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Precis 38 
This study used AutoParis-X, a machine learning tool, to extract imaging features from urine 39 
cytology exams to predict recurrence risk in bladder cancer patients. The results demonstrate that 40 
quantitative features of urine specimen atypia can predict recurrence as well or better than 41 
traditional cytological/histological assessments alone and can potentially complement traditional 42 
methods of assessment in screening programs pending further development and validation of 43 
computational methods which leverage multiple longitudinal cytology exams.  44 
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Abstract 45 

Urine cytology (UC) is generally considered the primary approach for screening for recurrence 46 
of bladder cancer. However, it is currently unclear how best to use cytological exams themselves 47 
for the assessment and early detection of recurrence, beyond identifying a positive finding which 48 
requires more invasive methods to confirm recurrence and decide on therapeutic options. As 49 
screening programs are frequent, and can be burdensome, finding quantitative means to reduce 50 
this burden for patients, cytopathologists and urologists is an important endeavor and can 51 
improve both the efficiency and reliability of findings. Additionally, identifying ways to risk-52 
stratify patients is crucial for improving quality of life while reducing the risk of future 53 
recurrence or progression of the cancer. In this study, we leveraged a computational machine 54 
learning tool, AutoParis-X, to extract imaging features from UC exams longitudinally to study 55 
the predictive potential of urine cytology for assessing recurrence risk. This study examined how 56 
the significance of imaging predictors changes over time before and after surgery to determine 57 
which predictors and time periods are most relevant for assessing recurrence risk. Results 58 
indicate that imaging predictors extracted using AutoParis-X can predict recurrence as well or 59 
better than traditional cytological / histological assessments alone and that the predictiveness of 60 
these features is variable across time, with key differences in overall specimen atypia identified 61 
immediately before tumor recurrence. Further research will clarify how computational methods 62 
can be effectively utilized in high volume screening programs to improve recurrence detection 63 
and complement traditional modes of assessment. 64 

  65 
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Introduction 66 

Urothelial carcinoma ranks ninth worldwide in cancer incidence as the seventh most common 67 

malignancy in men and seventeenth in women 1–3. In the United States, urinary bladder cancer 68 

(UBC) is the fourth most common cancer in men and tenth in women. Of urothelial cancer cases, 69 

most are forms of UBC at approximately 90%, while upper tract urothelial carcinomas account 70 

for 5-10% of malignancies 4–7. The 5-year relative survival rates for UBC patients range from 71 

97% at Stage I to 22% at Stage IV 8–11.  Most UBC incidences (75-85%) are non-muscle invasive 72 

(NMIBC) at first diagnosis, of which 70% register as pTa (noninvasive papillary carcinoma), 73 

20% as pT1, and 10% as carcinoma in situ (CIS) lesions, pTis.  The prognosis of NMIBC is 74 

generally favorable, although 30-80% of cases will recur and 1-45% of cases will progress to 75 

muscle invasion within five years 12.  As a result, NMIBC is treated as a chronic disease with a 76 

variety of oncological outcomes that require frequent follow-ups for monitoring and repeated 77 

treatments, giving it the highest cost-per-patient from diagnosis to death of all cancers 13.  78 

 79 

The standard approach to patients with symptoms suggestive of UBC involve a combination of 80 

urine cytology, cystoscopy (potentially with tissue biopsy(s)), and immunocytochemical and 81 

molecular studies with longitudinal follow-up for negative and atypical findings 14–23.  After a 82 

positive diagnosis of UBC, urine cytology remains an essential longitudinal monitoring tool for 83 

patients. However, urine cytology suffers from susceptibility to issues such as specimen quality, 84 

inter/intra-observer variability, and ‘hedging’ towards atypical diagnosis, making it a semi-85 

qualitative assessment and vulnerable to individual biases 24–28. Such factors restrict the 86 

predictive value of urine cytology therefore increasing reliance on invasive cystoscopy.  87 

 88 
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Cytology specimens have historically been tedious to screen, in part due to the sheer volume of 89 

specimens to examine, resulting from regular periodic follow-up and the highly variable 90 

specimen cellularity. While positive and negative urine cytology specimens are easier to classify, 91 

atypical and suspicious urine samples are more challenging and feature poor inter-observer 92 

reproducibility. In recent years, The Paris System for Reporting Urinary Cytology (TPS), 93 

published in 2016 and updated in 2022, has established itself as the widely accepted 94 

classification system for UBC screening 24,29,30. It devised to tackle the challenges posed by 95 

atypical urines and improve reproducibility 31,32.  Computer algorithms such as the AutoParis 96 

system were designed to ameliorate many of these screening challenges/burdens to make urine 97 

cytology quantitative by employing machine learning techniques that can mimic rapid 98 

examination with TPS criteria 33–39. AutoParis, and its latest iteration, AutoParis-X, calculate an 99 

