-Tam JS, Semple MG, 667 Read RC, Ferguson NM, Openshaw PJ, Rapeport G, Barclay WS, Catchpole AP, Chiu C. 668 Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. 669 Nat Med 2022; 28: 1031-1041.
- 25. Suvarna SK, Layton C, Bancroft JD. Banfords theory and practice of histology techniques. Elsevier 670 671 2018.
- 672 26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinform 2013; 29: 15-21. 673
- 27. Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, 674 675 Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson 676 C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Garcia Giron C, Grego T, Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T, Kaikala V, Kay M, Lavidas I, 677 Le T, Lemos D, Gonzalez Martinez J, Marugan JC, Maurel T, McMahon AC, Mohanan S, 678 679 Moore B, Muffato M, Oheh DN, Paraschas D, Parker A, Parton A, Prosovetskaia I, Sakthivel 680 MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Steed E, Szpak M, Szuba M, Taylor

- K, Thormann A, Threadgold G, Walts B, Winterbottom A, Chakiachvili M, Chaubal A, De 681 682 Silva N, Flint B, Frankish A, Hunt SE, GR II, Langridge N, Loveland JE, Martin FJ, Mudge 683 JM, Morales J, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P. Ensembl 2021. Nucleic Acids Res 2021; 49: D884-D891. 684
- 28. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, 685 686 Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov 2021; 687 2:100141.
- 688 29. Deniz S, Uysal TK, Capasso C, Supuran CT, Ozensoy Guler O. Is carbonic anhydrase inhibition 689 useful as a complementary therapy of Covid-19 infection? J Enzyme Inhib Med Chem 2021; 36: 690 1230-1235.
- 30. Levy Y, Wiedemann A, Hejblum BP, Durand M, Lefebvre C, Surenaud M, Lacabaratz C, Perreau 691 692 M, Foucat E, Dechenaud M, Tisserand P, Blengio F, Hivert B, Gauthier M, Cervantes-Gonzalez 693 M, Bachelet D, Laouenan C, Bouadma L, Timsit JF, Yazdanpanah Y, Pantaleo G, Hocini H, 694 Thiebaut R, French Ccsg. CD177, a specific marker of neutrophil activation, is associated with 695 coronavirus disease 2019 severity and death. iScience 2021; 24: 102711.
- 696 31. Fu J, Kong J, Wang W, Wu M, Yao L, Wang Z, Jin J, Wu D, Yu X. The clinical implication of 697 dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in 698 Suzhou China. Thromb Res 2020; 192: 3-8.
- 699 32. Aschenbrenner AC, Mouktaroudi M, Kramer B, Oestreich M, Antonakos N, Nuesch-Germano M, Gkizeli K, Bonaguro L, Reusch N, Bassler K, Saridaki M, Knoll R, Pecht T, Kapellos TS, 700 701 Doulou S, Kroger C, Herbert M, Holsten L, Horne A, Gemund ID, Rovina N, Agrawal S, Dahm 702 K, van Uelft M, Drews A, Lenkeit L, Bruse N, Gerretsen J, Gierlich J, Becker M, Handler K, 703 Kraut M, Theis H, Mengiste S, De Domenico E, Schulte-Schrepping J, Seep L, Raabe J, 704 Hoffmeister C, ToVinh M, Keitel V, Rieke G, Talevi V, Skowasch D, Aziz NA, Pickkers P, 705 van de Veerdonk FL, Netea MG, Schultze JL, Kox M, Breteler MMB, Nattermann J, 706 Koutsoukou A, Giamarellos-Bourboulis EJ, Ulas T, German C-OI. Disease severity-specific 707 neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med 2021; 708 13:7.
- 709 33. Zeng HL, Chen D, Yan J, Yang Q, Han QQ, Li SS, Cheng L. Proteomic characteristics of 710 bronchoalveolar lavage fluid in critical COVID-19 patients. The FEBS journal 2021; 288: 5190-711 5200.
- 34. Hudak A, Letoha A, Szilak L, Letoha T. Contribution of Syndecans to the Cellular Entry of SARS-712 713 CoV-2. Int J Mol Sci 2021; 22.
- 714 35. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we 715 know so far. Front Immunol 2020; 11: 1446.
- 716 36. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. 717 Science 2022; 375: 1122-1127.
- 37. Bhimraj A MR, Shumaker AH, Baden L, Cheng VC, Edwards KM, Gallagher JC, Gandhi RT, 718 Muller WJ, Nakamura MM, O'Horo JC, Shafer RW, Shoham S, Murad MH, Mustafa RA, 719 720 Sultan S, Falck-Ytte Y. IDSA Guidelines on the Treatment and Management of Patients with 721 COVID-19. Accessed on: 18 December 2022. Available at: https://www.idsociety.org/practice-722 guideline/covid-19-guideline-treatment-and-management/#Recommendations15-17:Remdesivir. 2022. 723
- 724 38. Chavda VP, Apostolopoulos V. Global impact of delta plus variant and vaccination. Expert Rev 725 Vaccines 2022; 21: 597-600.
- 726 39. Liu Y, Rocklov J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher 727 compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021; 28.
- 728 40. Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira I, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, 729 730 Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, 731 Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Indian S-C-GC, Genotype to Phenotype Japan C, Collaboration C-NBC-, 732 Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton 733 734 WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal

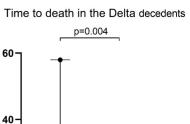

- 735 A, Gupta RK. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 736 2021; 599: 114-119.
- 737 41. Folgueira MD, Luczkowiak J, Lasala F, Perez-Rivilla A, Delgado R. Prolonged SARS-CoV-2 cell 738 culture replication in respiratory samples from patients with severe COVID-19. Clin Microbiol 739 Infect 2021; 27: 886-891.
- 740 42. Pechous RD, Malaviarachchi PA, Banerjee SK, Byrum SD, Alkam DH, Ghaffarieh A, Kurten RC, 741 Kennedy JL, Xuming Z. An ex vivo human precision-cut lung slice platform provides insight 742 into SARS2 CoV-2 pathogenesis and antiviral drug efficacy. bioRxiv 2023.
- 743 43. Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, Oguz C, Chen J, Liu C, Tang J, 744 Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, 745 Kardava L, Kirby M, Cheung F, Preite S, Duncker PC, Kitakule MM, Romero N, Preciado D, 746 Gitman L, Koroleva G, Smith G, Shaffer A, McBain IT, McGuire PJ, Pittaluga S, Germain RN, 747 Apps R, Schwartz DM, Sadtler K, Moir S, Chertow DS, Kleinstein SH, Khurana S, Tsang JS, 748 Mudd P, Schwartzberg PL, Manthiram K. Adaptive immune responses to SARS-CoV-2 persist 749 in the pharyngeal lymphoid tissue of children. Nat Immunol 2023; 24: 186-199.
- 750 44. Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Rossler A, Kimpel J, Adolph TE, Tilg H. Postacute 751 COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. 752 Gastroenterol 2022; 163: 495-506 e498.
- 753 45. Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X, Solomon IH, Kuo HH, Boucau J, Bowman K, Adhikari UD, Winkler ML, Mueller AA, Hsu TY, Desjardins M, Baden LR, Chan 754 755 BT, Walker BD, Lichterfeld M, Brigl M, Kwon DS, Kanjilal S, Richardson ET, Jonsson AH, 756 Alter G, Barczak AK, Hanage WP, Yu XG, Gaiha GD, Seaman MS, Cernadas M, Li JZ. 757 Persistence and evolution of SARS-CoV-2 in an immunocompromised host. NEJM 2020; 383: 758 2291-2293.
- 759 46. Griffin I, Woodworth KR, Galang RR, Burkel VK, Neelam V, Siebman S, Barton J, Manning SE, 760 Aveni K, Longcore ND, Harvey EM, Ngo V, Mbotha D, Chicchelly S, Lush M, Eckert V, Dzimira P, Sokale A, Valencia-Prado M, Azziz-Baumgartner E, MacNeil A, Gilboa SM, Tong 761 762 VT. Recurrent SARS-CoV-2 RNA detection after COVID-19 illness onset during pregnancy. 763 Emerg Infect Dis 2022; 28: 873-876.
- 47. Rodriguez-Grande C, Alcala L, Estevez A, Sola-Campoy PJ, Buenestado-Serrano S, Martinez-764 765 Laperche C, Manuel de la Cueva V, Alonso R, Andres-Zavas C, Adan-Jimenez J, Losada C, 766 Rico-Luna C, Comas I, Gonzalez-Candelas F, Catalan P, Munoz P, Perez-Lago L, Garcia de 767 Viedma D, Gregorio Maranon Microbiology IDCSG. Systematic genomic and clinical analysis 768 of severe acute respiratory syndrome coronavirus 2 reinfections and recurrences involving the same strain. Emerg Infect Dis 2022; 28: 85-94. 769
- 48. Alexandersen S, Chamings A, Bhatta TR. SARS-CoV-2 genomic and subgenomic RNAs in 770 771 diagnostic samples are not an indicator of active replication. Nat Commun 2020; 11: 6059.
- 772 49. Hwang HS, Lo CM, Murphy M, Grudda T, Gallagher N, Luo CH, Robinson ML, Mirza A, Conte 773 M, Conte A, Zhou R, Vergara C, Brooke CB, Pekosz A, Mostafa HH, Manabe YC, Thio CL, 774 Balagopal A. Characterizing SARS-CoV-2 transcription of subgenomic and genomic RNAs 775 during early human infection using multiplexed droplet digital polymerase chain reaction. J776 Infect Dis 2023; 227: 981-992.
- 50. WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with 777 778 COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. 779 Lancet 2022; 399: 1941-1953.
- 780 51. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, 781 Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, 782 Ruiz-Palacios GM, Benfield T, Fatkenheuer G, Kortepeter MG, Atmar RL, Creech CB, 783 784 Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, 785 Osinusi A, Navak S, Lane HC, Members A-SG. Remdesivir for the treatment of Covid-19 final report. NEJM 2020; 383: 1813-1826. 786
- 52. Lapadula G, Bernasconi DP, Bellani G, Soria A, Rona R, Bombino M, Avalli L, Rondelli E, 787 788 Cortinovis B, Colombo E, Valsecchi MG, Migliorino GM, Bonfanti P, Foti G, Remdesivir-Ria

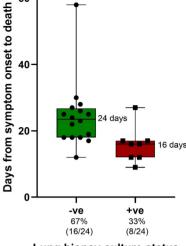
medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

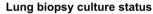

perpetuity. It is made available under a CC-BY-ND 4.0 International license .

789 Study G. Remdesivir use in patients requiring mechanical ventilation due to COVID-19. Open 790 Forum Infect Dis 2020; 7: ofaa481.

