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Abstract:
The extent to which urban vegetation improves environmental quality and affects the

health of nearby residents is dependent on typological attributes of “greenness”, such as canopy
area to alleviate urban heat, grass to facilitate exercise and social interaction, leaf area to
disperse and capture air pollution, and biomass to absorb noise pollution. The spatial proximity
of these typologies to individuals further modifies the extent to which they impart benefits and
influence health. However, most evaluations of associations between greenness and health
utilize a single metric of greenness and few measures of proximity, which may disproportionately
represent the effect of a subset of mediators on health outcomes.

To develop an approach to address this potentially substantial limitation of future studies
evaluating associations between greenness and health, we measured and evaluated distinct
attributes, correlations, and spatial dependency of 13 different metrics of greenness in a
residential study area of Louisville, Kentucky, representative of many urban residential areas
across the Eastern United States. We calculated NDVI, other satellite spectral indices, LIDAR
derived leaf area index and canopy volume, streetview imagery derived semantic view indices,
distance to parks, and graph-theory based ecosystem connectivity metrics. We utilized
correlation analysis and principal component analysis across spatial scales to identify distinct
groupings and typologies of greenness metrics.

Our analysis of correlation matrices and principal component analysis identified distinct
groupings of metrics representing both physical correlates of greenness (trees, grass, their
combinations and derivatives) and also perspectives on those features (streetview, aerial, and
connectivity / distance). Our assessment of typological greenness categories contributes
perspective important to understanding strengths and limitations of metrics evaluated by past
work correlating greenness to health. Given our finding of inconsistent correlations between
many metrics and scales, it is likely that many past investigations are missing important context
and may underrepresent the extent to which greenness may influence health. Future
epidemiological investigations may benefit from these findings to inform selection of appropriate
greenness metrics and spatial scales that best represent the cumulative influence of the
hypothesized effects of mediators and moderators. However, future work is needed to evaluate
the effect of each of these metrics on health outcomes and mediators therein to better inform
the understanding of metrics and differential influences on environments and health.

Introduction:
Multiple observational studies have found that neighborhood vegetation is associated

with improved health outcomes (James et al., 2015,Barboza et al., 2021). However, most
studies that examine links between greenness and health rely on greenness metrics such as
canopy and NDVI, with little consideration or exploration of other metrics of greenness. Given
the many moderators through which greenness affects health, specific greenness metrics may
be disproportionately associated with some moderators and subsequent health outcomes.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.03.23286763doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:fletch@hyphae.net
https://www.zotero.org/google-docs/?W9iI9S
https://www.zotero.org/google-docs/?OD5CoN
https://doi.org/10.1101/2023.03.03.23286763


Various metrics of neighborhood vegetation exposure have been employed in health
studies, including Normalized Difference Vegetation Index (NDVI), land-cover classifications
(such as tree canopy area), residence distance to parks or other greenspace, leaf area index,
street-level green-view index and surveys of perceived greenness, although the most common
metric has been NDVI. NDVI is calculated from remote sensing platforms measuring reflected
near-infrared and visible portions of the electromagnetic spectrum. Plant photosynthesis
consumes visible wavelength photons (with peaks in the red and blue spectral regions), while
re-radiating near-infrared photons. Thus, plant photosynthetic area appears bright in the
near-infrared and dark in the red portions of the spectrum of a multispectral sensor. NDVI is the
ratio normalized to be between -1 and 1:

𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑

Generally, Tall evergreen trees and deciduous trees at the peak of foliation typically have NDVI
values from 0.5 to 0.9, while shrubs and grasses can be in the range of 0.2 to 0.5 (Gamon et al.,
1995). Bare soil or rock is generally below 0.1 (Bhandari et al., 2012), while surface water is
typically around 0.0 (Buma, 2012). These categorizations are highly fluid; correlations between
vegetation characteristics and NDVI can vary significantly depending on sensor configurations,
atmospheric effects and phenology, and can exhibit rapid changes due to water and nutrient
status. In urban environments, well maintained lawns of manicured turf grass may have NDVI
nearly indistinguishable from nearby tall trees. (Caturegli et al., 2016) conducted a detailed
assessment of drone acquired (high spatial-resolution) NDVI from turfgrass and found that it
varied between 0.5 and 0.9, with a consistent positive relationship between NDVI and nitrogen
content/application. (Xiong, 2005) found NDVI for bermuda grass to be between 0.65 to 0.9.
Consequently, urban planners faced only with positive correlations between NDVI and
community health outcomes will be unguided as to the relative merits of planting trees vs
fertilizing grass.

