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Abstract

Background: Breast cancer is the foremost cancer in worldwide incidence,

surpassing lung cancer notwithstanding the gender bias. One in four cancer

cases among women are attributable to cancers of the breast, which are also the

leading cause of death in women. Reliable options for early detection of breast

cancer are needed.

Methods: Using public-domain datasets, we screened transcriptomic profiles of

breast cancer samples, and identified progression-significant linear and ordinal

model genes using stage-informed models. We then applied a sequence of

machine learning techniques, namely feature selection, principal components

analysis, and k-means clustering, to train a learner to discriminate ‘cancer’

from ‘normal’ based on expression levels of identified biomarkers.

Results: Our computational pipeline yielded an optimal set of nine biomarker

features for training the learner, namely NEK2, PKMYT1, MMP11, CPA1,

COL10A1, HSD17B13, CA4, MYOC, and LYVE1. Validation of the learned

model on an internal testset yielded a performance of 99.5% accuracy. Blind

validation on an external dataset yielded a balanced accuracy of 95.5%,

demonstrating that the model has effectively reduced the dimensionality of the
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problem, and learnt the solution. The model was rebuilt using the full dataset,

and then deployed as a web app for non-profit purposes at:

https://apalania.shinyapps.io/brcadx/ . To our knowledge, this is the

best-performing freely available tool for the high-confidence diagnosis of breast

cancer, and represents a promising aid to medical diagnosis.

Introduction

Breast cancer is the most commonly diagnosed cancer in the world, with

a staggering 2.3 million cases in 20201. It accounts for approximately 24.5% of

cancer cases and 15.5% of cancer deaths among women, ranking #1 in both

incidence and mortality in most countries. Modelling studies predict an

exponential and asymmetric rate of increase in breast cancer incidence among

low human development index (HDI) nations relative to high HDI nations, due

to an unmitigated increase in risk factors in low HDI nations2. In India, for e.g.,

the age of onset of breast cancer has advanced ten years earlier relative to that in

Europe and America. About 29% - 52% of women with breast cancer in India

present in the more severe advanced stages, leading to poor prognosis3. Low

HDI nations are likely to also suffer from problems due to the lack of social

awareness and existent taboos, especially in rural areas. Alternative diagnostic

methods based on a minimal set of biomarkers are urgently needed to

effectively redress the situation4.

The advent of –omics data has ushered in AI-based approaches to cancer

diagnosis. However, contemporary AI-based diagnostic methods are saddled

with unreasonable dimensionality of the hypothesis space, and typically require

sequencing of hundreds of biomarkers to achieve clinical utility. Dimensionality

reduction techniques like principal components (PC) analysis are generally used

for extracting optimal feature subsets, especially when linear relationships exist

in the dataset. PC analysis has been earlier used to detect multiple cancer types

simultaneously, with a costly compromise in accuracy and interpretation5.
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Working in the space of PCs tends to lead to more robust clustering outcomes6,

and k-means clustering is an effective technique for analyzing transformed

spaces7,8. Building on the above observations, this study has two principal

objectives: (i) develop and validate the most efficient integrative computational

pipeline for breast cancer classification based on a minimal hypothesis space;

and (ii) translate the resulting diagnostic classifier into a web-app service to aid

medical decision-making.

Materials and Methods

The overall workflow is summarised in Fig. 1 and discussed in detail below.
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Fig 1. ML pipeline used in the study for the design of a simple, effective and

optimal cancer vs normal classifier.

Data Pre-processing:

RSEM-normalised BRCA expression dataset

(gdac.broadinstitute.org_BRCA.Merge_rnaseqv2__illuminahiseq_rnaseqv2__u

nc_edu__Level_3__RSEM_genes_normalized__data.Level_3.2016012800.0.0.t

ar.gz) was retrieved from the TCGA using firebrowse portal9 by selecting the
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Cohort as ‘Breast invasive carcinoma’. The samples were annotated as ‘normal’

or ‘cancer’ based on the sample-encoding part in the patient barcode (uuid) in

the variable ‘Hybridization REF’. The sample stage was extracted from the

attribute ‘patient.stage_event.pathologic_stage’ in the associated clinical

metadata file retrieved for the same cohort as

gdac.broadinstitute.org_BRCA.Merge_Clinical.Level_1.2016012800.0.0.tar.gz.

Genes with minimal variation in expression across the samples were removed if

the expression σ < 1. The resulting data matrix was then processed through

voom in limma to prepare for linear modelling10. Then it was split into train: test

datasets in the ratio 80:20 stratified on the target class. Data pre-processing was

done in R (www.r-project.org).