- 791 53. Pasquini Z, Montalti R, Temperoni C, Canovari B, Mancini M, Tempesta M, Pimpini D, Zallocco N, Barchiesi F. Effectiveness of remdesivir in patients with COVID-19 under mechanical 792 793 ventilation in an Italian ICU. J Antimicob Chemother 20; 75: 3359-3365.
- 794 54. Budhraja A, Basu A, Gheware A, Abhilash D, Rajagopala S, Pakala S, Sumit M, Ray A, 795 Subramaniam A, Mathur P, Nambirajan A, Kumar S, Gupta R, Wig N, Trikha A, Guleria R, 796 Sarkar C, Gupta I, Jain D. Molecular signature of postmortem lung tissue from COVID-19 797 patients suggests distinct trajectories driving mortality. Dis Model Mech 2022; 15.
- 798 55. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro AF, Amin AD, 799 Schapiro D, Frangieh CJ, Luoma AM, Filliol A, Fang Y, Ravichandran H, Clausi MG, Alba 800 GA, Rogava M, Chen SW, Ho P, Montoro DT, Kornberg AE, Han AS, Bakhoum MF, 801 Anandasabapathy N, Suarez-Farinas M, Bakhoum SF, Bram Y, Borczuk A, Guo XV, 802 Lefkowitch JH, Marboe C, Lagana SM, Del Portillo A, Tsai EJ, Zorn E, Markowitz GS, 803 Schwabe RF, Schwartz RE, Elemento O, Saqi A, Hibshoosh H, Que J, Izar B. A molecular 804 single-cell lung atlas of lethal COVID-19. Nature 2021; 595: 114-119.
- 56. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, 805 806 inflammation and intervention. Mat Rev Immunol 2020; 20: 363-374.
- 57. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, Engel 807 JJ, Wiersinga WJ, Vlaar APJ, Shankar-Hari M, van der Poll T, Bonten M, Angus DC, van der 808 Meer JWM, Netea MG. A guide to immunotherapy for COVID-19. Nat Med 2022; 28: 39-50. 809
- 58. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, Liu F, Zhou T, Israelow B, Wong P, Coppi 810 811 A, Lucas C, Silva J, Oh JE, Song E, Perotti ES, Zheng NS, Fischer S, Campbell M, Fournier JB, Wyllie AL, Vogels CBF, Ott IM, Kalinich CC, Petrone ME, Watkins AE, Yale IT, Dela 812 813 Cruz C, Farhadian SF, Schulz WL, Ma S, Grubaugh ND, Ko AI, Iwasaki A, Ring AM. Diverse functional autoantibodies in patients with COVID-19. Nature 2021; 595: 283-288. 814
- 815 59. Wang S, Yao X, Ma S, Ping Y, Fan Y, Sun S, He Z, Shi Y, Sun L, Xiao S, Song M, Cai J, Li J, Tang R, Zhao L, Wang C, Wang Q, Zhao L, Hu H, Liu X, Sun G, Chen L, Pan G, Chen H, Li Q, 816 Zhang P, Xu Y, Feng H, Zhao GG, Wen T, Yang Y, Huang X, Li W, Liu Z, Wang H, Wu H, 817 Hu B, Ren Y, Zhou Q, Qu J, Zhang W, Liu GH, Bian XW. A single-cell transcriptomic 818 819 landscape of the lungs of patients with COVID-19. Nat Cell Biol 2021; 23: 1314-1328.
- 820 60. Deinhardt-Emmer S, Wittschieber D, Sanft J, Kleemann S, Elschner S, Haupt KF, Vau V, Haring C, Rodel J, Henke A, Ehrhardt C, Bauer M, Philipp M, Gassler N, Nietzsche S, Loffler B, Mall 821 G. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the 822 correlation with tissue damage. Elife 2021; 10. 823

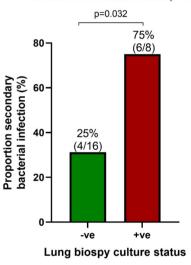



*The 16 decedents that were nasopharyngeal culture-positive were not the same patients that were lung culture-positive. #Immunohistochemistry, RNAseq, electron microscopy and viral culture of other organs was only performed on the Delta cohort.



Culture-positivity was defined as at least a 3-fold exponential increase in viral load over time.

preprint (which was not certified by peer review) is the author/funder, who has granted medicate indense to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license .



F

Proportion secondary bacterial infection in the Delta cohort (n=24)

-ve

62% (26/42)

Proportion secondary bacterial

infection in the Beta and Delta cohort (n=42)

p=0.28

Lung biopsy culture status

Time to death in the Beta and Delta

decedents combined

p=0.112

15 days

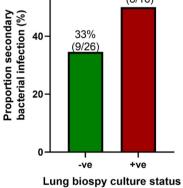
Ε

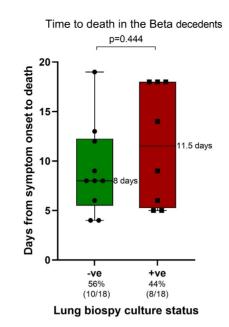
+ve

38% (16/42)

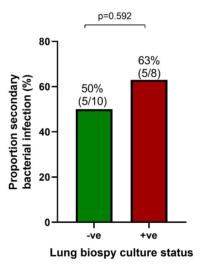
Α

60

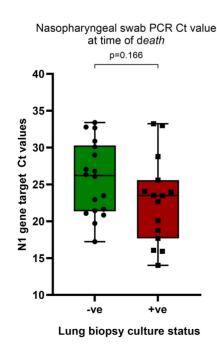

40

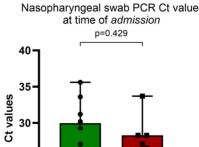

20

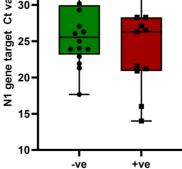
0


D

Days from symptom onset to death






Proportion secondary bacterial infection in the Beta cohort (n=18)

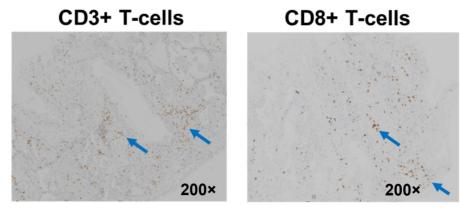
G

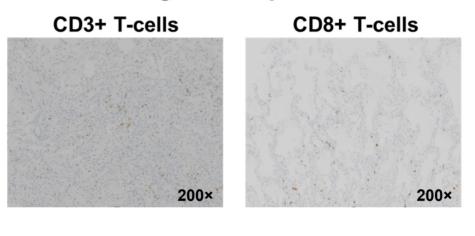
Lung biopsy culture status

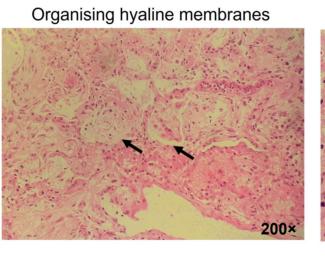
Proportion of CD3+ T-cells and CD8+ T-cells infiltrating into the alveoli and interstitial space in culture-negative and culture-positive individuals in the Delta group

medRxiv preprint	preprint doi: https://doi.org/10.1101/2023.03.06.232868 4 1119 @rscolldstd:@nstattuse. (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in Frequency of It is made available under a CC-BY-ND 4.0 International license.			
	infiltration into the			
	alveoli			
	CD3+			
	Medium	55%(6/11)	0%(0/7)	0.038
	High	0% (0/11)	0%(0/7)	N/A
	CD8+			
	Medium	54.5%(6/11)	0%(0/7)	0.038
	High	0% (0/11)	0%(0/6)	N/A

С


Key histopathological findings in the of the culturenegative and culture-positive individuals in the Delta group

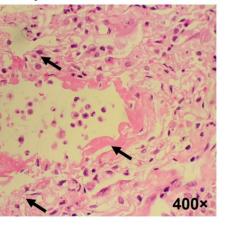

Lung culture status Lung histology -ve (n=20♠) +ve (n=13*) p-value Alveolar hyaline 16/20 (80%) 8/13 (61.5%) 0.425 membranes Microvascular 6/20 (30%) 5/13 (38.5%) 0.714 thrombosis Organising hyaline 9/12(75%) 6/7 (86%) 1 membranes Type II pneumocytes 20/20 (100%) 10/13 (77%) 0.052 proliferation 6/20 (30%) 4/13 (31%) Organising pneumonia 1 14/20(70%) 3/13 (23%) 0.013 Lung haemophagocytosis


D

В

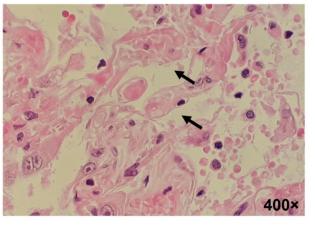
Representative images showing CD3+ and CD8+ T-cells infiltration into the alveoli and interstitial space of the lung in culture-negative compared to culturepositive individuals in the Delta decedents

Neutrophil infiltration into the alveoli

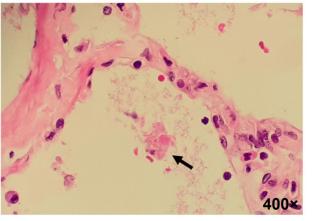

Α

Lung culture-negative

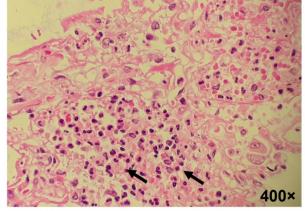
Lung culture-positive

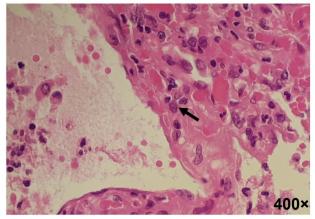

Both culture-positive and culture-negative decedents present with histopathological findings typically associated with SARS-CoV-2 pneumonia

Alveolar hyaline membranes

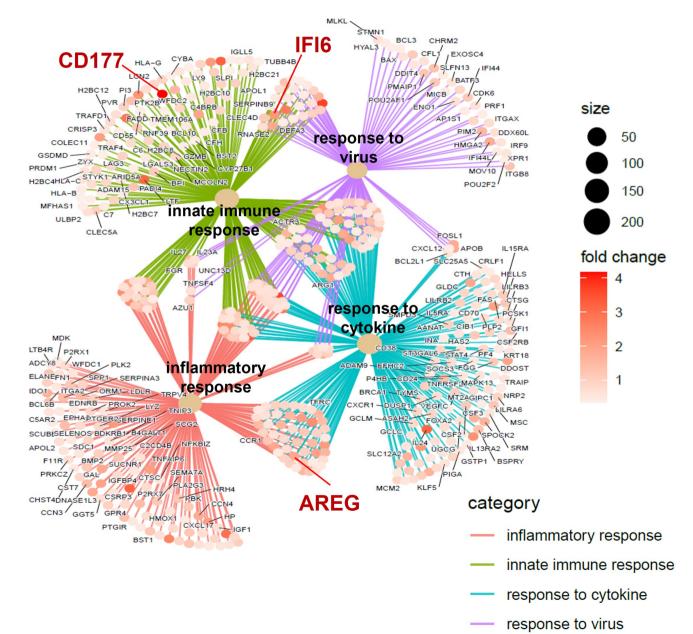


Proliferating type 2 pneumocytes


Microvascular thrombosis


Lung haemophagocytosis

Organising pneumonia


Pulmonary vascular endotheliopathy

Enrichment of inflammatory, innate immune and enhanced SARS-CoV-2 entry pathways in the culture-positive versus culture-negative group

