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Abstract: 

Background: Liver transplantation (LT) is a treatment for acute-on-chronic liver failure (ACLF) but up to 

40% mortality post-LT has been reported.  Existing post-LT models in ACLF have been limited by small 

samples.  In this study, we developed a novel Expert-Augmented Machine Learning (EAML) model to 

predict post-LT outcomes. 

 

Methods:  We identified ACLF patients in the University of California Health Data Warehouse (UCHDW).  

We used EAML, which uses the RuleFit machine learning (ML) algorithm to extract rules from decision-

trees that are then evaluated by human experts, to predict post-LT outcomes.  We compared 

EAML/RuleFit’s performances versus other popular models. 

 

Results: We identified 1,384 ACLF patients.  For death at one-year: areas-under-the-receiver-operating 

characteristic curve (AUROCs) were 0.707 (Confidence Interval [CI] 0.625-0.793) for EAML and 0.719 (CI 

0.640-0.800) for RuleFit.  For death at 90-days: AUROCs were 0.678 (CI 0.581-0.776) for EAML and 0.707 

(CI 0.615-0.800) for RuleFit.  In pairwise comparisons, EAML/RuleFit models outperformed cross-

sectional models.  Divergences between experts and ML in rankings revealed biases and artifacts in the 

underlying data. 

 

Conclusions:  EAML/RuleFit outperformed cross-sectional models.  Significant discrepancies between 

experts and ML occurred in rankings of biomarkers used in clinical practice.  EAML may serve as a 

method for ML-guided hypothesis generation in further ACLF research. 
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Introduction: 

Acute-on-chronic liver failure (ACLF) is commonly defined as acute decompensation of end-

stage liver disease (ESLD) with extra-hepatic organ failure and is associated with high short-term 

mortality.(2–7)  Liver transplantation (LT) is a well-established treatment for patients with ACLF who are 

refractory to supportive care and treatment for the underlying precipitant.  Due to critical illness, 

however, LT is estimated to be feasible in only 25% of ACLF patients.(8)  Moreover, there have been 

conflicting post-LT outcomes reported for ACLF patients with some sub-populations having up 40% 

three-month mortality.(9,10)  There is an unmet need for tools to predict post-LT outcomes for ACLF 

patients in the pre-LT setting (and without intra-operative or post-LT data) to ensure utility.(11,12)   

Multiple international research consortia, such as the North American Consortium for the Study 

of End-Stage Liver Disease (NACSELD),(3) the European Association for the Study of the Liver-Chronic 

Liver Failure Consortium (EF-CLIF),(4) and the Asian Pacific Association for the Study of the Liver ACLF 

Research Consortium (APASL ACLF);(13) have developed scoring systems to predict pre-LT outcomes.  

None of these models, however, specifically evaluates for post-LT outcomes.  One of the few models 

that specifically evaluate for post-LT outcomes is the Transplantation for ACLF-3 Model (TAM) score, 

which was trained on a cohort of 76 patients with EF-CLIF grade-3 (severe) ACLF at a single French 

center and validated in 76 patients in four other centers.(14)  Despite its potential utility, the TAM 

model has not been studied in non-European settings outside of limited cohorts.  

In addition, one of the major barriers to building post-LT outcomes models for ACLF patients is 

that ACLF is a heterogeneous and dynamic clinical syndrome, as evidenced by diverging definitions in 

different geographies.(3,4,6,8,13)  Existing prediction models do not utilize vast numbers of data 

features available in electronic health records (EHRs) to better define dynamic clinical trajectories seen 

in patients with ACLF.  Our group had previously demonstrated an informatics approach to extract EHR 

data that yielded a median of 454 features per admission to more accurately represent ACLF patients’ 
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clinical courses.(15)  Machine Learning (ML) is well-suited for analyzing such data, but can be misleading 

when taken out of context of biological or clinical mechanisms.(16,17)   

Expert-Augmented Machine Learning (EAML) is an emerging technique that overcomes this 

limitation of ML by extracting rules from decision-tree ML models for human expert feedback.  EAML 

has two potential benefits: 1) To create combined models that incorporate the best of human and ML 

knowledge, and 2) To evaluate for differences between humans and ML.  These differences could 

represent human biases (e.g., experts ignoring important variables identified by ML) or artifacts in the 

underlying data (e.g., experts are identifying the important variables but there is over-representation of 

other clinical characteristics in this population not seen elsewhere).   

In this study, we utilized a novel multi-center EHR database, the University of California Health 

Data Warehouse (UCHDW), to construct an EAML model to predict post-LT outcomes in patients with 

ACLF. 