Feature Engineering:

The training dataset was used to identify the features for the problem. Two

models were considered to extract potential features:

(1) A linear model of stagewise expression in each gene was performed using R

limma10, with the following equation

— (1)𝑌 = α + β
1
𝑥
1
+ β

2
𝑥
2
+ β

3
𝑥
3
+ β

4
𝑥
4

where the intercept α is the baseline expression obtained from the

controls, the independent variables are indicator variables of the sample’s stage,

and βi are the predicted log fold-change (lfc) coefficients relative to controls.

Further the model was subjected to empirical Bayes adjustment for obtaining

moderated t-statistics11. Multiple hypothesis testing was corrected using the

Benjamini Hochberg method12.

(2) An ordinal model of gene expression was also considered. Here the cancer

stage is treated as a numeric variable according to the equation:

— (2)𝑌 = 𝑎𝑋 + 𝑏

where X is the cancer stage taking the values 0, 1, 2, 3, and 4,

corresponding to Control, Stage-1, Stage-2, Stage-3, and Stage-4, respectively.
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Feature space optimization:

Genes from the linear and ordinal expression models were ranked based

on the adj. p-value. The consensus set between the top-ranked 15 genes of the

linear and ordinal models was determined and then subjected to feature

selection using Boruta 13 and Recursive Feature Elimination14 (RFE). Boruta

implements a wrapper algorithm based on Random Forest to select features

either strongly or weakly connected to the outcome variable, while RFE

implements a backward selection process to identify an optimal set of

predictors. Post feature-selection, the retained features were validated using

variance inflation analysis, involving regressing each independent variable on

all the other independent variables in turn, identifying and removing redundancy

till a minimal feature space has been obtained 15. The variance inflation factor

(VIF) score was calculated using:

— (3)𝑉𝐼𝐹 = 1

1−𝑅2

where R2 is the goodness-of-fit of the fitted model. A variable with VIF = 1.0 is

perfectly independent of all other variables, whereas any variable with VIF >

2.0 was deemed multicollinear with the other variables and iteratively

eliminated.

PCA-based K-Means Clustering:

From the validated set of features, the principal components of the

subspace spanned by these features were found, and the optimal number of

principal components identified using three different criteria, namely scree plot,

Kaiser-Guttmann rule16, and the proportion of variance explained. K-means

clustering with k=2 was performed in the space defined by the optimal principal

components, to examine separation between the normal and cancer samples.

Model evaluation:

Classification performance from clustering in the principal components space

was evaluated using metrics like accuracy, precision, recall, and F1-score.
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Performance evaluation was done on both the internal testset and an external

dataset ‘BRCA-KR’ retrieved from the ICGC DataPortal (https://dcc.icgc.org/).

Since BRCA-KR had just three control samples, it was augmented with 218

control samples from GTEx17.

Results

BRCA RNA-Seq data retrieved from TCGA consisted of 1212 samples

each with the expression values of 20532 genes. Post data pre-processing, we

obtained a dataset of 1178 samples, 18880 genes. We performed an 80:20

stratified sampling of the dataset (with 1066 cancer, 112 normal samples) based

on the outcome class to obtain the training dataset (with 854 cancer, 90 normal

samples), and test dataset (with 212 cancer, 22 normal samples). The training

dataset was voom-processed using limma and then subjected to the two

modeling protocols. At an adj.p-value threshold of 1E-5, the linear model

yielded 8961 significant genes (Supplementary File S1), while the ordinal

model yielded 6888 significant (Supplementary File S2). We examined the

overlap among the top 15 genes from each model, which produced eleven

consensus genes for subsequent analysis.

Application of the Boruta feature selection protocol on the eleven genes

yielded a hypothesis space of only nine genes, while application of the RFE

feature selection protocol did not yield any reduction in the size of the

hypothesis space. A summary of the final nine consensus genes is presented in

Table 1. The hypothesis space was subjected to VIF analysis, to ensure absence

of multicollinearity among features, and establish a minimal non-redundant set

of features (Table 1, last column). We identified the nine principal components

(PCs) of this 9-dimensional space (Table 2), and then visualized the training

samples using the top PCs from this analysis (Fig. 2). The application of three

PCs clearly resolves and separates the cancer and normal samples ( Fig. 2b). To

decisively identify the optimal number of PCs, we examined the three criteria
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outlined in ethods: (i) Kaiser-Guttman criterion yielded top six PCs; (ii) Scree

plot showed the first three principal components to be optimal (Fig. 3a); and

(iii) the first three PCs explained > 85% variance, passing the proportion of

variance explained condition. We reconciled the above findings, and chose the

first three principal components to define a 3-dimensional space for applying

k-means clustering. Next, we optimized the number of clusters (k) for k-means

clustering using the silhouette method18 (Fig. 3b). A value of k=2 was obtained,

which synchronized with the larger objective to partition the structure of the

space into cancer and normal signatures.