B activated suppressed response to molecule of bacterial origin response to cytokine innate immune response defense response to bacterium cellular response to cytokine stimulus response to bacterium response to virus inflammatory response · taxis chemotaxis number of genes innate immune response muscle structure development -50 mitotic cell cycle process response to cytokine GeneRatio response to bacterium -100 taxis inflammatory response cellular response to cytokine stimulus leukocyte migration -0.3 leukocyterchemotaxis 150 response to virus -0.4 chemotaxis myeloid leukocyte migratiokine-mediated signaling pathway organismal movement nuclear division 0.5 leukocyte migration regulation of ion transport -200 regulation of transmembrane musculoskeletal movement cell chemotaxis transport neuromuscular process muscle system process positive regulation of cell motility p.adjust cell chemotaxis p.adjust skeletal muscle contraction 4e-07 muscle organ development -2.0e-09 muscle cell differentiation · 3e-07 muscle contraction 1.5e-09 myeloid leukocyte migration -2e-07 Activated muscle system process 1.0e-09 muscle contraction -1e-07 leukocyte chemotaxis -5.0e-10 defense response to bacterium regulation of transporter mitotic cell cycle process skeletal muscle tissue muscle organ, development development cell division muscle cell development · skeletal muscle organ skeletal muscle organ development nuclear division development muscle structure development neuromuscular process · chromosome segregationmulticellular organismal movement skeletal muscle tissue development musculoskeletal movement skeletal muscle contraction -Repressed 100 150 200 250 100 150 200 250 50 50 Count

Association of the innate immune response, response to virus, response to cytokine, inflammatory pathways and genes upregulated in the culture-positive group compared to the culture-negative group

ONLINE DATA SUPPLEMENT

SARS-CoV-2 viral replication persists in the human lung for several weeks after symptom onset

Tomasicchio M^{1,2}, Jaumdally S^{1,2}, Wilson L^{1,2}, Kotze A^{1,2}, Semple L^{1,2}, Meier S^{1,2}, Pooran A^{1,2}, Esmail A^{1,2}, Pillay K⁵, Roberts R⁵, Kriel R⁵, Meldau R^{1,2}, Oelofse S^{1,2}, Mandviwala C^{1,2}, Burns J^{1,2}, Londt R^{1,2}, Davids M^{1,2}, van der Merwe^{1,2} C, Roomaney A^{1,2}, Kühn L^{1,2}, Perumal T^{1,2}, Scott A.J^{1,2}, Hale M.J⁶, Baillie V⁷, Mahtab S⁷, Williamson C⁸, Joseph R⁸, Sigal A⁹, Joubert I¹⁰, Piercy J¹⁰, Thomson D¹⁰, Fredericks DL¹⁰, Miller MGA¹⁰, Nunes M.C⁷, Madhi S.A⁷, Dheda K^{1,2,3,4}.

¹Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, Cape Town, South Africa.

² South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.

³ Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.

⁴ Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.

⁵ Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa

⁶ Division of Anatomical Pathology, Faculty of Health Sciences, University of the Witwatersrand.

⁷ South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg,

South Africa; Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

⁸ Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine,

University of Cape Town, Cape Town, South Africa.

⁹ Africa Health Research Institute, Durban, South Africa.

¹⁰ Division of Critical Care, Department of Anaesthesia and Perioperative Medicine, University

of Cape Town, South Africa

Correspondence: Keertan Dheda, Centre for Lung Infection and Immunity, Division of Pulmonology and UCT Lung Institute, Dept of Medicine, University of Cape Town, South Africa. E-mail: keertan.dheda@uct.ac.za

Methods.

Viral culture.

The cell line was maintained in Roswell Parks Memorial medium (RPMI) containing 10% foetal bovine serum, 100 IU penicillin/streptomycin, 2 mM L-glutamine, 25 mM HEPES, 1× non-essential amino acids and 0.1 mg/mL sodium pyruvate (ThermoFisher, South Africa; Figure S1). The nasopharyngeal swabs in universal transport medium (UTM) were initially filtered through a 0.22 μ m filter prior to inoculation. The lung biopsy samples were placed in the well containing the cellular monolayer. The inoculated cultures were grown in a humidified 37°C incubator with 5% CO₂ and cytopathic effect (CPE) and viral replication were monitored on days 1, 3, 6 and 9 by PCR. Viral culture positivity was defined as at least a 3-fold increase in viral load over time. Viral culture reproducibility was performed by a single observer with a total of 6 different viral culture experiments. Each viral culture was performed over a 6-day period with 3 sampling time points (days 1, 3 and 6) and the experiments were all plotted over the assay timepoints to enable line fitment between the data points. A R² value of 0.94 (p=0.017) was obtained (1 being a perfect value), which indicated that the assay was highly reproducible.

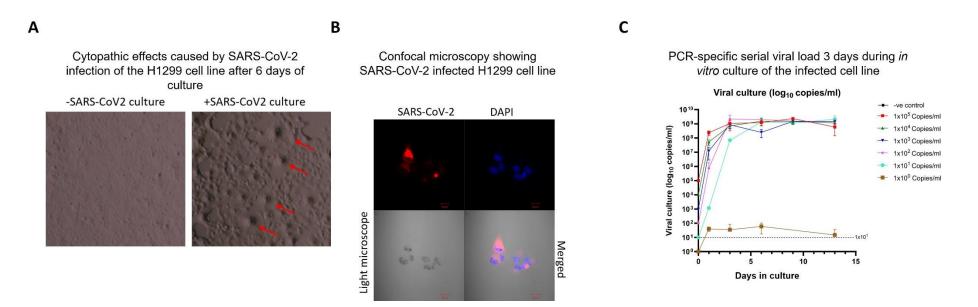
Immunohistochemistry.

Sections between 3-4µm thick were placed on adhesive slides and fixed at 37°C overnight. Heat induced epitope retrieval (HIER) time was set to 60 minutes to prevent tissue wash off and possible background staining. The antibodies (anti-CD3 [2GV6], anti-CD4 [SP35], anti-CD8 [SP57] and anti-CD68 [KP-1]; Roche USA) were incubated with the tissue sections for 30 minutes. After antibody and counter staining, slides were visualised using an Olympus BX41 microscope at 40x magnification.

SARS-CoV-2 whole genome sequencing.

Total SARS-CoV-2 RNA was extracted from lung biopsy samples using the ChemagicTM 360 automated system (PerkinElmer, Inc, Waltham, MA) according to the chemagic Viral300 360 H96 drying prefilling VD200309.che protocol. Whole genome amplification and library preparation were performed using the Illumina COVIDSeq Test kit and protocol 1000000128490 v02 (Illumina, Inc., San Diego, CA), and executed on the Hamilton Next Generation StarLet (Hamilton Company). Whole genome amplification was achieved via multiplex polymerase chain reaction performed with the ARTIC V4.1 primers designed to generate 400-bp amplicons with an overlap of 70 bp that spans the 30 kb genome of SARS-CoV-2. Indexed paired-end libraries were normalized to 4 nM concentration, pooled, and denatured with 0.2 N sodium acetate. A 4pM pooled library was spiked with 1% PhiX Control v.3 adaptor-ligated library (Illumina, Inc., San Diego, CA) and sequenced using the MiSeq® Reagent Kit v2 (500 cycle) and sequenced on the MiSeq instrument (Illumina, Inc., San Diego, CA). The quality of sequencing reads was assessed using different tools including FastQC, Fastp, Fastp, Fastg screen, and Fastx toolkit. The resulting reads were analysed on Exatype (https://exatype.com/) for referenced-based genome assembly to identify minor and major variants. The assembled consensus sequences were analyzed using Nextclade Web (https://clades.nextstrain.org) for further quality control and clade assignment.

RNAseq.


RNAseq was performed on lung post-mortem biopsy samples from 24 individuals which included 8 that were COVID culture-positive and 16 that were culture-negative.

Total RNA was extracted from lung biopsy samples using the RNeasy mini plus kit (Qiagen). Ribosomal depletion was performed, and libraries were prepared using the MGIEasy RNA Library Prep Set (Cat. No.: 1000006383, 1000006384, MGI, Shenzhen, China) as per

manufacturer's instructions. Sequencing was performed at the South African Medical Research Council Genomics Centre using DNA nanoball-based technology on the DNBSEQ-G400 (BGI, Shenzhen China) instrument generating 100 bp unstranded paired-end reads. The FastQC program [version 0.11.9; (1)], was used to assess read quality. The Spliced Transcripts Alignment to a Reference (STAR) software [version STAR_2.7.7a; (2)] was used to map reads consecutively to the Ensembl (3) human genome primary assembly (version GRCh38.109) and the SARS CoV-2 reference (ASM985889v3) with the quantMode and GeneCounts option selected to generate raw genewise read counts for each sample. A number of samples failed to pass QC due to a low number of mapped reads (< 2 million). A total of six culture-positive and five culture-negative samples were used in subsequent analysis.

The differential expression (DE) analysis was performed with the edgeR [version 3.38.4; (4)] Bioconductor (5) package. Briefly, raw counts were filtered to remove genes with low expression, normalized, and negative binomial generalized linear models were fitted. The likelihood ratio test was used to identify DE genes when comparing culture-positive to culture-negative samples.

A gene set enrichment analysis (GSEA) for Gene Ontology (Biological Process) was performed on the DE results ranked by fold change using the gseGO function, from the R clusterProfiler (ver: .4.4.4, PMID: 34557778) package.

Figure S1. *In vitro* **culture of SARS-CoV-2.** (**A**) Light microscope images showing SARS-CoV-2 viral-induced cytopathic effects (red arrow). (**B**) Confocal microscopy showing SARS-CoV-2 (red) infecting the cell line. DAPI (blue) was used as the nuclear stain. (**C**) The limit of detection (LOD) for the PCR assay to detect replicating competent SARS-CoV-2. SARS-CoV-2 viral stock was diluted in 10-fold dilutions from 1×10^5 to 1 copy/ml and co-cultured with confluent H1299 ACE2 cells in a 24-well plate for 9 days. Aliquots were analysed by PCR for viral load on days 1, 3, 6 and 9. The relative viral load (copies/ml) are shown. The dotted line represents the LOD for viral load $(1 \times 10^1 \text{ copies/ml})$.