It is clear that there is much physical variation within equivalent values of NDVI and canopy,
such as plant health, height, surface area, and density. Such variation is likely to have
disproportionate effects on the moderators of relationships between greenness on health,
including physical activity,  social cohesion, stress, urban heat, microbiome diversity, and air
pollution. From an intervention design perspective, the structure of proposed interventions is
dependent on the proposed mechanism for health improvement. For example, a greening
intervention geared towards reducing air pollution might focus on dense, tall roadside vegetation
for interception of traffic sourced particulates, a heat island mitigation strategy might focus on
canopy-forming trees over pavement, while an intervention to increase physical activity and
social cohesion might focus on increasing open grassy areas where people can gather and
exercise. At this level of design consideration, the metrics used to establish the link between
greenness and health outcomes becomes a driving factor for evidence-based design.

There have been many poignant critiques of NDVI and canopy as a meaningful measure for
environmental health (Rugel et al., 2017, Villeneuve et al., 2018, Reid et al., 2018, Trethewey &
Reynolds, 2021), with explicit calls for more nuanced and comprehensive greening metrics
(Taylor & Hochuli, 2017, Saleh et al., 2019, Rojas-Rueda et al., 2021, Donovan et al., 2022) to
inform our understanding of how greenness influences health and subsequent intervention
design and implementation. Thus, the purpose of the present study is to determine groupings
and redundancy of greenness metrics and identify potential alternative greenness metrics in
order to inform and contextualize greenness metrics utilized in health studies for furthering
evidence-based intervention design.
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Materials and Methods:
Study area:

The area of study encompasses 12 square kilometers of the southern portion of
Louisville, Kentucky shown within the purple outline in figure 1. We used this area for all
analyses the employ averaging or summing greening metrics within a buffer around residential
addresses. An extended study area of 65 square kilometers was used for direct raster to raster
analysis (without residential buffers), which is shown in figure ST-1. For all variables the
principal study period is the summer of 2019. We chose to focus on this area as it is the subject
of the ongoing Green Heart Project. The Green Heart project is a study employing urban
vegetation as an intervention in the style of a clinical trial. Starting in the Autumn of 2019, over 3
years a total of 8000 mature evergreen trees were planted throughout a 50 acre target
neighborhood. 800 study participants in the target neighborhood and in the surrounding control
neighborhood (where no trees were planted) had blood, urine and hair collected and assayed
for various biomarkers of cardiovascular health before and 3 years after completing the
intervention. Also included in the Green Heart study design is a comprehensive air monitoring
program to assess the impact of the new vegetation on various air pollutant concentrations,
noise levels, and temperature.
The Green Heart study will provide an opportunity to assess the deterministic relationships
between urban vegetation and human health outcomes. However, in order to establish a
dose-response, the definition of dosage units must be established, and it may turn out that the
vegetation intervention may appear to have more or less powerful effects depending on what
methods are used to measure it. By way of a simple example, if the mechanism for health
improvement were limited to air pollution mitigation via deposition of particulates on leaf
surfaces, then we would expect the association between leaf area index and the health
outcomes to be greater than the association between NDVI and the health outcome. Similarly, if
the main source of air pollution were traffic sources near roadways, then streetview derived tree
metrics might show a stronger association with the health outcome than overall tree cover. More
likely there will be multiple mechanisms with intersecting relationships with different greening
metrics. For example, increased microbial biodiversity might be associated with health
improvement, and also with habitat connectivity, leaf surface area, and plant diversity, and
possibly NDVI via its covariance with these other metrics.
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Figure 1. a. Map of study area. b. Study area in context of Jefferson County, KY.

Data utilized

The details of the grenness metrics, their significance, and how they were acquired/calculated is
in the supplemental information. A table showing the metrics, their source and very brief
description is shown in table 1.