 

Methods: 

The University of California Health Data Warehouse (UCHDW) 

 The UCHDW is a unique data asset created from the EHRs and claims data from the five major 

University of California Health (UCH) Medical Centers (Davis, Irvine, Los Angeles, San Diego, and San 

Francisco) and managed by the Center for Data-Driven Insights and Innovation (CDI2).(1)  UCHDW holds 

data on 6.2+ million well-characterized patients seen at UCH since 2012.  All data in UCHDW are 

harmonized in the Observational Medical Outcomes Partnership (OMOP) common data model, version 

5.3.1.(18)  All data elements in UCHDW are de-identified prior to the receipt by end-users with no 

clinical notes or imaging.  UCHDW has previously been utilized to analyze treatment utilization patterns 

between UCH health systems and amongst individual providers within each health system.(19)  For all 

analyses, we utilized UCHDW, versioned as of September 22, 2022 and accessed on October 20, 2022.   
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Study Population  

We isolated all adults (>= 18 years) who underwent an orthotopic liver transplantation 

procedure, as defined by the OMOP concept identifiers 2109321 (CPT4 code) or 4067458 (SNOMED 

code), based on the ATHENA OMOP vocabulary dictionary,(20) in UCHDW between January 1, 2013 

through December 31, 2021.   We included patients who underwent multi-organ (such as simultaneous 

liver-kidney transplant) and re-transplant procedures as they may have been in ACLF prior to transplant.  

Consistent with prior informatics approaches for detecting ACLF admissions, we excluded all patients 

who underwent transplant within 48 hours of admission as they were likely admitted electively.(15)  We 

included patients who had evidence of ACLF prior to the time of LT through a previously published 

informatics-driven approach.(15)  Briefly, this involves identifying any patient who meets ACLF 

diagnostic criteria based on the NACSELD or EF-CLIF definitions prior to LT.  We did not use the APASL 

ACLF diagnostic criteria due to bacterial infection being the most common precipitant of ACLF in 

patients with cirrhosis in the United States.(21,22) 

 

Measurements 

We extracted all structured clinical information associated with the admission of interest.  

Baseline characteristics included age, sex, race/ethnicity, height, weight, body mass index, and censored 

identity of the UCH facility (defined as “UC-1,” “UC-2,” and “UC-3”).  Laboratory measurements, liver 

disease etiologies, complications of cirrhosis, comorbid medical conditions, dialysis state, ventilation 

parameters, and vasopressor administration were extracted based on previously defined OMOP concept 

identifiers.(20,23)   

As patients may have different lengths of stay before LT, we focused only on data values from 

the day of admission and the day before LT.  We dropped measurements from other time points from 
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consideration.  Continuous data features were averaged by hospitalization day.  We defined changes 

between admission and transplant based on the differences between data features between admission 

and day before LT.(24–26)  All intra-operative data values and values after transplant were excluded 

from our analyses as our intent was to develop a predictive model utilizing only pre-transplant data.  

Missing data features and variables underwent single imputation with chained random forests, which 

has been shown to produce low errors and good performances in previous studies utilizing EHR 

data.(27–29)  

 

Outcomes 

The primary outcome was all-cause mortality at one-year after LT.  The secondary outcomes 

included: 1. All-cause readmissions within 90-days, and 2. All-cause mortality within 90-days after LT.  

Death was ascertained based on synchronized data with the California Death Registry.(1)   

 

Model Development and Expert-Augmented Machine Learning (EAML) 

 The sample of ACLF patients isolated from UCHDW was split by random sampling into training, 

validation, and test sets in a 60:20:20 ratio.(30–32)  The training set was used to fit the model, the 

validation set was utilized to tune hyperparameters, and the test set was held-out for independent 

testing.  RuleFit training and testing plots are shown in Supplemental Figures 1, 2, and 3 for our three 

outcomes.  We then utilized EAML, as implemented in the rtemis R package, version 0.91, to train one 

ML model for each of our primary and secondary outcomes of interest (total of three models).(33)  

rtemis is a platform for advanced ML research and applications, which incorporates several algorithms, 

including EAML.(34) 

As described above, EAML is an ensemble ML algorithm that incorporates human knowledge by 

converting high-dimensional training data into Likert-scale questions.(33)  EAML first trains a predictive 
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model using the RuleFit algorithm,(35) which is a combination of a Gradient Boosting Machine (GBM) 

decision-tree model (trained on the data to generate rules), and a Least Absolute Shrinkage and 

Selection Operator (LASSO) model (used to select rules generated by the GBM model).(35)  The RuleFit 

model training outputs include the detailed rules, model coefficients (represents the change in response 

associated with the rule), and empirical risk (rating of the rule importance by the machine).  