Supplementary results.

Table S1. Demographic and clinical characteristics of the decedents.

	All	Lung biopsy	Lung biopsy	Univariat	Multivariate
	Patients	culture-positive	culture-	е	[#] p-value
	n=42	n=16	negative	[#] p-value	
			n=26		
Gender				0.758	0.758
Male	47.6%	43.8% (7/16)	50% (13/26)		
	(20/42)				
Female	52.3%	56.3% (9/16)	50% (13/26)		
	(22/42)				
Median age in years	53 (41-62)	58.5 (45.5-64)	49.5 (41-60)	0.2	-
(range)					
Admission to ICU					
[§] BMI status					
Underweight	37.5%	25% (2/8)	43.8% (7/16)	0.657	
	(9/24)				
Normal	25% (6/24)	25% (2/8)	25% (4/16)	-	
Overweight	25% (6/24)	25% (2/8)	18.8% (3/16)	-	
Obese	4% (1/24)	12.5% (1/8)	5% (1/16)	-	
Morbidly obese	12.5%	12.5% (1/8)	6% (1/16)	-	
	(3/24)				
Unknown	83.3%	62.5% (5/8)	93.8% (15/16)	0.091	
	(20/24)				
*Co- morbidities					
COPD/Chronic	16.6%	12.5% (1/8)	18.8% (3/16)	-	0.536

	It is made avail	able under a CC-BY-ND	4.0 International license .		
bronchitis	(4/24)				
Obesity	41.7%	50% (4/8)	37.5% (6/16)	0.415	-
	(10/24)				
Diabetes	16.6%	25% (2/8)	12.5% (2/16)	0.589	0.673
	(4/24)				
Cancer	33.3%	12.5% (1/8)	43.8% (7/16)	0.189	0.578
	(8/24)				
Hypertension	8.3%	12.5% (1/8)	6% (1/16)	-	0.189
	(2/24)				
^w Other	4% (1/24)	0% (0/8)	6% (1/16)	-	-
HIV-positive	14.3%	18.8% (3/16)	11.5% (3/26)	0.658	0.392
	(6/42)				
*Vaccination status					
Yes	12.5%	0% (0/8)	18.8% (3/16)	0.526	
	(3/24)				
No	87.5%	100% (8/8)	81.2% (13/16)	0.526	
	(21/24)				
Smoker	7.1%	12.5% (2/16)	3.8% (1/26)	0.547	
	(3/42)				
SARS-CoV-2 variant					
detected in the Beta					
group by whole					
genome sequencing					
Beta B1.1.448	12.5%	12.5% (1/8)	-	-	
	(1/8)				

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4	4.0 International license .

	It is made avail	able under a CC-BY-ND	4.0 International license .		
Beta V2	25% (2/8)	25% (2/8)	-	-	
Unknown	83.3%	62.5% (5/8)	100% (10/10)	-	
	(15/18)				
SARS-CoV-2 variant					
detected in the Delta					
group by whole					
genome sequencing					
Alpha V1	4% (1/24)	12.5% (1/8)	0% (0/16)	0.149	
Beta V2	4% (1/24)	0% (0/8)	6.3% (1/16)	0.470	
Delta 21J	29.2%	25% (2/8)	31.3% (5/16)	0.751	
	(7/24)				
Unknown	62.5%	50% (4/8)	68.8% (11/16)	0.371	
	(15/24)				
Secondary bacterial					
infection present					
(Biofire multiplex					
PCR)					
Yes	40.5%	50% (8/16)	34.6% (9/26)	0.518	0.518
	(17/42)				
No	57.1%	50% (8/16)	61.5% (16/26)	0.518	
	(24/42)				
Unknown	2.4%	0% (0/16)	3.8% (1/26)	-	
	(1/42)				
Bacterial	11% (4/38)	21% (3/14)	4% (1/24)	0.132	0.443
bronchopneumonia					
(microbiologically					
and					

	It is made avail	able under a CC-BY-ND	4.0 International license .		
histopathologically					
confirmed)					
Steroid usage					
Yes	79.5 %	62.5% (10/16)	88.5% (23/26)	0.063	0.063
	(33/42)				
No	21.4%	37.5% (6/16)	11.5% (3/26)	0.063	
	(9/42)				
Median days of	8 days (4.5-	4.5 days (2.5-	8 days (4.5-12)	0.015	
steroid usage (IQR)	12)	6.5)	n=16		
	n=24	n=8			
COVID-19 status at					
admission as assessed					
by nasopharyngeal					
swab PCR					
PCR positive	90.5%	93.8% (15/16)	88.5% (23/26)	-	-
	(38/42)				
COVID-19 antigen	7.1%	6.3% (1/16)	11.5% (3/26)	-	
positive (no PCR	(3/42)				
result)					
Unknown	2.4%	0% (0/16)	3.8% (1/26)	-	
	(1/42)				
Median Ct (IQR)	26.1 (21.6-	26.3 (20.9-28.3)	25.6 (23.4-	0.429	
	28.3)	n=11	29.7)		
	n=27		n=16		
Ct value unknown	n=11	n=4	n=7		
COVID-19 status at					
time of MITS as					

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

	F = 1 = 1 = 1 = 1 = 1	
It is made available	nder a CC-BY-ND 4.0 International licen	ise.

assessed by	it is made avai	able under a CC-BY-ND 4	.0 International license .		
nasopharyngeal swab					
PCR					
PCR positive	85.7%	100% (16/16)	76.9% (20/26)	0.067	0.003
	(36/42)				
PCR negative	14.3%	0% (0/16)	23.1% (6/26)	0.067	
	(6/42)				
Median Ct (IQR)	23.5 (20.5-	23.5 (17.7-25.6)	26.2 (21.4-	0.166	
	29.9)	n=15	30.1)		
	n=33		n=18		
Ct value unknown	n=9	n=1	n=8		
Median time from	17 (4-58)	15 (5-27)	18 (4-58)	0.112	0.78
onset of symptoms to	n=42	n=16	n=26		
death (range)					
Median days from	5 days (1-	3 days (1-17)	8 days (0-48)	0.061	0.043
admission to ICU to	48)	n=16	n=26		
death (range)	n=42				
Median days from	11 days (1-	7 days (1-17)	13 days (5-24)	0.053	0.046
administration of	24)	n=7	n=16		
high flow nasal	n=23 ^D				
oxygen to death					
(range)					

[#]p-values are for comparison between lung culture-positive and negative.

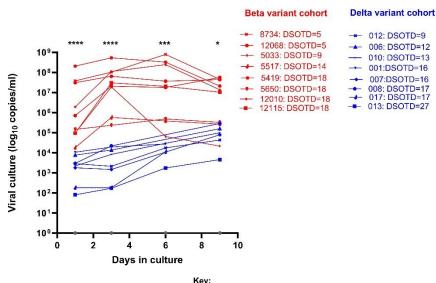
[§]BMI status was only recorded for the Delta group.

*Co-morbidities were only recorded for the Delta group. No patients had asthma, current TB, other chronic

lung disease, cardiovascular disease, CVA/stroke, malnutrition, organ failure/disease, anaemia, epilepsy,

malignancy, on prior steroids or immunosuppressive therapy.

^a Vaccination status was only recorded for the Delta group.


^wPatients with dyslipidemia, ex-smoker, previous lateral medullary syndrome, previous alcohol use, and

history of ischemic heart disease.

^gCt value at day of MITS sampling missing for 9 patients.

"Either the viral load was too low, or the sample was not available."

^D Only recorded for the Delta group.

Lung biospy viral culture in the Beta and Delta cohort

Key: DSOTD=Days symptom onset to death

Figure S2. In vitro viral culture of lung biopsies from MV decedents. Description of a new SARS-CoV-2 human biophenotype that has ongoing viral replication in lung for up to 27 days post symptom onset. The lung cancer cell line, H1299 ACE2, was used to culture SARS-CoV-2. The lung biopsy samples were removed and placed in the well containing the cellular monolayer. The inoculated cultures were grown in a humidified 37°C incubator and viral replication were monitored on days 1, 3, 6 and 9 by PCR. DSOTD=days symptom onset to death.

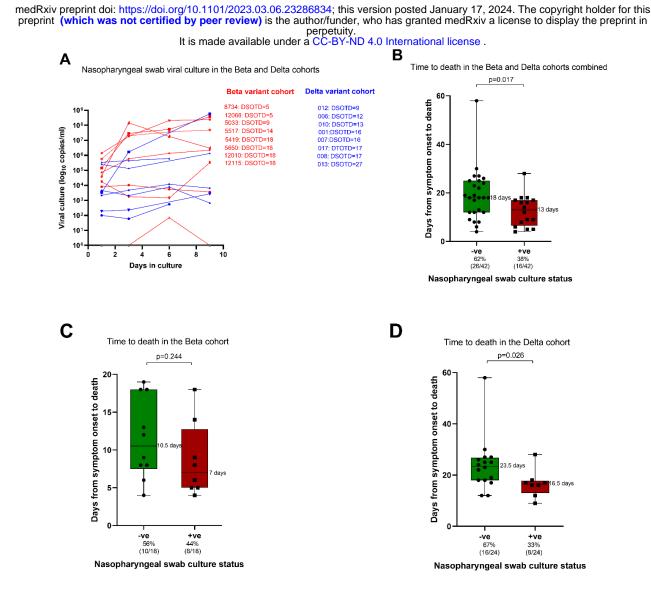


Figure S3. Previously ventilated decedents had active replicating virus in the URT for up to 27 days post symptom onset to death. (A) The lung cancer cell line, H1299 ACE2, was used to culture SARS-CoV-2. The nasopharyngeal swabs in universal transport medium were initially filtered through a 0.22μ m filter prior to inoculation. The inoculated cultures were grown in a humidified 37°C incubator with 5% CO₂ and cytopathic effect (CPE) and viral replication were monitored on days 1, 3, 6 and 9 by PCR. The days from symptom onset to death for the culture-negative (-ve; green) and culture-positive (+ve; red) groups are shown. The dotted lines represent the median days from symptom onset to death for the lung culture-positive (13 days) and lung culture-negative (18 days) decedents. The days from symptom onset to death for the culturenegative (-ve; green) and culture-positive (+ve; red) groups are shown for the Beta (B) and Delta (C) cohorts. The median days from symptom onset to death for the Beta cohort and 16.5 days for the Delta cohort) and culture-negative (10.5 days for the Beta cohort and 23.5 days for the Delta cohort) participants are shown.