Metric Source Description

Summer average
NDVI

Calculated from Planetscope multispectral
3.5 meter rasters

Normalized Difference Vegetation Index: Measure of healthy
vegetation. Can be higher for dense trees, but can also respond
similarly to healthy grass.

Summer average
SAVI

Calculated from Planetscope multispectral
3.5 meter rasters

Soil Adjusted Vegetation Index: Similar to NDVI but adjusted for
brightness of bare soil in low vegetation areas.

Summer average
TDVI

Calculated from Planetscope multispectral
3.5 meter rasters

Transformed Difference Vegetation Index: Similar to SAVI but
does not saturate in high vegetation areas.

Summer average
GCI

Calculated from Planetscope multispectral
3.5 meter rasters Green Chlorophyll Index: Proxy for chlorophyll content of area.

Annual NDVI AUC

Calculated from 18 NDVI measurements
throughout 2019 using composite
Simpson's rule

NDVI area under the curve: Results from taking NDVI during all
seasons to get a phenological curve, and then integrating to get
the area under the curve (AUC).

LAI
Calculated from aerial LIDAR point cloud
using Beer's law

Leaf Area Index: Single sided leaf surface area per unit Earth
area.
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Canopy Volume
Calculated from aerial LIDAR point cloud
using top and bottom of canopy height Total volume of space occupied by tree canopy.

Canopy Height
Max

Calculated from aerial LIDAR point cloud
using top of canopy height Maximum height of tree canopy

Canopy Height Min
Calculated from aerial LIDAR point cloud
using bottom of canopy height Minimum height of tree canopy

Canopy Area Calculated from LAI Total area under tree canopy

Grass area
Calculated from land-cover classification of
O’Neil-Dunne & Safavi (2021) Total area occupied by grass (not under tree canopy).

Interaction flux Calculated from canopy area patches
The local contribution of each habitat patch to the probability of
connectivity

Corridor-120 Calculated from canopy area patches The probable habitat corridors between habitat patches

Minimum Distance
to Parks

Calculated from address locations and park
locations

For each address, the minimum distance between the address
and the nearest park.

Streetview tree
index

Calculated from semantic segmentation of
Google street-view images

For each point spaced 20 meters along roadways, the
percentage of the spherical viewshed occupied by trees.

Streetview grass
index

Calculated from semantic segmentation of
Google street-view images

For each point spaced 20 meters along roadways, the
percentage of the spherical viewshed occupied by grass.

Streetview plant
index

Calculated from semantic segmentation of
Google street-view images

For each point spaced 20 meters along roadways, the
percentage of the spherical viewshed occupied by non-tree,
non-grass plants.

Table 1: Greenness metrics used in the present study.

In brief the greenness variables that we used in this analysis include the spectral indices,
LIDAR derived metrics, streetview derived metrics, and connectivity metrics. The summer
averaged spectral indices (summer average NDVI, TDVI, GCI and SAVI) measure the overall
area of healthy vegetation (trees, grass and shrubs) during the summer, based largely on the
presentation of chlorophyll-based photosystems to the observing satellite. The LIDAR derived
metrics include attributes of the tree canopy (Leaf area index (LAI), canopy volume, canopy
height maximum, canopy height minimum, canopy area) and grass area. The LAI represents the
surface area of tree canopy leaves, which relates to the canopy’s capacity for air pollution
capture, evapotranspiration, and biodiversity support. These ecosystem services are also likely
to correlate with the canopy volume, area and height metrics. The streetview derived view
indices (tree-view, grass-view, plant-view, and total vegetation view) represent the amount of
each category of the landscape features visible from roadways, and may relate to the
intersection of landscape features with traffic pollution and also common human traversal
routes. The connectivity metrics (minimum distance to parks, interaction flux, and habitat
corridors) relate to the network properties of the greenness, with interaction flux and habitat
corridors relating to the provision of connectivity between habitat patches for microbiota and
fauna, and minimum distance to parks relating to accessibility of greenspace to area residents.