Utilizing the rules selected by RuleFit, we then created an online survey on the Qualtrics 

platform (example question in Figure 1) that was sent to 15 hepatologists throughout the world who 

conduct clinical care and research in ACLF recruited from a convenience sample.  These experts were 

asked to rate rules on a 5-point Likert-scale based on perceived associations with the outcomes of 

interest.  We calculated expert rankings based on the averages of these ratings.  We then took the 

differences in rankings between the experts and those generated by the RuleFit model to calculate 

penalties.  These penalties were then incorporated into the RuleFit models by eliminating the top 

quartile of the most discrepant rules (highest fourths of absolute rank differences between RuleFit and 

expert rankings) to create the EAML models for each of the three outcomes.(33)   

 

Statistical Analyses and Model Performance Evaluation 

Clinical characteristics and laboratory data were summarized by medians and interquartile 

ranges (IQR) for continuous variables or numbers and percentages (%) for categorical variables.  

Comparisons between the training, validation, and test sets were performed using chi-square and 

Kruskal-Wallis tests where appropriate.   

We evaluated the performances of EAML (with expert input) and RuleFit (without expert input) 

models through area-under-the-receiver-operating characteristic curve (AUROC), which has been used 

previously to evaluate ML models in transplant hepatology.(36–39)  To compare the performances of 

the EAML and RuleFit models versus cross-sectional models (MELDNa, NACELD-ACLF, CLIF-C-ACLF, TAM) 
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and other ML algorithms (Random Forest [RF], GBM, and Elastic-Net Regularized Generalized Linear 

Model [GLMNET]), we calculated AUROC differences between each pair of models (e.g., AUROC 

differences between EAML and NACSELD) and their confidence intervals using bootstrapping with 2,000 

iterations per pair-wise comparison.(40,41)  We calculated MELDNa, NACSELD-ACLF, CLIF-C-ACLF, and 

TAM scores per previously published literature.(3,4,14,42)  We used rtemis implementations of RF, 

GBM, and GLMNET to generate comparison ML models.   

All data queries, extractions, and transformations of OMOP concept identifiers in UCHDW were 

conducted using the Microsoft Azure implementations of Spark, version 2.12.  All statistical analyses 

were performed utilizing Spark-R, version 4.1.3 “One Push-Up” (R Core Team, Vienna, Austria), and R 

packages previously noted and documented in the supplemental materials.(43)  Two-sided p-values 

<0.05 were considered statistically significant in all analyses.  The use of UCHDW data for this study was 

authorized by the Institutional Review Board at the University of California, San Francisco under #20-

32717 for model generation and #22-37555 for expert input. 

 

Results: 

A total of 1,384 patients with ACLF were identified from UCHDW from January 1, 2013 through 

December 31, 2021.  Of the 1,384: 611 (44.1%) were women, 576 (41.6%) Hispanic, 472 (34.1%) non-

Hispanic White, 138 (10.0%) Asian, 60 (4.3%) Black, and 122 (8.8%) of Unknown/Other race/ethnicity.  

Distribution of patients by University of California sites were 410 (29.6%) at UC-1, 173 (12.5%) at UC-2, 

and 801 (57.9%) at UC-3.   

The patients were randomly divided based on a 60:20:20 ratio with 841 patients in the training 

set, 255 in the validation set, and 288 in the test set.  The three sets were broadly similar across multiple 

demographic and clinical characteristics (e.g. age, race/ethnicity, liver disease etiologies, comorbid 

conditions, and distribution between UCH facilities).  Of note, the median MELDNa scores at admission 
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were 34 (interquartile range [IQR] 29-39), 34 (IQR 30-38), and 34 (IQR 30-38) for the training, validation, 

and test sets, respectively.  Detailed patient characteristics at time of admission are reported in Table 1. 

 

Primary and Secondary Outcomes 

 In the total sample of 1,384 patients: 149 (10.8%) met the primary outcome of death at one-

year, 97 (7%) met the secondary outcome of death at 90-days, and 621 (44.9%) met the secondary 

outcome of readmission within 90-days.  Distributions and prevalence of the primary and secondary 

outcomes were similar between the training, validation, and test sets; and are reported in Table 2. 