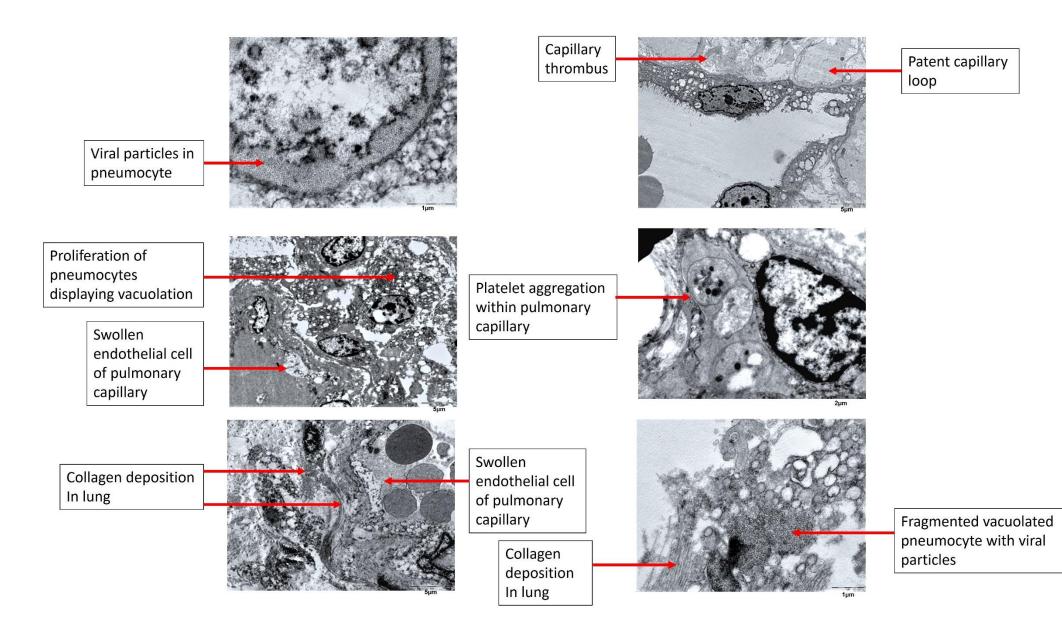


Figure S4. Electron micrographs of key clinical features of lung abnormalities associated with acute COVID-19 disease.

The size of the representative scale bars are shown.

Table S2. Histopathological data of the combined study cohort.

Histology Tissue	All patients	culture-	culture-	p-value
	n=33*	positive	negative	
		patients	patients	
		n=13	n=20	
LUNG				
Alveolar hyaline membranes	24/33	8/13	16/20	0.425
	(73%)	(61.5%)	(80%)	
Interstitial oedema	7/19 (37%)	3/7	4/12 (33%)	-
		(43%)		
Collapsed alveoli	9/33 (27%)	3/13	6/20 (30%)	-
		(23%)		
Pneumocyte denudation/necrosis	24/33	9/13	15/20	-
	(73%)	(69.2%)	(75%)	
Endothelial necrosis	5/19 (26%)	3/7	2/12 (17%)	0.305
		(43%)		
Vascular neutrophil aggregate	6/19 (32%)	3/7	3/12 (25%)	0.617
		(43%)		
Micro-thromboembolic	11/33	5/13	6/20 (30%)	0.714
	(33%)	(38.5%)		
Pulmonary haemorrhage	14/33	3/13	11/20	0.087
	(42%)	(23%)	(55%)	
Pulmonary endothelialitis	5/19 (26%)	2/7	3/12 (25%)	-
		(29%)		
Organising hyaline membranes	15/19	6/7	9/12 (75%)	-
	(79%)	(86%)		

It is made available ur	nder a CC-BY-ND 4.	0 International lic	ense.	
Fibroblasts/myofibroblasts	16/19	6/7	10/12	-
proliferation	(84%)	(86%)	(83%)	
Lymphocytic infiltration	26/33	9/13	17/20	0.393
	(79%)	(69.2%)	(85%)	
Plasma cell infiltration	4/19 (21%)	1/7	3/12 (25%)	-
		(14%)		
Type II pneumocytes proliferation	30/33	10/13	20/20	0.052
	(91%)	(77%)	(100%)	
Atypical pneumocytes	18/19	7/7	11/12	-
	(95%)	(100%)	(92%)	
Atypical pneumocyte cytomegaly	25/33	9/13	16/20	0.681
	(76%)	(69%)	(80%)	
Atypical pneumocyte nucleomegaly	21/33	7/13	14/20	0.465
	(64%)	(54%)	(70%)	
Atypical pneumocyte	19/33	6/13	13/20	0.472
multinucleation	(58%)	(46%)	(65%)	
Atypical pneumocyte syncytia	5/33 (15%)	3/13	2/20 (10%)	0.360
		(23%)		
Foamy pneumocytes	19/19	7/7	12/12	-
	(100%)	(100%)	(100%)	
Arterial/arteriole thrombosis	0/19 (0%)	0/7 (0%)	0/12 (0%)	-
Diffuse collagenous fibrosis	0/19 (0%)	0/7 (0%)	0/12 (0%)	-
Subpleural/interstitial fibrosis	7/19 (37%)	2/7	5/12 (42%)	0.657
		(29%)		
Honeycomb	5/33 (15%)	2/13	4/20 (20%)	-
		(15.4%)		
Traction bronchiectasis	0/19 (0%)	0/7 (0%)	0/12 (0%)	-
	1	1	1	

Squamous met 1/19 (5%) 1/7 0/12 (0%) 0.368 Intimal fibrosis 0/19 (0%) 0/7 (0%) 0/12 (0%) - Medial hypertrophy 0/19 (0%) 0/7 (0%) 0/12 (0%) - Organising pneumonia 10/33 4/13 6/20 (30%) - Organising pneumonia 10/33 5/13 5/20 (25%) 0.461 infiltrate into the alveoli) (30%) (38.5%) 0/20 (0%) - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Intimal fibrosis 0/19 (0%) 0/7 (0%) 0/12 (0%) - Medial hypertrophy 0/19 (0%) 0/7 (0%) 0/12 (0%) - Organising pneumonia 10/33 4/13 6/20 (30%) - Organising pneumonia 10/33 4/13 6/20 (30%) - Bronchopneumonia (neutrophilic 10/33 5/13 5/20 (25%) 0.461 infiltrate into the alveoli) (30%) (38.5%) - - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Medial hypertrophy 0/19 (0%) 0/7 (0%) 0/12 (0%) - Organising pneumonia 10/33 4/13 6/20 (30%) - (30%) (31%) 6/20 (25%) 0.461 Infiltrate into the alveoli) 10/33 5/13 5/20 (25%) 0.461 Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Organising pneumonia 10/33 4/13 6/20 (30%) - Organising pneumonia 10/33 (31%) 6/20 (30%) - Bronchopneumonia (neutrophilic 10/33 5/13 5/20 (25%) 0.461 infiltrate into the alveoli) (30%) (38.5%) 0/20 (0%) - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
(30%) (31%) (31%) Bronchopneumonia (neutrophilic 10/33 5/13 5/20 (25%) 0.461 infiltrate into the alveoli) (30%) (38.5%) 0/20 (0%) - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Bronchopneumonia (neutrophilic 10/33 5/13 5/20 (25%) 0.461 infiltrate into the alveoli) (30%) (38.5%) 0/20 (0%) - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
infiltrate into the alveoli) (30%) (38.5%) - Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - (0%) 0/13 0/20 (0%) - - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Intranuclear inclusions 0/33 (0%) 0/13 0/20 (0%) - Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Intracytoplasmic inclusions 0/33 (0%) 0/13 0/20 (0%) - Megakaryocytes 22/33 8/13 14/20 0.714	
Megakaryocytes 22/33 8/13 14/20 0.714	
Megakaryocytes 22/33 8/13 14/20 0.714	
(68%) (71%) (70%)	
Lung haemophagocytosis (increased 17/33 3/13 14/20 0.013	
alveolar macrophages) (52%) (23%) (70%)	
Lung siderophages 6/33 (18%) 2/13 4/20 (20%) -	
(15.4%)	
Necrotising granulomas 1/33 (3%) 1/13 0/20 (7.7%) 0.625	
(0%)	
Non-necrotising granulomas 0/33 (0%) 0/13(0%) 0/20 (0%) -	
HEART	
Isolated myocyte necrosis 6/33 (18%) 1/13 5/20 (25%) 0.364	
(14%)	
Cardiac ischaemia 8/17 (47%) 3/7 5/10 (50%) -	
(43%)	

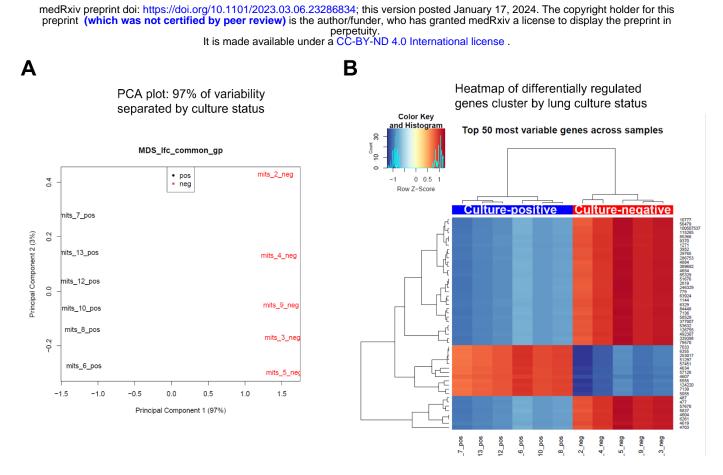
	der a CC-BY-ND 4.	J International lic	1	
Cardiac thrombi	1/33 (3%)	0/13 (0%)	1/20 (5%)	-
Card capillary neutrophil	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
margination				
RBC fragment	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Lipofuscin	17/17	7/7	10/10	-
	(100%)	(100%)	(100%)	
Enlarged nuclei	23/33	10/13	13/20	0.467
	(70%)	(77%)	(65%)	
Cardiac interstitial fibrosis	20/33	4/13	16/20	0.001
	(61%)	(31%)	(80%)	
Heart endothelialitis	1/33 (3%)	0/13	1/20 (10%)	-
		(0%)		
Cardiac neutrophils	0/33 (0%)	0/13	0/20 (0%)	-
		(0%)		
Cardiac lymphocytes	5/33 (15%)	1/13	4/20 (20%)	0.625
		(7.7%)		
Cardiac histiocytes	2/33 (6%)	1/13	1/20 (5%)	-
		(7.7%)		
Cardiac eosinophils	1/33 (3%)	0/13	1/20 (5%)	-
		(0%)		
Cardiac interstitial oedema	4/33 (12%)	0/13	4/20 (20%)	0.136
		(0%)		
LIVER				
Increase Kupffer	16/17	7/7	9/10 (90%)	-
	(94%)	(100%)		