The corresponding data types broadly fall into 3 categories: continuous raster data,
categorical raster data, and point data. The continuous raster data includes all of the spectral
indices, the LAI, canopy volume, canopy heights, interaction flux and habitat corridors. The
categorical raster data includes the canopy area and grass area, and is at 1 meter spatial
resolution, with a value of zero for no canopy or grass, and a value of 1 for canopy or grass. The
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point data includes all of the streetview data (in points along roadways spaced 20 meters apart)
and the minimum distance to parks (calculated for each building address).

The metrics can be ad hoc characterized in a multitude of ways, for example by the
physical analyte that they suppose to measure (tree metrics, grass metrics, chlorophyll metrics,
graph connectivity metrics), or by the method of their acquisition (spectral indices, LIDAR
derived metrics, streetview derived metrics), or they can be categorized objectively using
measures of their orthogonality. In this study we use principal component analysis to delineate
common dimensions of covariance between the variables, with an eye towards understanding
the extent to which each variable is unique or potentially redundant.

Statistical Analysis:

For correlations between raster data and point data, we used the following method: We
downloaded all address points within the study area as a geojson file from the LOJIC (Louisville
and Jefferson County, KY Information Consortium) open geospatial data website
(https://data.lojic.org/). Using Qgis 3.24.3-Tisler we created buffers of 50, 250, 500 and 1000
meters around every address point (shown in figure SI-14). We then used the Python
Geopandas library version 0.10.2 to calculate the mean value of each streetview semantic
viewshed index falling within each address buffer. We then used the Python Rasterio library
version 1.2.10 to calculate the mean value of each continuous raster dataset within each
address buffer, and the sum of each categorical raster dataset within each buffer. We then used
the Python Pandas library version 1.4.1 to calculate the Spearman correlation matrix for all
variables within each set of buffers. We performed principal component analysis and principal
component regression using the Python Sci-kit learn library.

For raster to raster comparisons, we used the Python Pandas library to make
pixel-to-pixel Spearman’s correlation matrices. Prior to the correlation analysis all rasters were
resampled to 4 meter resolution and aligned with the Planetscope datasets using the Qgis
raster alignment tool. Pixel-to-Pixel Linear regression residual maps were calculated using
GRASS r.regression.multi function in Qgis.

RESULTS:
The Spearman correlation matrix of the variables aggregated into 50 meter buffers

around building addresses is shown in figure 2. With the 50 meter buffer, very high correlation
(>0.95) is seen between canopy volume, canopy area, and LAI. This is not surprising, as these
metrics are all derived from the same LIDAR derived tree canopy dataset. Interaction flux is also
derived from this dataset, and shows relatively high correlations of 0.79 to 0.82 with these
metrics. These four LIDAR-derived canopy metrics show no correlation with grass area, which is
also derived from the LIDAR data, but represents portions of the non-canopy area. Summer
NDVI shows a relatively high correlation of around 0.86 with the four LIDAR derived tree canopy
metrics, and a similar correlation with annual integrated NDVI AUC, however annual NDVI AUC
has a lower correlation of 0.66 with the LIDAR derived tree canopy metrics. This is not
surprising in that the south Louisville neighborhood in question has very few evergreen trees,
and so the annual NDVI AUC shows a higher score for grassy areas than tree canopy.

The streetview tree index shows correlations between 0.58 and 0.72 with the four LIDAR
derived tree canopy metrics, and 0.69 with summer average NDVI. Streetview grass index
shows correlations of 0.46, 0.53 and 0.5 with grass area, summer NDVI, and streetview tree
index respectively, and lower correlations with the LIDAR derived tree canopy metrics.
Streetview plant index and minimum distance to parks both have low or no correlation with most
other variables.
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Figure 2. Correlation between mean metrics within a 50 meter buffer around all address points.
Figures 3, 4 and 5 show the correlation matrices using 250, 500 and 1000 meter buffers

around address points. What these demonstrate is that as the buffer size increases, all of the
metrics see increases in covariance, with the exception of minimum distance to parks.
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Figure 3. Correlation between mean metrics within a 250 meter buffer around all address
points.
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Figure 4. Correlation between mean metrics within a 500 meter buffer around all address
points.
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Figure 5. Correlation between mean metrics within a 1000 meter buffer around all address
points.