 

RuleFit and Expert Augmentation 

 After identification and division of the ACLF patient population as above, we then applied the 

RuleFit algorithm.  RuleFit generated 20 rules for the primary outcome of death at one-year (Table 4), 18 

rules for the secondary outcome of death within 90-days (Table 5), and 6 rules for the secondary 

outcome of readmission within 90-days (Table 6).  The rules generated by RuleFit for each of the 

outcomes were then distributed to 15 hepatologists throughout the world who conduct clinical care and 

research in ACLF who rated the importance of rules based on a 5-point Likert scale.  The aggregated 

physician rankings along with rank differences between RuleFit and experts are also reported in Tables 

4, 5, and 6 for each of the three outcomes.  Of note, the greatest discrepancies between RuleFit and 

human experts occurred in the rankings of biomarkers more commonly utilized in clinical practice, such 

as age and MELDNa score. 

 

EAML Model Performance Versus Cross-Sectional and Other ML Models 

 For the primary outcome of death at one-year: AUROCs were 0.707 (Confidence Interval [CI] 

0.625-0.793) for the EAML and 0.719 (CI 0.640-0.800) for the RuleFit models.  For the secondary 
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outcome of death at 90-days: AUROCs were 0.678 (CI 0.581-0.776) for the EAML and 0.707 (CI 0.615-

0.800) for the RuleFit models.   

 Pairwise AUROC differences and confidence intervals are reported in detail in Figure 2 for the 

primary outcome of death at one-year and in Figure 3 for the secondary outcome of death at 90-days.    

In general, for the outcomes of death at one-year and death at 90-days, AUROC differences between 

EAML and RuleFit models showed that RuleFit outperformed EAML but this was not significant: Δ(RuleFit 

- EAML) was 0.013 (CI -0.027-0.052) for death at one-year and Δ(RuleFit - EAML) was 0.030 (CI -0.100-

0.071) for death at 90-days.  Moreover, AUROC differences between the EAML/RuleFit models and 

GBM, and those between the EAML/RuleFit models and GLMNET were also not significant.  In contrast, 

for the outcomes of death at one-year and death at 90-days, the EAML/RuleFit models consistently 

outperformed cross-sectional models (MELDNa, NACSELD, CLIF-ACLF, and TAM).   

For the secondary outcome of readmission at 90-days: AUROCs were 0.557 (CI 0.493-0.623) for 

the EAML and 0.564 (CI 0.498-0.629) for the RuleFit models.  Pairwise AUROC differences and 

confidence intervals are reported in detail in Figure 4 for the secondary outcome of readmission at 90-

days.  In general, the EAML and RuleFit models did not show significant differences in predictive abilities 

versus each other and versus other ML models.  Moreover, while EAML/RuleFit showed significant 

differences in AUROC versus some of the cross-sectional models (MELDNa, NACSELD, and CLIF-ACLF) – 

overall predictive abilities of all models evaluated were poor. 

 

Discussion: 

This study is one of the first to explicitly combine human expert knowledge with ML to create an 

interpretable ML model for a clinical problem within transplantation.  In this study, we generated two 

models (EAML, which incorporates human expert content, and RuleFit, which does not incorporate 

human input) for each of the three outcomes (post-transplant mortality at one-year, post-transplant 
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mortality at 90-days, and readmission after transplant at 90-days).  Our ML models (EAML and RuleFit) 

significantly outperformed existing cross-sectional models with mean AUROCs clustering around 0.700 

for the outcomes of post-transplant mortality at one-year and mortality at 90-day.   

In our pairwise comparisons of models utilizing AUROC differences, we found that while there 

were no significant differences between EAML and RuleFit, and between EAML/RuleFit and other 

popular ML algorithms, such as GBM and GLMNET.  Moreover, while these were not statistically 

significant, but the EAML models consistently had lower AUROCs versus the RuleFit models.  The most 

likely explanation in this situation is due to residual artifacts in study population as the training, 

validation, and test sets are all derived from the same database.  In this circumstance, the process of 

incorporating expert input with EAML is not expected to improve the performance of the model since 

the test set have similar distributions of demographic and clinical characteristics as the training sets. 