It is made available u	nder a CC-BY-ND 4.	0 International lic	ense.	
Foamy Kupffer	4/17 (24%)	1/7 (14%)	3/10 (30%)	0.603
Liver haemophagocytosis	9/33 (27%)	4/13 (31%)	5/20 (25%)	-
Liver siderophages	1/33 (3%)	0/13	1/20 (5%)	-
Liver necrosis	7/17 (41%)	3/7 (43%)	4/10 (40%)	-
Spotty necrosis zone 1	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Spotty necrosis zone 2	2/16 (13%)	1/6 (17%)	1/10 (10%)	-
Spotty necrosis zone 3	2/17 (12%)	1/7 (14%)	1/10 (10%)	-
Confluent necrosis zone 1	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Confluent necrosis zone 2	1/17 (6%)	0/7 (0%)	1/10 (10%)	-
Confluent necrosis zone 3	4/17 (24%)	1/7 (14%)	3/10 (30%)	0.603
Micro steatosis	14/17 (82%)	6/7 (86%)	8/10 (80%)	-
Macro steatosis	13/17 (76%)	6/7 (86%)	7/10 (70%)	-
Cholestasis	8/33 (24%)	3/13 (23%)	5/20 (25%)	-
Liver inflammation	9/17 (53%)	3/7 (43%)	6/10 (60%)	0.637
Liver regeneration	16/17 (94%)	7/7 (100%)	9/10 (90%)	-

It is made available u	nder a CC-BY-ND 4.	0 International lic	ense.	
Liver congestion	9/33 (%)	8/13	11/20	-
		(61.5%)	(55%)	
Liver viral inclusions	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Liver fibrosis F1	2/17 (12%)	1/7	1/10 (10%)	-
		(14%)		
Liver fibrosis F2	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Liver fibrosis F3	1/17 (6%)	0/7 (0%)	1/10 (10%)	-
Liver fibrosis F4	1/17 (6%)	0/7 (0%)	1/10 (10%)	-
Primary sclerosing cholangitis	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Primary biliary cholangitis	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
Extramedullary haematopoiesis	0/17 (0%)	0/7 (0%)	0/10 (0%)	-
(EMH)				
KIDNEY				
Glom capillary dilatation	10/11	5/5	5/6 (83%)	-
	(91%)	(100%)		
Glom thrombus	4/11 (36%)	0/5 (0%)	4/6 (67%)	0.061
Glom sclerosis	3/11 (27%)	0/5 (0%)	0/5 (0%) 3/6 (50%)	
Increase mesangium	7/11 (64%)	3/5	4/6 (67%)	-
		(60%)		
Membrane thickening	0/11 (0%)	0/5 (0%)	0/6 (0%)	-
Acute kidney injury	4/11 (36%)	0/5 (0%)	4/6 (67%)	0.061
Tubular casts	6/11 (55%)	2/5	4/6 (67%)	0.242
		(40%)		
Isometric vacuole	0/11 (0%)	0/5 (0%)	0/6 (0%)	-
Kidney interstitial lymphocytes	1/11 (9%)	1/5	0/6 (0%)	-
		(20%)		

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity.
It is made available under a CC-BY-ND 4.0 International license


It is made available un		1]
Kidney interstitial plasma	1/11 (9%)	1/5	0/6 (0%)	-
		(20%)		
Kidney interstitial fibrosis	2/11 (18%)	0/5 (0%)	2/6 (33%)	0.455
Kidney interstitial haem	0/11 (0%)	0/5 (0%)	0/6 (0%)	-
Kidney arteriosclerosis	4/11 (36%)	1/5	3/6 (50%)	0.546
		(20%)		
ADIPOSE				
Fat necrosis	10/21	6/8	4/13 (31%)	0.082
	(48%)	(75%)		
Fat fibrin	0/21 (0%)	0/8 (0%)	0/13 (0%)	-
Fat unremarked	11/21 (52)	2/8	9/13 (69%)	0.082
		(25%)		

*Histopathology was not performed on all the biopsy samples.

Histology Tissue	All patients	culture-	culture-	p-value
	n=17*	positive	negative	
		patients	patients	
		n=7	n=10	
LUNG				
Pneumocyte vacuolation	13/17	6/7	7/10 (70%)	0.603
	(76%)	(86%)		
Endothelial vacuolation	3/17 (18%)	2/7	1/10 (10%)	0.537
		(29%)		
Endothelial swelling	13/17	6/7	7/10 (70%)	0.603
	(76%)	(86%)		
Activated capillary monocytes	1/17 (6%)	0/7 (0%)	1/10 (10%)	-
Pneumocyte detachment	15/17	7/7	8/10 (80%)	0.485
	(88%)	(100%)		
Collagen deposits	11/16	5/6	6/10 (60%)	0.588
	(69%)	(83%)		
HEART				
Mitochondrial hypoxic changes	12/12	6/6	6/6 (100%)	-
	(100%)	(100%)		
Myocyte atrophy and wrinkling	11/11	6/6	5/5 (100%)	-
	(100%)	(100%)		
Lipofuscin	7/11 (64%)	5/6	2/5 (40%)	0.242
		(83%)		
Swollen endothelial	10/11	6/6	4/5 (80%)	-
	(91%)	(100%)		

Fragmented red blood cells $4/11$ (36%) $4/6$ 0.5 (0%) 0.061 Myofibrillar disruption $5/11$ (45%) $4/6$ $1/5$ (20%) 0.242 Myofibrillar disruption $5/11$ (45%) $4/6$ $1/5$ (20%) 0.242 Swollen/hypoxic mitochondria $15/15$ $6/6$ $9/9$ (100%) $-$ Increased Kupffer $2/15$ (13%) $1/6$ $1/9$ (11%) $-$ Steatosis $7/15$ (47%) $2/6$ $5/9$ (56%) 0.398 Haemophagocytosis $10/15$ $4/6$ $6/9$ (67%) $-$ Detached of endothelial cells $7/15$ (47%) $3/6$ $4/9$ (44%) $-$ Lipidized stellate cells $7/15$ (47%) $3/6$ $4/9$ (44%) $-$ EM liver cholestasis $2/14$ (14%) $1/6$ $1/8$ (13%) $-$ Stightly enlarged mitochondria $3/14$ (21%) $0/6$ (0%) $3/8$ (38%) 0.209 Singlutu enlarged mitochondria $5/14$ (36%) $4/6$ $1/8$ (13%) $-$	It is made available un	ider a CC-BY-ND 4.0) International lic	ense.	
Myofibrillar disruption 5/11 (45%) 4/6 (57%) 1/5 (20%) 0.242 LIVER - - - Swollen/hypoxic mitochondria 15/15 6/6 9/9 (100%) - Increased Kupffer 2/15 (13%) 1/6 1/9 (11%) - Increased Kupffer 2/15 (13%) 1/6 1/9 (11%) - Steatosis 7/15 (47%) 2/6 5/9 (56%) 0.398 Haemophagocytosis 10/15 4/6 6/9 (67%) - Detached of endothelial cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Kormal mitochondria 2/14 (14%) 1/6 1/8 (13%) - Kormal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Sightly enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627	Fragmented red blood cells	4/11 (36%)		0/5 (0%)	0.061
LIVER (57%) (14.14.1) (57%) (14.14.1) Swollen/hypoxic mitochondria 15/15 6/6 9/9 (100%) - Increased Kupffer 15/15 6/6 9/9 (100%) - Increased Kupffer 2/15 (13%) 1/6 1/9 (11%) - Steatosis 7/15 (47%) 2/6 5/9 (56%) 0.398 Haemophagocytosis 10/15 4/6 6/9 (67%) - Detached of endothelial cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Kupforcholdria 7/15 (47%) 3/6 4/9 (44%) - Kupic 7/15 (47%) 3/6 1/8 (13%) - Kupic 7/15 (47%) 3/6 1/8 (13%) -					
Interpretation Interp	Myofibrillar disruption	5/11 (45%)	4/6	1/5 (20%)	0.242
Normal mitochondria			(57%)		
Increased Kupffer(100%) <td>LIVER</td> <td></td> <td></td> <td></td> <td></td>	LIVER				
Increased Kupffer 2/15 (13%) 1/6 1/9 (11%) - Steatosis 7/15 (47%) 2/6 5/9 (56%) 0.398 Baemophagocytosis 10/15 4/6 6/9 (67%) - Haemophagocytosis 10/15 4/6 6/9 (67%) - Detached of endothelial cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - EM liver cholestasis 2/14 (14%) 1/6 1/8 (13%) - Normal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Slightly enlarged mitochondria 5/14 (36%) 4/6 1/8 (13%) 0.091 Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627	Swollen/hypoxic mitochondria	15/15	6/6	9/9 (100%)	-
Image: Normal mitochondriaImage: Normal mitochondria <th< td=""><td></td><td>(100%)</td><td>(100%)</td><td></td><td></td></th<>		(100%)	(100%)		
Steatosis $715 (47\%)$ $2/6$ $8/9 (56\%)$ 8.398 Haemophagocytosis 10/15 $4/6$ $6/9 (67\%)$ $-$ Detached of endothelial cells $7/15 (47\%)$ $3/6$ $4/9 (44\%)$ $-$ Detached of endothelial cells $7/15 (47\%)$ $3/6$ $4/9 (44\%)$ $-$ Lipidized stellate cells $7/15 (47\%)$ $3/6$ $4/9 (44\%)$ $-$ EM liver cholestasis $2/14 (14\%)$ $1/6$ $1/8 (13\%)$ $-$ Normal mitochondria $3/14 (21\%)$ $1/6$ $1/8 (13\%)$ $-$ Slightly enlarged mitochondria $5/14 (36\%)$ $4/6$ $9/9 (44\%)$ $-$ Enlarged mitochondria $6/14 (43\%)$ $1/6$ $1/8 (13\%)$ $-$	Increased Kupffer	2/15 (13%)	1/6	1/9 (11%)	-
Haemophagocytosis 10/15 4/6 6/9 (67%) - Haemophagocytosis 10/15 4/6 6/9 (67%) - Detached of endothelial cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - EM liver cholestasis 7/15 (47%) 3/6 4/9 (44%) - Iver cholestasis 2/14 (14%) 1/6 1/8 (13%) - Normal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Slightly enlarged mitochondria 5/14 (36%) 4/8 (50%) 0.627			(17%)		
Haemophagocytosis10/154/66/9 (67%) $-$ Haemophagocytosis10/154/66/9 (67%) $ (67\%)$ (57%) $3/6$ $4/9 (44\%)$ $-$ Detached of endothelial cells $7/15 (47\%)$ $3/6$ $4/9 (44\%)$ $-$ Lipidized stellate cells $7/15 (47\%)$ $3/6$ $4/9 (44\%)$ $-$ EM liver cholestasis $2/14 (14\%)$ $1/6$ $1/8 (13\%)$ $-$ FM liver cholestasis $2/14 (14\%)$ $1/6$ $1/8 (13\%)$ $-$ Normal mitochondria $3/14 (21\%)$ $0/6 (0\%)$ $3/8 (38\%)$ 0.209 Slightly enlarged mitochondria $5/14 (36\%)$ $4/6$ $1/8 (13\%)$ 0.911 Enlarged mitochondria $6/14 (43\%)$ $2/6$ $4/8 (50\%)$ 0.627	Steatosis	7/15 (47%)	2/6	5/9 (56%)	0.398
1 1			(33%)		
Detached of endothelial cells7/15 (47%) $3/6$ $4/9$ (44%) $-$ Lipidized stellate cells7/15 (47%) $3/6$ $4/9$ (44%) $-$ Lipidized stellate cells7/15 (47%) $3/6$ $4/9$ (44%) $-$ EM liver cholestasis2/14 (14%) $1/6$ $1/8$ (13%) $-$ Mormal mitochondria $3/14$ (21%) $0/6$ (0%) $3/8$ (38%) 0.209 Slightly enlarged mitochondria $5/14$ (36%) $4/6$ $1/8$ (13%) 0.911 Enlarged mitochondria $6/14$ (43%) $2/6$ $4/8$ (50%) 0.627	Haemophagocytosis	10/15	4/6	6/9 (67%)	-
Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - EM liver cholestasis 2/14 (14%) 1/6 1/8 (13%) - EM liver cholestasis 2/14 (14%) 1/6 1/8 (13%) - Normal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Slightly enlarged mitochondria 5/14 (36%) 4/6 1/8 (13%) 0.091 Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627		(67%)	(57%)		
Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - Lipidized stellate cells 7/15 (47%) 3/6 4/9 (44%) - EM liver cholestasis 2/14 (14%) 1/6 1/8 (13%) - EM liver cholestasis 2/14 (14%) 1/6 1/8 (13%) - Normal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Slightly enlarged mitochondria 5/14 (36%) 4/6 1/8 (13%) 0.091 Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627	Detached of endothelial cells	7/15 (47%)	3/6	4/9 (44%)	-
Image: And the second secon			(50%)		
Image: Market	Lipidized stellate cells	7/15 (47%)	3/6	4/9 (44%)	-
ADIPOSE (17%) (17%) Normal mitochondria 3/14 (21%) 0/6 (0%) 3/8 (38%) 0.209 Slightly enlarged mitochondria 5/14 (36%) 4/6 1/8 (13%) 0.091 Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627			(50%)		
ADIPOSE Image: Marcine and	EM liver cholestasis	2/14 (14%)	1/6	1/8 (13%)	-
Image: More and the ima			(17%)		
Slightly enlarged mitochondria 5/14 (36%) 4/6 1/8 (13%) 0.091 Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627	ADIPOSE				
Image: Image of the i	Normal mitochondria	3/14 (21%)	0/6 (0%)	3/8 (38%)	0.209
Enlarged mitochondria 6/14 (43%) 2/6 4/8 (50%) 0.627	Slightly enlarged mitochondria	5/14 (36%)	4/6	1/8 (13%)	0.091
			(57%)		
(220/-)	Enlarged mitochondria	6/14 (43%)	2/6	4/8 (50%)	0.627
(33%)			(33%)		
Swollen endothelial cells present 9/11 (82%) 4/4 5/7 (71%) 0.491	Swollen endothelial cells present	9/11 (82%)	4/4	5/7 (71%)	0.491
(100%)			(100%)		