Figure 6 shows the differences in trends across a few selected correlations given changes in
buffer size. The pairs that are highly correlated at the 50 meter scale, such as LAI and canopy
area remain so as buffer size increases, while those with lower correlations at smaller scales
see larger increases with buffer size. The highly orthogonal pairs such as interaction flux and
streetview, or distance to parks exhibit more of a lag with smaller increases or even small
decreases between 50 and 250m, with more increasing above 250m.
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Figure 6: selected correlations across buffer sizes.
PCA groupings and factor loadings

The principal components factor loadings for 50 meter buffers around addresses are
shown in figure 7a. The number of principal components, 4, corresponds to that required for the
explanation of around 80% of the variance. For the 50 meter buffer size the first principal
component may represent overall greenness fairly well, as it has strong positive correlations
with tree metrics (canopy, LAI, streetview tree), general vegetation metrics (NDVI, streetview
total vegetation), and weaker but still positive correlations with grass (streetview, and to a lesser
extent grass area), and the connectivity metrics associated with habitat patches (interaction flux
and corridors). This component is effectively uncorrelated with minimum distance to parks.

The second principal component exhibits its strongest positive correlations with
interaction flux, canopy volume and LAI, followed by canopy area and a very weak positive with
NDVI AUC, but with weak negative correlations with summer NDVI, distance to parks,
streetview trees, and with strong negative correlations with grass area, streetview grass and
habitat corridors. This is interesting in that interaction flux, LAI and canopy volume are intuitively
related to trees, but this component has no correlation with streetview trees, illustrating the
fundamental orthogonality between aerial tree measurements and streetview tree
measurements. Similarly this component has no correlation with summer NDVI, but shows
strong correlation with LAI and tree canopy volume, illustrating the lack of tree specificity of
NDVI.

The third principal component shows a strong negative correlation with streetview plant,
weak negative correlations with streetview tree, corridors, LAI, distance to parks, canopy area,
canopy volume, and weak positive correlations with NDVI, and a relatively strong correlation
with grass area. This component seems to be representing the orthogonality of grass area and
streetview plant as distinct from the other greening metrics and each other.

The fourth principal component is strongly positively correlated with minimum distance to
parks and is only weakly correlated with any other metrics.
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Figure 7: Principal component loadings for 50m (a), 250m (b), 500m (c) and 1000m (d) buffer
radii.

The distribution of correlations with metrics for the first principal component is similar at
250m to that of the 50m buffer data. However, in contrast to the 50 buffer, the 250m buffer
second principal component does not show a strong negative correlation with grass area or
streetview grass, but a strong positive correlation with streetview plant and distance to parks,
while the negative correlations with LAI, canopy volume and canopy area are very weak. The
third principal component meanwhile is more strongly negatively correlated with interaction flux
and minimum distance to parks, with positive correlation with grass area and streetview grass.
The fourth principal component has similar negative correlations with minimum distance to parks
and grass area, unlike the 50m buffer which did not have this association with grass area. The
principal components factor loadings for 500 meter buffers around addresses are shown in
figure 7c. Here the pattern is similar to the 250m buffer, with the exception of principal
component 4, which has a relatively strong correlation with interaction flux. The principal
components factor loadings for 1000 meter buffers around addresses are shown in figure 7d. In
this case the second principal component shows weak positive correlations with interaction flux
and NDVI AUC, and to a lesser extent distance to parks, while showing negative correlations
with streetview indices. Principal component 3 joins distance to parks with a streetview plant
component, and the fourth principal component has weak positive correlations with interaction
flux and streetview plant, with weak negative correlations with habitat corridors and distance to
parks. Principal component loading plots for the 50m case are shown for component pairs 1-2,
1-3, and 1-4 in figures SI-20, SI-21, and SI-22 respectively.