Atypia Burden Score (ABS) after cross-tabulating several cellular and cluster-level subjective 100 

and objective indicators of atypia 34,40. 101 

 102 

As bladder cancer recurrence is a significant concern for patients and healthcare providers, 103 

various methods have been developed to predict and monitor the likelihood of recurrence. While 104 

computer-aided assessment of the primary tumor has been shown to be predictive of likelihood 105 

for recurrence 41,42, this examination presents only a snapshot in time, which could be augmented 106 

by repeated urine cytology exams 43–45. However, there is currently little to no research on how 107 

repeat urine cytology exams can be leveraged to derive longitudinal markers of recurrence 46–49. 108 

 109 

Assessing the prognostic capacity of imaging predictors in urine specimens for the treatment of 110 

bladder cancer can have great benefits in reducing clinician workload, improving reproducibility, 111 
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reducing human error, and lowering treatment cost, in part because cytology predictors can serve 112 

as an “early warning system” for which patients require the most attention/care 50. In this specific 113 

work, we investigate the potential of using machine learning from urine cytology in predicting 114 

recurrence among a cohort of patients 40. 115 

 116 

Methods 117 

Methods Overview 118 

In this section, we summarize the approaches taken to assess the ability to predict time to 119 

recurrence from image-derived UC predictors: 120 

1. Retrospective review identifies cases with varying follow-up and number of recurrences. 121 

2. Slide images are scanned (Figure 1A) and imaging predictors are extracted from each 122 

whole-slide image (WSI) (Figure 1B) using AutoParis-X, which improved upon 123 

techniques introduced by AutoParis 34,40. 124 

3. Fixed predictors are constructed by aggregating quantitative cytological exam 125 

information across distinct collection periods (i.e., collection time; Figure 1C); Cox 126 

proportional hazards models are developed to predict recurrence risk and compare with 127 

manual assessments (UC Class) and tumor grade/stage/type (histology) 51,52. 128 

4. Dynamic predictors are constructed by utilizing the imaging predictors of each individual 129 

cytology exam; these predictors vary with time (time-varying covariates) and their effects 130 

are reported across different time periods through time-varying coefficient Cox models 131 

(Figure 1D) 53,54. 132 

5. Models are interpreted by regression coefficients (i.e., hazard ratios), concordance 133 

statistics, and clustering time series, which shows how imaging predictors vary across 134 
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time for low-risk / high-risk patients with commensurate statistical modeling (e.g., 135 

hierarchical beta regression) 55,56. 136 

 137 

 138 

Figure 1: Study Overview: A) UC images are acquired for patients across the study period and 139 
are processed using B) AutoParis-X, which extracts imaging predictors, e.g., ABS; C) Imaging 140 
predictors are aggregated across collection periods to form fixed predictors which are then used 141 
to assess time-to-recurrence using Cox models; D) Imaging predictors were also studied 142 
dynamically considering results/extracted features from individual tests and their recurrence 143 
potential; risk of recurrence was also studied within specific time periods to demonstrate how the 144 
importance of these predictors varies with time; E) Scatterplots for two patients with time from 145 
the first positive primary versus the Atypia Burden Score as assessed using AutoParis-X; points 146 
were labeled by the UC categories assigned through manual examination of urine cytology  147 

 148 

Specimen Collection 149 

A total of 1,259 urine specimens collected from 135 bladder cancer patients at Dartmouth-150 

Hitchcock Medical Center between 2008 and 2019 were retrieved, after institutional review 151 

board approval. The median number of specimens per patient was 8, with an interquartile range 152 

of [8-13] (Figure 1A). Several patients were omitted due to insufficient follow-up or significant 153 

left-censoring which precluded assessment. The specimens were prepared using ThinPrep® 154 
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(Hologic, Marlborough MA) and Papanicolaou staining before being examined microscopically 155 

57. They were then scanned with a Leica Aperio-AT2 scanner at 40x resolution, resulting in full-156 

resolution SVS files (70% quality JPEG compression) representing whole slide images. The 157 

slides were manually focused on a single plane during scanning, without the use of z-stacking 58. 158 

Patient and slide-level characteristics from the retrospective cohort are provided in Table 1. All 159 

slides were evaluated by five cytopathologists to provide diagnoses based on The Paris System 160 

criteria (negative, atypical, suspicious, positive). Separately, patient characteristics, e.g., 161 

hematuria, prior treatments (e.g., BCG– Bacillus Calmette-Guerin or mitomycin) were recorded 162 

in a secure database 59. Time to recurrence was determined as indexed from the date of the first 163 

positive primary tumor as determined through histological examination. Individuals were right 164 

censored based on last known histological follow-up 60. 165 

 166 

Table 1: Patient and specimen characteristics 167 

  Specimens 
 

Patients 
Number 
Specimens 

1259 Number Patients 135 

Voided (%) 1110 (88.2) Age (mean (SD)) 71.50 
(12.26) 