The purpose of EAML, therefore, in this situation is to reveal key insights from the discrepancies 

between human expert and ML rankings of rules.  These reveal residual biases and areas for future 

research.  For instance, in the EAML model for post-transplant mortality at one-year, rule #18 (MELDNa 

at the time of transplant being > 32.47) was ranked as the most important by experts, but only tenth 

most important by RuleFit.  This difference in rank by nine positions indicated that experts may have 

biases favoring of a well-known and established clinical scoring system – whereas the RuleFit algorithm 

determined it to be not as important.  In general, across the three outcomes, ACLF experts were more 

likely to over-rank the importance of commonly used physiologic and clinical makers, such as MELDNa, 

age, and white blood cell count.  In contrast, RuleFit was more likely to elevate the importance of 

electrolytes and hematological parameters, such as ionized calcium, sodium, and lactate dehydrogenase 

as important data features.  These results imply additional avenues for further research in the clinical 

care of patients with ACLF (Figure 5).  Moreover, this study demonstrates that EAML’s use may not be 
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limited to predictive modeling, but also as an artificial intelligence-guided method for hypothesis 

generation. 

Finally, this was the second study to fully utilize UCHDW, a novel big data multi-center EHR 

database, and the first to derive insights on transplant patients.   UCHDW is based on the OMOP 

common data model, which is also utilized in several other big data multi-center EHR databases, such as 

the National COVID Cohort Collaborative (N3C),(44) All of Us,(45) and the Veterans Health 

Administration Corporate Data Warehouse (VHACDW).(46,47)  While patients with ACLF and LT patients 

have been extensively studied in the VHACDW, the VHACDW is not broadly representative of the 

general population.  While patients with cirrhosis have been studied in N3C, the current purviews of N3C 

limits research topics to those related to the novel coronavirus pandemic.  It is our hope that our 

analytical approach of utilizing OMOP will become more common as increasing numbers of institutions 

have or are in the processing of harmonizing their EHR data to the OMOP common data model. 

There are several limitations to this study due to its retrospective nature, its use of a novel 

database, and its analytical processes.  First, there is selection bias – we had only included patients with 

ACLF who had successfully undergone LT, and not those who were listed to undergo LT but then 

subsequently died or recovered and not those who were never listed for LT.  This means that the 

patients with ACLF who ultimately made it LT suffered from a survivorship bias and are unlikely to be 

representative of the entire ACLF population.  While it is feasible to pull data for all patients with ACLF 

who did not undergo LT, we have no visibility into whether these patients were listed for LT and we 

would not be able to evaluate for the post-transplant outcomes of interest. 

Second, we do not have intraoperative or donor derived data for the patients in our cohort.  

This, however, is not necessarily a significant limitation in our study as our intended goal was to derive a 

pre-LT model to predict post-LT outcomes.  The ultimate clinical decision that this model would help 

with is to whether to proceed to LT for an ACLF patient.  Third, to take advantage of the high-
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dimensional nature of UCHDW, we only sourced data from three transplant centers within UCH.  In 

addition, all three UCH facilities included are in the state of California.  While this population is 

demographically diverse, California has some of the highest MELDNa scores at the time of transplant.  

The models and their results, therefore, may not be generalizable to other settings.  In addition, as ACLF 

etiologies may be variable across geographies, our models and conclusions may not be generalizable to 

populations outside the United States.  These geographic-based differences may be a contributor to why 

the TAM model based on French ACLF patients performed poorly in our populations.  External validation 

should be undertaken for these model prior to their potential deployment in clinical practice. 

Finally, the analysis codes utilized to derive the data from UCHDW were written for this specific 

(UCHDW) implementation of the OMOP common data model.  While OMOP is a common data model 

that allows for generalization of analyses across different datasets, there may be minor variations and 

differences in data structures, semantics, and coding.  The OMOP-based extraction methods and 

algorithms for these analyses have not been tested on other OMOP-based data sources – further 

research is required to evaluate for true “out-of-the-box” interoperability.   

Despite these limitations, this study represents “proof of concept” for several key conceptual 

developments for health services research in transplantation: 1. Use of human expert augmentation in 

ML modeling, 2. Generation of multiple ML models that outperforms traditional cross-sectional models 

for predicting post-transplant outcomes in ACLF, and 3. Utilizing of a novel data source and common 

data model in transplant hepatology.  With further external validation, the EAML models generated in 

this study could be refined and evaluated in an iterative manner in clinical decision support (CDS) 

systems to actively guide clinical decision-making.  In such a CDS-based implementation, prospective 

surveillance of outcomes would then allow for active feedback to further improve these models. 
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Table 1 – Baseline Clinical and Demographic Characteristics of the Training, Validation, and Test Set 

Populations 
  Train (N = 841) Validation (N = 255) Test (N = 288) p-Value 

Female 370 (44) 106 (42) 135 (47) 0.46 

Age (IQR) 57.5 (49.1-63.8) 56.2 (46.2-62.9) 58.0 (47.4-64.5) 0.19 

UC Health Site    0.64 

 UC-1 251 (30) 70 (27) 89 (31)  