*EM was only performed on biopsy samples in the Delta cohort.

Figure S5. Gene expression profile in the culture-negative and culture-positive groups cluster into distinct groups. PCA plot (**A**) and heatmap (**B**) showing that distinct genes are differentially regulated in the culture-positive and culture-negative groups.

Table S4. Bacteria and antibiotic resistance profile detected from the lung biopsies of the decedents

using multiplex PCR (Biofire).

Patient	Seconda	Numbe	er Bacterial species present	Bacterial	Antibiotic resistance
ID	ry	of		load	
	bacterial	differe	nt	(copies/ml)	
	infection	bacteri	a		
	present	specie	s		
		presen	t		
UCT	Yes	2	Staphylococcus aureus	1×10 ⁶	None detected
001			Streptococcus pneumoniae	1x10 ⁴	
			Sirepiococcus pneumoniue	1210	
UCT	No	-	-	-	-
002					
UCT	No	-	-	-	-
003					
UCT	No	-	-	-	-
004					
UCT	No	-	-	-	-
005					
UCT	No	_	-	-	-
007	1.0				
) T				
UCT	No	-	-	-	-
008					
UCT	Yes	1	Staphylococcus aureus	1x10 ⁵	None detected
009					
UCT	Yes	2	Staphylococcus aureus	1x10 ⁵	None detected
010			Streptococcus agalactiae	1x10 ⁴	

			It is made available under a CC-BY-ND 4.0	International license	÷.
UCT	Yes	2	Haemophilus influenzae	1x10 ⁶	None detected
012			Staphylococcus aureus	1x10 ⁶	
UCT	No	-	-	-	-
013					
UCT	Yes	1	Acinetobacter calcoaceticus -	1x10 ⁵	Carbapenem (NDM)
014			baumannii complex		
UCT	No	-	-	-	-
016					
UCT	No	-	-	-	-
017					
UCT	Yes	2	Acinetobacter calcoaceticus -	1x10 ⁶	β-lactam (CTX-M)
018			baumannii complex		Carbapenenm (NDM)
				1x10 ⁶	
			Proteus spp.		
UCT	No	-			
020					
UCT	No	-	-	-	-
021					
UCT	No	-	-	-	-
022					
UCT	Yes	1	Staphylococcus aureus	1x10 ⁵	None detected
023					
UCT	Unknow	-	-	-	-
024	n				
UCT	No	-	-	-	-
026					

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a	CC-BY-	ND 4.0 Inter	national license.

			It is made available under a CC-BY-ND 4.0	International license	
UCT	No	-	-	-	-
027					
UCT	No	-	-	-	-
028					
WITS	Yes	1	Streptococcus agalactiae	1x10 ⁶	
2305					
WITS	No	-	-	-	-
5033					
WITS	Yes	6	Escherichia coli	1x10 ⁷	None detected
5419			Staphylococcus aureus	1x10 ⁷	
			Streptococcus agalactiae	1x10 ⁶	
			Klebsiella oxytoca	1x10 ⁵	
			Enterobacter cloacae complex	1x10 ⁴	
			Klebsiella pneumoniae group	1x10 ⁴	
WITS	Yes	2	Serratia marcescens	1x10 ⁵	β-lactam (CTX-M)
5502			Klebsiella pneumoniae group	1x10 ⁴	Carbapenem (OXA-48-
					like)
WITS	No	-	-	-	-
5517					
WITS	Yes	3	Escherichia coli	1x10 ⁴	β-lactam (CTX-M)
5619			Klebsiella pneumoniae	1x10 ⁴	Carbapenem (OXA-48-like)
			Serratia marcescens	1x10 ⁴	
WITS	Yes	7	Enterobacter cloacae complex	1x10 ⁷	β-lactam (CTX-M)
	105	'	-		
5650	105	,	Klebsiella oxytoca	1x10 ⁷	Carbapenem (NDN)
5650	105		Klebsiella oxytoca Klebsiella pneumoniae group	1x10 ⁷ 1x10 ⁷	Carbapenem (NDN) Carbapenem (OXA-48-like)
5650	105				-
5650	105		Klebsiella pneumoniae group	1x10 ⁷	-

			It is made available under a CC-BY-ND 4.0		ə.
			Acinetobacter calcoaceticus- baumannii complex	1x10 ⁴	
WITS	No	-	-	-	-
6182					
WITS	No	-	-	-	-
7659					
WITS	Yes	2	Acinetobacter calcoaceticus-	1x10 ⁶	β-lactam (CTX-M)
8734			baumannii complex	1x10 ⁴	Carbapenem (NDM)
			Klebsiella pneumoniae group		Carbapenem (OXA-48-like)
WITS	Yes	2	Escherichia coli	1x10 ⁴	β lactam (CTX-M)
9156			Klebsiella pneumoniae	1x10 ⁴	
WITS	No	-	-	-	-
12008					
WITS	Yes	2	Klebsiella pneumoniae	1x10 ⁷	Carbapenem (OXA-48-like)
12010			Pseudomonas aeruginosa	1x10 ⁴	
WITS	No	-	-	-	-
12011					
WITS	Yes	2	Streptococcus pneumoniae	1x10 ⁷	None detected
12019			Streptococcus agalactiae	1x10 ⁴	
WITS	No	-	-	-	-
12024					
WITS	No	-	-	-	-
12068					
WITS	Yes	1	Streptococcus pneumoniae	1x10 ⁴	None detected
12115					

Table S5. Whole genome sequencing results of the viral variants from the study cohort. Only 6 culturenegative and 6 culture-positive samples were available for sequencing because either the viral load was too low (Ct>30) or the sample was not available. It was therefore impossible to perform comparative analysis between the 2 groups because of the small sample number. Data was analysed and sequences aligned using the Stanford University Coronavirus Antiviral and Resistance Database (available at: https://covdb.stanford.edu/).

Patient	Source of	Variant	Lineag	Sub-	Gene	Unique	Comments	Ref
\mathbf{ID}^*	sample		e	lineage		mutations		
						(found in		
						<0.01% of		
						genomes)		
<u> </u>		- <u>-</u>				<u>.</u>		
WITS	Lung culture	Beta	20B	B.1.1	-	None		
1210	supernatant							
WITS	Lung culture	Beta	20H	B.1.3.5	-	None		
12068	supernatant			1				
WITS	Lung culture	Beta	20H	B.1.351	-	None		
12115	supernatant							
UCT 001	NPS	Alpha	201	B1.1.7	-	None		
UCT 004	NPS	Beta	20H	B1.351				
UCT 028	NPS	Delta	21J	AY6	-	None		
UCT 016	NPS	Delta	21J	AY91				
UCT 008	NPS	Delta	21J	AY32	Papain-	C55C*W		
					like	E113EAGV		
					protease	E115ED		
					(PLpro)	C118C*W		
					Helicase	P593DE		
					(nsp13)	R594X		
					mRNA	K433KN		
					capping	P443PAST		

	(which was not ce	It is made	available un	perpetu der a CC-B	ity. (-ND 4.0 Inter	national license.		
					protein	K469KMRT		
					(nsp 14)	A471APST		
		-			Membra	S211R		
					ne (M)	S212*DEHQ		
						Y		
						S213X		
UCT 012	NPS	Delta	21J	AY32	-	None		
UCT 018	NPS	Delta	21J	B1.617.	Main	A191T	A191T is a	(6)
				2	protease		reported	
					(PLpro)		resistance	
							mutation	
							against 3C-	
							like protease	
							inhibitor, i.e.	
							nirmatrelvir.	
		-			RdRP	H650N		
		_			Spike	V16VFIL		
						K77E		
		-			Nucleoca	S255A		
					psid			
UCT 022	NPS	Delta	21J	AY32	-	Sequence		
						missing		
UCT 024	NPS	Delta	21J	AY6	Main	N1454NIST		
					protease			
					(PLpro)			

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .							
				Helicase	F587L		
				(nsp13)			
					T588TIR		
				mRNA	M72X		
				capping	R485DE		
				protein	H486X		
				(nsp 14)	H487X		
				Accessor	K21R		
				y protein	D22D*EHQY		
				(ORF3a)	L94LV		

Table S6. Transcriptomic analysis showing the DE genes in the culture-positive cohort relative to the

culture-negative cohort. Genes in black text are human specific. Genes in red text are SARS-CoV-2

specific.