Table 1. Summary of the consensus features from the two modeling protocols.

All features are exceedingly differentially expressed with extreme significance.

The largest VIF score does not exceed 1.57, corresponding to a multivariate

‘correlation coefficient’ < 0.6.

S.No Feature lfc Adj.P.value

- linear

Adj.P.value

- ordinal

Regulation

status

VIF

score

1 NEK2 4.57 2.94E-146 6.25E-61 UP 1.05

2 PKMYT1 4.47 1.53E-127 6.14E-53 UP 1.05

3 MMP11 5.99 3.26E-134 2.02E-53 UP 1.00

4 CPA1 -4.20 1.61E-138 2.62E-49 DOWN 1.54

5 COL10A1 7.12 2.04E-137 5.62E-54 UP 1.00

6 HSD17B13 -4.86 5.67E-117 3.71E-51 DOWN 1.22

7 CA4 -6.93 8.41E-127 9.92E-50 DOWN 1.57

8 MYOC -6.53 3.30E-133 4.03E-57 DOWN 1.34

9 LYVE1 -4.91 3.10E-128 3.21E-47 DOWN 1.02
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Fig. 2. PC analysis of the biomarker expression space. With (a) top two

components; and (b) top three components. It is seen that the use of three

components expands the separation between the cancer samples and controls in

better-defined sub-spaces.

Table 2. Summary of the nine components from the PC analysis, ranked by

associated eigenvalue. Cumulative variance enables the application of  the

‘proportion of variance explained’ criterion.

S.No PC Eigenvalue Variance

explained (%)

Cumulative variance

explained (%)

1 PC1 34.487 67.24 67.24

2 PC2 7.181 14.00 81.24

3 PC3 2.787 5.43 86.67

4 PC4 2.039 3.97 90.65

5 PC5 1.521 2.97 93.62

6 PC6 1.191 2.32 95.94

7 PC7 0.887 1.73 97.67

8 PC8 0.781 1.52 99.19

9 PC9 0.415 0.81 100
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Fig. 3. Model parameterization. (a) Scree plot for determination of the optimal

number of principal components. The elbow method yields the first three PCs

which have a cumulative variance > 85%. (b) Silhouette plot for ascertaining the

optimal number of clusters in the structure of the transformed PC-space. The

emergent value, k=2, is in sync with the type of problem at hand: binary

classification.
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Fig. 4. Cancer (red) and control (green) clusters obtained after training the

k-means classifier.  (a) Two-dimensional projection onto the first two principal

components shows some uncertainty in the boundaries of the two clusters; (b)
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Visualization in the three-dimensional space of the PCs satisfactorily resolves

the cluster boundaries.

From Fig. 4, it is clear that the k-means classifier in the 3-dimensional PC space

of the identified biomarkers effectively partitioned the space into cancer vs

normal. The performance of the clustering outcomes assessed against the

ground truth labels in the training, test and external datasets is presented in

Table 2. It is seen that the model produced by the workflow has yielded

balanced accuracies of 99.53% and 95.52% on the internal validation and

external validation datasets respectively.

Table 2. Performance metrics of the developed k-means model in the

transformed PC space of the identified nine biomarker features. Bal. acc. refers

to balanced accuracy, i.e, the average of the accuracies obtained with respect to

each class (cancer and normal). F1-score is defined as the harmonic mean of the

precision and recall. Sensitivity is identical to the recall values.

S.No Dataset Bal. acc. Specificity Precision Recall F1-score

1 Training 98.83 100 100 97.66 98.81

2 Test 99.53 100 100 99.06 99.53

3 External 95.52 99.55 97.73 91.49 94.51

Deployment:

To convert the outcomes in effectively classifying cancer vs normal based on

the expression of just a handful of features, we have developed an app, BrcaDx,

to freely provide the service to the academic community. BrcaDx is deployed at:

https://apalania.shinyapps.io/brcadx/ . The model was rebuilt using the full

dataset for maximum discriminative performance. Based on an input of the

expression of the nine biomarkers, the app carries out a necessary log2

operation of the values, and transforms them into the three-dimensional PC

space. The transformed coordinates are fed to the learned k-means clustering

model, which locates the sample in either of the two clusters, thus predicting the
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class of the sample. The app accepts a single-sample input as well as a batch

input (samples x biomarkers), in which case it processes all the samples and

returns the corresponding prediction for each sample. To facilitate not-for-profit

applications, a video tutorial for using the app has been provided on the landing

page. The app was implemented using R-Shiny (https://shiny.rstudio.com/ ).