Raster only correlations:
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Figure 8: Pixel to Pixel Spearman correlation between raster datasets without residential
buffers.
The raster-only Spearman correlation matrix is shown in figure 8. Planetscope summer average
NDVI, TDVI, SAVI and GCI are all highly correlated (Spearman’s ρ of 0.98 or greater).  There is
a lower correlation between summer average NDVI and the NDVI annual area under the curve,
which reflects the impact of seasonal phenology in the climate of the study area. We expect this
difference to be less pronounced in more tropical areas and areas with a higher percentage of
evergreen vegetation. In any case, for longitudinal health studies assaying health outcomes
over long periods or analyzing many years of historical data, the annual area under the curve
may be more appropriate as a measure of cumulative exposure to greenness than summer
average NDVI or single acquisition NDVI. The ρ value between LAI and NDVI is 0.7, consistent
with the intuition that these two variables are related but fundamentally reading different things.
The canopy volume, canopy height maximum and canopy height minimum are highly correlated
(Spearman’s ρ of 0.92 or greater). This is not surprising, as higher crown bottoms tend to
manifest as trees grow taller. The least correlated variable is the corridor map, which was
expected as the corridor locations as produced tend to be between rather than within the
vegetation patches that confer LAI and canopy volume.
Raster Regression Residuals
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Figure 9 shows the linear regression residual mapping between selected raster variables.
Figure 9a shows the mapping between NDVI and TDVI. As NDVI increases, TDVI saturates, so
the residual map shows high values where there are edges between adjacent features. This
does not suggest a categorical difference in the physical correlates of what is being measured,
so much as a difference in magnitude between the metric at different values. In contrast, figure
9b shows the linear regression residual map between NDVI and LAI. The positive values show
trees, negative values grass and middling values show pavement, bare earth and building roofs.
While this clearly shows the difference in the physical correlates of the two metrics, with LAI
showing trees, and NDVI showing trees and grass, it also draws our attention to the roads
themselves, and their widths, which we can hypothesize are positively correlated with traffic
counts and hence air pollution concentrations, and which are not differentiated from grass in the
LAI dataset, but are likely at least somewhat proportional to the inverse of the NDVI.

Figure 9. Residual maps within categories

Figure 9c shows the linear regression residual map of LAI and maximum canopy height. Here
the positive values seem to represent short, dense vegetation, while the negative values
represent tall, sparse vegetation. This residual map may be of interest in itself for health studies
and air pollution studies, as short, dense vegetation may play a mitigating role in traffic-sourced
air pollution (through deposition of particles on leaf surfaces, and dispersion of polluted air up to
be diluted by cleaner air above), while tall, sparse vegetation might serve to trap traffic sourced
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air pollution at ground level by reducing vertical mixing. In any case it is a good illustration of the
nuance required for interpreting the correlations between different greenness metrics; even
though these two variables had relatively high correlation (Spearman’s ρ of 0.86), they can still
clearly be associated with meaningfully different physical correlates in the environment. The
residual maps shown in figure 9 are paired with their respective regressors in figures ST-15,
ST-16, ST-17 and ST-18.

Discussion:
In this study, we compared 13 different greenness metrics with each other, both in the context of
overall raster-based pixel to pixel correlations and also as each metric aggregated into buffers
around residential addresses, to develop an understanding of the potential utility of the metrics
for evaluating environmental health interventions. Of the multitude of greening metrics available
to the environmental health researcher, we have found that some are more covariant than
others, with many exhibiting scale-dependence in their covariation. We found the different
spectral indices to be highly correlated, and so just chose NDVI to represent the group as it is
most commonly used in the literature. Among the lidar derived canopy metrics, the canopy
volume and max canopy height were highly correlated, which is to be expected. The bottom of
canopy height was also highly correlated with these metrics, although the bottom of canopy
height may be interesting in itself as it may relate to air pollution transport at the hyper-local
level, in that high tree canopy bottoms may trap traffic sourced pollution at human occupied
atmospheric strata, but when bottom of canopy is low enough to preclude human occupation
this may become less of a health concern.

While NDVI values grass and trees similarly, leaf area index ignores grassy areas in favor of
trees, which makes a bigger difference when looking at smaller buffers around addresses than
at larger buffers, where the differences tend towards evening out. This effect may be different in
places with different grass phenology. For example the grass stays green in Louisville all
summer long, and tends to become brown in the winter, matching the phenology of the
deciduous trees. However, in coastal California, the grasses turn brown in the summer, and
green in the winter, out of phase with deciduous trees. Thus in places like coastal California, we
can expect the correlation between summer LAI and summer NDVI to be higher than in places
like Louisville, while the opposite (lower correlation in coastal California) would occur in winter.