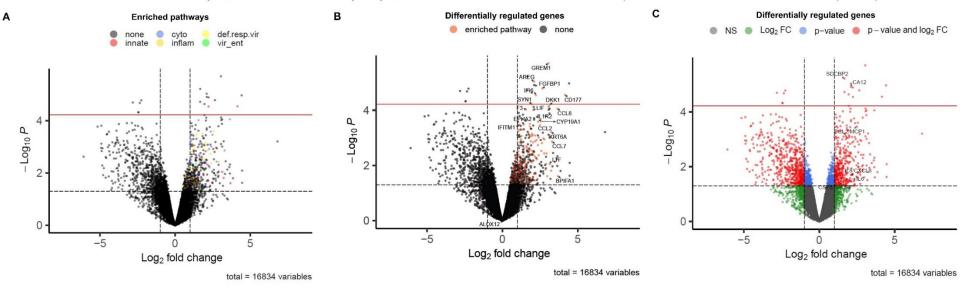
ENZ_ID	Abbreviation	Gene name	logFC	logCPM	p value	FDR
43740569	ORF3a	ORF3a protein	8.35	-0.02	3,23E-07	0.005
43740575	N	Nucleocapsid phosphoprotein	5.5	2.14	1,09E-06	0.009
26585	GREM1	Gremlin 1, DAN family BMP antagonist	3.1	5.43	2,85E-06	0.016
100271927	RASA4B	RAS p21 protein activator 4B	-2.6	3.21	4,27E-06	0.018
27111	SDCBP2	Syndecan binding protein 2	1.67	3.38	8,53E-06	0.029
374	AREG	Amphiregulin	2.11	5	1,10E-05	0.031
771	CA12	Carbonic anhydrase 12	2.11	5.34	1,57E-05	0.034
5055	SERPINB2	Serpin family B member 2	4.43	2.5	1,81E-05	0.034
134285	TMEM171	Transmembrane protein 171	2.22	-0.55	1,82E-05	0.034
338328	GPIHBP1	Glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1	-2.25	2.63	2,16E-05	0.035
9982	FGFBP1	Fibroblast growth factor binding protein 1	2.65	2.07	2,44E-05	0.035
80320	SP6	Sp6 transcription factor	1.67	1.8	2,53E-05	0.035
1847	DUSP5	Dual specificity phosphatase 5	1.95	5.27	2,87E-05	0.035
2537	IFI6	Interferon alpha inducible protein 6	2.22	6.62	2,95E-05	0.035
57126	CD177	CD177 molecule	4.15	5.53	4,26E-05	0.047
4915	NTRK2	Neurotrophic receptor tyrosine kinase 2	-2.453	4.7	5,63E-05	0.059
43740568	S spike	Surface glycoprotein/spike glycoprotein	5.32	2.06	6,84E-05	0.067
23105	FSTL4	Follistatin like 4	-1.25	0.8	7,35E-05	0.068
6853	SYN1	Synapsin I	1.95	2.28	8,13E-05	0.071
2827	GPR3	G protein-coupled receptor 3	2.07	0.53	9,07E-05	0.076

Table S7A. Pathways upregulated in the culture-positive cohort relative to the culture-negative

cohort.

		Total				
		number of				
		genes				
		associated				FDR
		with the	Enrichment			
GO.ID	Pathway	pathway	score	NES	p value	
GO:0045087	Innate immune response	644	0,462041652	2,23077102	3,19E-26	1,95E-22
GO:0009617	Response to bacterium	502	0,436586937	2,063633461	1,46E-16	2,30E-13
GO:0006954	Inflammatory response	666	0,397117204	1,910719799	1,84E-16	2,30E-13
GO:0009615	Response to virus	337	0,482017466	2,192737214	4,76E-16	4,15E-13
GO:0034097	Response to cytokine	784	0,378837973	1,853887449	4,57E-16	4,15E-13
GO:0042742	Defence response to	187	0,57065003	2,468893487	2,87E-15	1,95E-12
	bacterium					
GO:0097529	Myeloid leukocyte	197	0,560938069	2,429088511	7,89E-15	4,82E-12
	migration					
GO:0071345	Cellular response to	700	0,379135852	1,832624826	1,29E-14	7,19E-12
	cytokine stimulus					
GO:0060326	Cell chemotaxis	260	0,505415546	2,244480472	3,87E-14	1,69E-11
GO:0030595	Leukocyte chemotaxis	199	0,543874673	2,355877738	7,37E-14	2,81E-11
GO:1903047	Mitotic cell cycle process	679	0,37365134	1,802308085	9,44E-14	3,39E-11
GO:0042330	Taxis	521	0,406071568	1,918906559	1,71E-13	5,80E-11
GO:0050900	Leukocyte migration	334	0,461740475	2,094951262	1,90E-13	6,01E-11
GO:0006935	Chemotaxis	519	0,406436107	1,934745764	1,97E-13	6,01E-11
GO:0000280	Nuclear division	380	0,433965649	1,999760733	8,85E-13	2,35E-10

	medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.						
	It is made available under a CC-BY-ND 4.0 International license.						
GO:0019221	Cytokine-mediated	401	0,424428923	1,972848247	2,15E-12	5,46E-10	
	signalling pathway						
GO:0007059	Chromosome segregation	305	0,457222273	2,071558403	2,72E-12	6,65E-10	
GO:0051301	Cell division	573	0,383696506	1,825281074	3,41E-12	7,87E-10	
GO:2000147	Positive regulation of cell motility	507	0,386349508	1,825320536	7,25E-12	1,53E-09	
	monnty						
GO:0002237	Response to molecule of	294	0,453670477	2,036098196	1,01E-11	2,05E-09	
	bacterial origin						


Table S7B. Other pathways of interest upregulated in the culture-positive cohort relative to the culture negative cohort.

		Total number of genes associated			
GO.ID	Pathway		Enrichment score	NES	FDR
GO:04657	IL-17 signalling pathway	81	0,635892	2.380892	1,53E-07
GO:0002456	T-cell-mediated immunity	96	0,478752825	1,850434828	1,1E-03
	Regulation of T-helper 1 type immune	25	0,576145234	1,920646442	
GO:0002825	response				1,2E-3
GO:0035710	CD4-positive, alpha-beta T cell activation	89	0,470392439	1,801972021	2,1E-03
GO:0035743	CD4-positive, alpha-beta T cell cytokine production	15	0,774743052	2,055120611	3E-03
GO:0002726	Positive regulation of T cell cytokine production	24	0,683190625	2,000311209	3,4E-03

medRxiv preprint doi: https://doi.org/10.1101/2023.03.06.23286834; this version posted January 17, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.							
	It is made available under a CC-BY-ND 4.0 International license .						
GO:0042110	T cell activation	448	0,294698908	1,379497641	3,5E-03		
GO:2000514	Regulation of CD4-positive, alpha-beta T cell activation	56	0,519437379	1,853870959	5,8-03		
GO:0002711	Positive regulation of T cell mediated immunity	49	0,543959461	1,869533223	6,7E-3		
GO:0042088	Th1 immune response	41	0,576145234	1,920646442	6,7E-03		
GO:0002709	Regulation of T-cell mediated immunity	76	0,686930834	2,050809398	7,3E-03		
GO:0002369	T-cell cytokine production	34	0,610833263	1,94794025	9,1E-3		
GO:0002724	Regulation of T cell cytokine production	34	0,610833263	1,94794025	9,1E-03		
GO:0050868	Negative regulation of T cell activation	109	0,413862853	1,63976229	1,1E-02		

 Table S7C. Genes associated with regulatory pathways of were not up- or downregulated in the culture-positive cohort relative to the culture-negative cohort.

ENZ ID	Gene	LogFC	p-value	FDR
5133	PD-1	-0,580384672	0,352556526	0,875617669
64115	VISTA	0,195588418	0,601343382	0,941688131
84868	TIM-3	0,243920799	0,568480759	0,936258857
1493	CTLA-4	0,100226405	0,868488938	0,987403587
940	CD28	-0,515589978	0,192859859	0,773804865
945	CD33	-0,047967186	0,910411079	0,991670954
3559	CD25	-0,703108858	0,154569866	0,728675358
50943	FOXP3	-0,918764993	0,158003877	0,732211968

The culture-positive group, compared to the culture-negative group, are associated with the enrichment of inflammatory, innate immune and enhanced SARS-CoV-2 entry pathways

Genes associated with cytokine signaling

Figure S6. The culture-positive group expressed higher levels of genes associated with inflammatory, innate immunity and enhanced SARS-CoV-2 cellular entry pathways compared to the culture-negative cohort. Volcano plots showing the pathways (A) and individual genes (B and C) upregulated in the culture-positive versus the culture-negative cohort. Cyto = cytokine signalling, def. resp.virus = defence of respiratory virus, innate = innate immunology, inflame = inflammatory response, vir_ent=viral entry. The red line represents FDR<0.05 and the black dotted represents p<0.05.

Supplementary references.

Andrews S. FastQC: A quality control tool for high throughput sequence data. Accessed
 on: 1st July 2022. Available at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
 2010.

Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner.
 Bioinform 2013; 29(1): 15-21.

3. Howe KL, Achuthan P, Allen J, et al. Ensembl 2021. *Nucleic Acids Res* 2021; **49**(D1): D884-D91.

4. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinform* 2010; **26**(1): 139-40.

5. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. *Nat Methods* 2015; **12**(2): 115-21.

6. Noske G D dSSE, de Godoy M O, Dolci I, Fernandes R S, Guido R V C, Sjö P, Oliva G, Godoy A S. Structural basis of nirmatrelvir and ensitrelvir resistance profiles against SARS-

CoV-2 main protease naturally occurring polymorphisms. J Biol Chem 2023; 299(3).