Discussion

It is significant to note that some of the biomarkers identified in our

study are part of marketed and commercially available signature panels used in

the context of breast cancer diagnosis and treatment. Specifically: (i) NEK2 is a

constituent of the 11-gene Breast Cancer Index signature used to estimate

recurrence19; and (ii) MMP11 is a constituent biomarker of the 50-gene

Prosigna20, and 21-gene OncotypeDX21 signature panels, which are both used in

estimating likelihood of recurrence. It is interesting to note that the Prosigna

panel is based on the PAM50 signature, which is also used to subtype breast

cancer into Luminal-A, Luminal-B, HER2-enriched and Basal-like22.

The consensus genes used to build our model are known to play key roles

in cancers of the breast and other tissues, contributing to breast-cancer specific

pathways as well as cancer hallmark processes23. The genes NEK2, PKMYT1,

and CA4 are known to play indispensable roles in cell cycle progression24-26.

NEK2 is documented to be overexpressed in breast-cancer tissue relative to

normal tissue27,28, and is required for the growth, maintenance and survival of

the transformed cell29. PKMYT1 overexpression is known to be significantly

correlated with BRCA subtypes, and indicative of poor prognosis30.

Downregulation of CA4 is associated with poor prognosis in cancers other than

that of the breast, notably uveal melanoma, renal cell cancer, glioma, and lung

adenocarcinoma30,31, hinting its role in hallmark processes common to many

cancers, and its potential significance in establishing such hallmarks in breast

cancer progression. Hypermethylation of the CPA1 gene in breast cancer cells

has been earlier demonstrated32,33, which could lead to its significant
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downregulation noted here. Recently, COL10A1 was identified as an

overexpressed predictive biomarker for breast cancer coexpressed with

LRRC1534. COL10A1 protein is a known extracellular matrix molecule released

into the blood, and increased levels of circulating COL10A1 protein has been

suggested as a diagnostic marker of breast cancer35. MYOC has been previously

reported as a topranked downregulated gene in breast cancer36. MMP11

overexpression in early stages is necessary for cancer progression via inhibition

of apoptosis, and promotion of invasion and metastasis37. Overexpression of

LYVE1 has been suggested as a reliable marker of lymphatic metastasis in

breast cancer patients38. HSD17B13 is involved in estrogen biosynthesis39, and

its tumor suppressor role in hepatocellular carcinoma has been documented40,

suggesting analogous key roles specific to breast cancer progression.

Due to the substantial heterogeneity in breast cancer, large feature spaces

have been necessary for acceptable performance in contemporary classification

strategies. Some of these have mandated whole genome sequencing to

completely cover the biomarker space of interest. For e.g, Zhao et al identified

817 features and used them to build a model that achieved accuracies of 86.96%

and 72.46% in different external validation datasets respectively41. Mostavi et al

used a feature space of 2090 genes for discriminating cancer vs normal, of

which 323 biomarkers were designated for the task of subtyping breast cancer42.

Convolution-based deep neural networks (CNNs) have been applied to learn

from image datasets of mammography, computed tomography (CT), magnetic

resonance (MR) and histopathological slides43-45. CNNs have been used to

extract features from whole-slide tissue-biopsy images, which were

subsequently used to train a Support Vector Machine classifier of cancer vs

normal, yielding an accuracy of 83.3%46. Radiogenomics approaches based on

multimodal datasets have also been developed for breast cancer diagnosis47. The

use of large feature spaces discourages the use of AI-assisted diagnosis in

medical decision-making. Very recently Taghizadeh et al have advanced a
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solution to the ‘cancer’ vs. ‘normal’ problem, proposing a panel of 20

biomarkers for discriminating breast cancer from normal sample48. Their study

has been validated on an internal test set with a balanced accuracy ~ 86%, but

no external validation has been provided. Furthermore their models have not

been made available for wider use. It is notable that there is zero overlap

between biomarkers identified in their study and identified herein. It is hoped

that our study provides a reliable and replicable remedy to the present situation,

with a balanced-accuracy performance > 95% on the external validation.

Conclusion

In this work, we set out to negotiate the compromise between model

complexity and performance, and develop the simplest possible best-performing

model of breast cancer classification. The designed computational pipeline

yielded a novel non-redundant hypothesis space of nine biomarkers, which was

transformed into a space defined by an optimal number of principal

components. A k-means clustering model trained in this transformed space was

able to discriminate cancer from normal samples with a high balanced accuracy

of 99.5% and 95.5% on the internal and external validation datasets,

respectively. At the same time, we note that the model had limited recall (<

92%) on the external validation dataset. The model could be further improved

by efforts to predict the subtype of breast cancer as well as its progression to

advanced stages or metastasis. The present model has been deployed as a

web-service at https://apalania.shinyapps.io/brcadx/ for non-commercial use.

The ideas used in our study could be useful in developing elegant, interpretable

AI-assisted diagnostic models for many other cancers and disease conditions,

fostering effective aid to medical decision-making.
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