The streetview metrics provide insights that are orthogonal to the aerial and satellite
measurements. Similarly the connectivity metrics are also orthogonal, although more research is
required to dial in the most relevant combination of connectivity metric parameters.

When analyzing the data aggregated into buffers around addresses, including both
raster and streetview data we found that the first principal component included a broad
association of greenness, including metrics that consider trees, combine trees and grass, and
consider connectivity between tree patches, but not overall grass area or distance to parks. The
second principal component seems tree specific, while the third principal component seems to
associate with grass area, and the fourth with distance to parks. This indicates a physical
interpretation of greenness, where trees and grass are distinct features that while commonly are
seen together, can also be seen separately, and both trees and grass are distinct from the
connectivity between them and over short distances are unrelated to the distance of an address
to the nearest park.

The analysis also reinforces the orthogonality between aerial/orbial metrics and those
derived from streetview cameras. The second principal component correlates with LAI, canopy
area and canopy volume, but not with streetview tree index. The streetview grass index and
grass area are weakly correlated. The streetview plant index is highly orthogonal to most other
metrics. This latter point is of potential importance for health studies that consider the aesthetic
benefits of vegetation; streetview plant index is measuring plants that are not trees nor grass, so
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in an urban area this means shrubs, flowers and other landscape plants that may have low total
surface area but high aesthetic value, and potentially high biodiversity value.
Implications for design:
The extent to which each of the available greenness metrics is associated with community
health outcomes will determine the utility of designing interventions towards changing said
metrics. For example, research showing that a given increase in NDVI was associated with a
particular reduction in cardiovascular disease may provide an incentive to increase NDVI of the
neighborhood by that amount. From a design and engineering perspective, the most cost
effective method for increasing NDVI in an urban area will depend entirely on the makeup of the
built environment. In a residential urban environment dominated by single family residences, the
fastest and lowest cost method of increasing NDVI might be to fertilize and irrigate lawns, and
seed bare-earth areas with grass and groundcover. This is in contrast to tree planting, which
requires purchasing trees, digging holes, and then waiting years for the tree canopies to
increase to appreciable size. In pavement dominated areas where residents are concentrated in
high-rise apartments, planting canopy forming  trees may be more cost effective for increasing
NDVI, as planting grass and ground covers may require expensive depaving or green-roof
retrofits.

For increasing LAI, large trees, or trees that will become large will have the biggest
impact, although the species of trees is very important. Needle leaf trees have higher surface
area than broadleaf trees, and evergreens will have far higher annual leaf area presentation
than deciduous trees. Designing for top of canopy height requires planting trees that will grow
very tall. Bottom of canopy height is species dependent, if seeking a low canopy bottom, then
conical conifers and hedges are appropriate, while seeking a high bottom of canopy requires
tall, leggy species.

Streetview metrics that represent viewshed percentage of an object class, such as
tree-view index will be most cost effectively increased by planting trees as close to roads as
possible. The shape of these trees will impact their street-visible area, so wide, tall trees with
low bottom of canopy may have more impact than tall thin trees or trees with tall trunks and high
bottom of canopy.

Increasing interaction flux would require filling gaps between habitat patches, with a
focus on linking the least connected patches to the most connected patches. There are also
global connectivity measures for subregions that could be increased using the algorithm of
(Clauzel et al., 2015). Decreasing distance to parks would require building new parks or
enlarging existing ones. Increasing habitat corridors in the spirit of the corridor metric used in
this study would require shrinking habitat patches while maintaining a minimum distance
between them.

In summary, the strategy for increasing greenness in an area may be completely
different depending on the metric used to define greenness. While the motivation to increase a
greenness metric may be driven by the association between said metric and positive health
outcomes, as more is learned about the mediators between greenness and health more
mediator-specific design rubrics can be employed. For example tightly packed roadside
vegetated air barriers have been demonstrated to reduce traffic-sourced pollution downwind
(Al-Dabbous & Kumar, 2014), and wide canopy forming trees have been shown to decrease
urban heat island effects (Schwaab et al., 2021); such interventions can be deployed, and their
performance evaluated independently of any greenness metrics associated with them.
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