 UC-2 110 (13) 34 (13) 29 (10)  

 UC-3 480 (57) 151 (59) 170 (59)  

Race/Ethnicity    0.21 

 Hispanic 357 (42) 107 (42) 112 (39)  

 White 284 (34) 80 (31) 108 (38)  

 Asian 89 (11) 19 (7) 30 (10)  

 Black 34 (4) 13 (5) 13 (5)  

 Unknown/Other 68 (8) 33 (13) 21 (7)  

Etiology of Liver Disease     
 Alcohol Associated 293 (35) 90 (35) 94 (33) 0.76 

 Nonalcoholic fatty 207 (25) 63 (25) 73 (25) 0.97 

 Hepatitis C 207 (25) 61 (24) 66 (23) 0.84 

 Hepatitis B 87 (10) 17 (7) 24 (8) 0.17 

 Autoimmune 67 (8) 24 (9) 23 (8) 0.75 

Previous Complications of Cirrhosis     
 Ascites 746 (89) 231 (91) 258 (90) 0.68 

 Hepatic Encephalopathy 636 (76) 191 (75) 214 (74) 0.90 

 Esophageal Varices 468 (56) 139 (55) 170 (59) 0.51 

 Spontaneous Bacterial Peritonitis 179 (21) 60 (24) 70 (24) 0.50 

 Hepatocellular Carcinoma 113 (13) 35 (14) 46 (16) 0.56 

Comorbidities     
 Chronic Renal Failure 476 (57) 131 (51) 173 (60) 0.12 

 Diabetes 362 (43) 107 (42) 120 (42) 0.90 

 Coronary Artery Disease 231 (27) 60 (24) 84 (29) 0.31 

 Congestive Heart Failure 130 (15) 32 (13) 41 (14) 0.50 

Laboratory Tests     
MELDNa 34.1 (29.0-39.1) 33.8 (30.1-38.1) 33.7 (29.5-37.6) 0.90 

 Sodium 134.0 (129.0-138.0) 135.0 (130.0-139.0) 134.0 (129.0-138.0) 0.24 

 Creatinine 2.0 (1.2-3.4) 2.0 (1.2-3.1) 2.0 (1.3-3.2) 0.74 

 Albumin 3.1 (2.6-3.7) 3.1 (2.6-3.6) 3.2 (2.6-3.6) 0.50 

 Aspartate Transferase 70.0 (43.5-125.0) 37.0 (23.0-72.0) 36.0 (21.0-62.0) 0.30 

 Alanine Transferase 36.0 (21.0-66.5) 37.0 (23.0-72.0) 36.0 (21.0-62.0) 0.76 

 Alkaline Phosphatase 111.0 (78.8-163.0) 117.5 (82.0-177.8) 110.0 (79.0-156.0) 0.17 

 Total Bilirubin 12.0 (4.6-24.5) 11.6 (5.2-19.8) 11.3 (4.3-22.0) 0.51 

 White Blood Cell Count 7.2 (5.1-11.3) 7.7 (5.0-12.1) 7.5 (5.0-11.3) 0.75 

 Hemoglobin 8.7 (7.8-10.2) 8.8 (7.9-10.0) 8.8 (7.8-10.1) 0.87 

 Platelet 53.0 (37.0-88.5) 54.0 (37.0-87.3) 53.0 (35.0-79.0) 0.41 

 International Normalized Ratio 2.3 (1.8-2.9) 2.3 (1.9-3.1) 2.3 (1.8-3.0) 0.35 

Infection 110 (13) 36 (14) 46 (16) 0.47 

Hemodialysis 60 (7) 17 (7) 29 (10) 0.22 

NACSELD-ACLF 559 (66) 160 (63) 183 (64) 0.44 

CLIF-ACLF    0.34 

 Grades 1-2 178 (21) 65 (26) 64 (22)  

 Grade 3 663 (79) 190 (75) 222 (77)  

TAM (CLIF-ACLF 3 Only)    0.69 

 0-1 113 (17) 31 (16) 39 (18)  

 2 120 (18) 27 (14) 28 (13)  

 3 37 (6) 10 (5) 12 (5)  
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Table 2 – Outcomes of the Training, Validation, and Test Set Populations 

  Train (N = 841) Validation (N = 255) Test (N = 288) p-Value 

Outcomes     
 Death at one-year 87 (10) 28 (11) 34 (13) 0.78 

 Death at 90-days 55 (7) 19 (7) 23 (9) 0.68 

 Readmission at 90-days 367 (44) 127 (50) 127 (50) 0.21 
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Table 3 – RuleFit and Expert Rankings for the Primary Outcome of Mortality at One-Year 

Rule # Rule Description # Cases 
Model 

Coefficient 

Empirical Risk 

(Importance) 

RuleFit 

Importance 

Expert 

Importance 

Rank 

Difference 

1 
Serum Glucose(1) <= 136.92 AND INR(1) > 2.41 AND Serum Sodium(1) <= 

142.50 
229 0.80 0.97 1 17 -16 

2 Serum Glucose(1) <= 136.92 AND Serum Sodium(1) > 142.50 37 -0.38 0.76 18 20 -2 
3 Serum Glucose(1) > 136.92 410 -0.03 0.86 11 19 -8 
4 Differences in Serum Albumin <= -0.55 84 0.72 0.96 2 9 -7 

5 
Total Bilirubin(1) <= 26.41 AND Differences in Serum Albumin > -0.55 AND 

Differences in Serum Phosphorus <= 0.98 
435 0.36 0.92 8 10 -2 

6 
Differences in Serum Albumin > -0.55 AND Differences in Serum 

Phosphorus > 0.98 
140 -0.15 0.83 14 16 -2 

7 Serum Sodium(0) <= 138.50 AND Oxygen Saturation(1) <= 98.29 232 0.62 0.96 4 12 -8 

8 
Oxygen Saturation(1) > 98.29 AND Differences in Lactate Dehydrogenase > 

6 
135 -0.61 0.79 17 8 9 

9 
Serum Calcium(1) <= 8.45 AND Ionized Calcium(1) <= 1.36 AND Differences 

in Temperature <= 0.15 
81 0.44 0.96 3 7 -4 

10 Ionized Calcium(1) <= 1.36 AND Differences in Temperature > 0.15 388 0.02 0.92 9 11 -2 
11 Ionized Calcium(1) > 1.36 77 -0.62 0.79 16 14 2 
12 Age <= 51.79 263 0.45 0.93 7 18 -11 

13 
Alkaline Phosphatase(0) <= 289 AND Differences in Serum Potassium > 1 

AND Age > 51.79 
25 0.63 0.96 5 5 0 

14 Alkaline Phosphatase(0) > 289 AND Age > 51.79 16 -0.44 0.75 19 2 17 

15 
Alkaline Phosphatase(0) > 63 AND Serum Bicarbonate(0) <= 26.90 AND 

Differences in Hemoglobin > -0.10 
283 -0.35 0.85 13 6 7 

16 Ionized Calcium(0) <= 0.98 AND WBC(1) > 11.89 12 -1.02 0.67 20 3 17 

17 
Temperature(0) > 98.05 AND MELDNa(1) <= 32.47 AND Differences in WBC 

<= 3.90 
199 -0.21 0.85 12 4 8 

18 MELDNa(1) > 32.47 436 0.00 0.92 10 1 9 

19 
Serum Glucose(1) > 168 AND Differences in Serum Glucose <= 68.32 AND 

No New Bacterial Infection (Transplant versus Admission) 
83 0.41 0.95 6 15 -9 

20 Differences in Serum Glucose > 68.32 138 -0.16 0.83 15 13 2 
(0) Indicates value on the day of admission 

(1) Indicates value on the day prior to transplant 

Differences are defined between values on the day prior to transplant versus those on the day of admission 
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Table 4 – RuleFit and Expert Rankings for the Secondary Outcome of Mortality at 90-Days 

Rule # Rule Description # Cases 
Model 

Coefficient 

Empirical Risk 

(Importance) 

RuleFit 

Importance 

Expert 

Importance 

Rank 

Difference 

1 
Blood Urea Nitrogen(1) > 25.50 AND Temperature(1) <= 98.85 AND 

Differences in Lactate Dehydrogenase <= 40.05 
324 0.39 0.97 7 6 1 

2 
Temperature(1) > 98.85 AND Differences in Lactate Dehydrogenase <= 

40.05 
192 0.39 0.97 5 5 0 

3 Differences in Lactate Dehydrogenase > 40.05 86 -0.06 0.79 18 4 14 

4 
Platelet(1) <= 37.50 AND Temperature(1) <= 100.17 AND Differences in 

Total Bilirubin <= 5.73 
232 0.72 0.98 1 3 -2 

5 Temperature(1) > 100.17 AND Differences in Total Bilirubin <= 5.73 24 -0.10 0.79 17 2 15 
6 Difference in Total Bilirubin > 5.73 218 -0.11 0.89 12 1 11 

7 
Serum Calcium(1) > 8.60 AND Hemoglobin(1) > 8.85 AND Differences in 

MELDNa <= 0.20 
118 -0.70 0.84 16 16 0 

8 Heart Rate(1) <= 79.30 278 0.17 0.97 4 16 -12 
9 Serum AST(1) <= 34 AND Heart Rate(1) > 79.30 61 -0.36 0.85 14 13 1 

10 
Serum AST(1) > 34 AND Heart Rate(1) > 79.30 AND Differences in Serum 

Creatinine <= -1.95 
94 -0.26 0.84 15 13 2 

11 
Serum Chloride(0) <= 103.10 AND Serum Chloride(0) <= 101.50 AND Ionized 

Calcium(0) > 1.15 
210 0.26 0.97 6 7 -1 

12 Serum Chloride(0) <= 103.10 AND Serum Chloride(0) > 101.50 74 -0.03 0.86 13 8 5 
13 Serum Chloride(0) > 103.10 254 0.23 0.96 8 10 -2 

14 
Serum Albumin(1) > 3.15 AND Differences in Bicarbonate <= 3.15 AND 

Differences in Oxygen Saturation > -1.33 
316 -0.30 0.91 11 8 3 

15 
Alkaline Phosphatase(1) <= 69.50 AND Serum ALT(1)<= 44 AND Age <= 

69.60 
110 0.20 0.98 3 18 -16 

16 
Hemoglobin(1) > 7.35 AND Ionized Calcium(1) <= 1.54 AND Differences in 

Lactate Dehydrogenase <= 24.92 
611 0.69 0.96 9 12 -3 

17 Serum ALT(1) <= 32 AND Differences in Serum Glucose <= -0.85 112 0.11 0.98 2 15 -12 
18 Alkaline Phosphatase(0) > 76.50 AND Differences in Serum Glucose > -0.85 465 -0.28 0.92 10 10 0 

(0) Indicates value on the day of admission 

(1) Indicates value on the day prior to transplant 

Differences are defined between values on the day prior to transplant versus those on the day of admission 
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Table 5 – RuleFit and Expert Rankings for the Secondary Outcome of Readmissions at 90-Days 

Rule # Rule Description # Cases 
Model 

Coefficient 

Empirical Risk 

(Importance) 

RuleFit 

Importance 

Expert 

Importance 

Rank 

Difference 

1 
Serum Phosphorus(0) > 3.25 AND Differences in Bicarbonate <= 2.41 AND 

Differences in Mean Arterial Pressures > -10.45 
319 -0.04 0.51 4 4 0 

2 Differences in Phosphorus > 8.50 42 0.21 0.76 1 2 -1 
3 Blood Urea Nitrogen(0) > 22.50 AND Serum Glucose(1) <= 109.50 101 0.08 0.69 2 3 -1 

4 
Blood Urea Nitrogen(0) > 22.50 AND Serum Glucose(1) > 109.50 AND 

Respiratory Rate(0) <= 24.50 
416 -0.18 0.50 5 6 -1 

5 
Serum Calcium(1) > 9.05 AND Serum Magnesium(0) <= 2.05 AND 

Differences in Heart Rate <= 23.95 AND Differences in Platelet <= -7.50 
164 -0.36 0.42 6 4 2 

6 
Serum Albumin(1) <= 4.65 AND Serum ALT(0) > 57.50 AND New 

Hemodialysis (Transplant versus Admission) 
117 0.12 0.68 3 1 2 

(0) Indicates value on the day of admission 

(1) Indicates value on the day prior to transplant 

Differences are defined between values on the day prior to transplant versus those on the day of admission 
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Figure Legends: 

 

Figure 1 – Example Survey Question Utilized to Obtain Expert Input 

 

Figure 2 – AUROC Differences and Confidence Intervals for EAML/RuleFit versus Other Models for the 

Outcome of Death at One-Year 

 

Figure 3 – AUROC Differences and Confidence Intervals for EAML/RuleFit versus Other Models for the 

Outcome of Death at 90-Days 

 

Figure 4 – AUROC Differences and Confidence Intervals for EAML/RuleFit versus Other Models for the 

Outcome of Readmissions at 90-Days 

 

Figure 5 – Disagreements Between Experts and RuleFit May Reflect Biases, Artifacts, and Areas for 

Further Research 
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