Prior 
History 
Hematuria 
(%) 

172 (13.7) Sex = M (%) 102 (75.6) 

Diagnosis 
(%) 

 
First Positive Primary Tumor Stage/Grade (%) 

   Negative 815 (64.7)    0is 7 (5.2) 
   Atypical 298 (23.7)    T1 35 (25.9) 
   Suspicious 98 (7.8)    TaLG (non-invasive low grade) 33 (24.4) 
   Positive 48 (3.8)    TaHG (non-invasive high grade) 60 (44.4) 
Contains 
Artifact 
(%) 

265 (21.0) Carcinoma in situ (%) 18 (13.3) 

 
Treatment (%) 
   BCG 71 (52.6) 
   Mitomycin 9 (6.7) 
   No Treatment 37 (27.4) 
   Unavailable 18 (13.3) 
Number of Recurrences (%)  
   0 42 (31.1) 
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   1 73 (54.1) 
   2 13 (9.6) 
   3+ 7 (5.2) 

 168 

Using AutoParis-X to Derive Imaging Predictors of Recurrence 169 

AutoParis-X is a tool for automated assessment of cytology specimens that was developed using 170 

the Python programming language and the PyTorch and Detectron2 frameworks, with statistical 171 

and machine learning models implemented in Python and R 40,61–64. In brief, this tool:  172 

1. Utilizes connected components analysis to isolate individual cells and cell clusters 173 

2. A neural network-based cell border detection model called BorderDet isolates urothelial 174 

cells within clusters and identifies dense overlapping cell architectures 65. 175 

3. Additional morphometric measures are derived for cell-type classification and atypia 176 

estimation 34,40. 177 

4. A convolutional neural network called UroNet filters out any objects which are not 178 

urothelial cells 34,40. 179 

5. A segmentation neural network method called UroSeg estimates the nuclear-to-cytoplasm 180 

ratio 34,40. 181 

6. A convolutional neural network called AtyNet scores cells for subjective markers of 182 

atypia 40. 183 

7. A machine learning classifier estimates the Atypia Burden Score (ABS) which integrates 184 

cell and cluster-level scores and other demographic and specimen characteristics into a 185 

summary measure of overall specimen atypia 66–68.  186 

8. In addition, hierarchical regression models identified important indicators of atypia, and 187 

graphical displays were generated through an interactive web application utilized by our 188 

team of cytopathologists 69,70.  189 
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A description of slide level measures and ABS scores, listed in Supplementary Table 1, which 190 

were derived for each specimen in this cohort. 191 

 192 

Recurrence Prediction 193 

Time to recurrence was predicted using both traditional cytological measures and AutoParis-X 194 

derived imaging features (Figure 1B), controlling for age and sex, prior treatment, tumor grade, 195 

medical history, etc., where possible– e.g., treatment information was largely excluded from 196 

multivariable modeling due to missingness and uncertainty in treatment time.  197 

 198 

Fixed recurrence predictors. First, we aggregated imaging/cytology statistics (e.g., average 199 

number of atypical cells) for cytology exams before/at the primary diagnosis date or within a 200 

specific time frame after the primary diagnosis date (i.e., collection time) (Figure 1C). It is 201 

important to ensure that data is collected up to a specific date in order to accurately assess risk 202 

for new patients. This is because collecting data beyond this point would introduce information 203 

about the future and potentially bias the results. To ensure that the findings remain applicable, 204 

data for new patients must be collected only up to the defined collection time. Cases were 205 

excluded if events/censoring occurred before this collection window and recurrence times were 206 

adjusted as appropriate (i.e., delayed entry) to avoid endogeneity. We denote predictors during 207 

this time period as fixed predictors. Fixed predictors were modeled using multivariable cox 208 

proportional hazards models 71:  209 

𝑑𝑎𝑦𝑠_𝑡𝑜_𝑒𝑣𝑒𝑛𝑡!|𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑! = 0 ∼ 	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆!) 210 
𝑑𝑎𝑦𝑠_𝑡𝑜_𝑒𝑣𝑒𝑛𝑡!|𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑! = 0 ∼ 	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 − 𝐶𝐶𝐷𝐹(𝜆!) 211 

𝑓(𝑦) = 𝜆!𝑒"#!$ 212 
𝜆! = 1/𝜇! 	 213 

log(𝜇!) = 𝑥!%𝛽	 214 
 215 
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The predictive performance of leveraging fixed (i.e., collected) UC imaging predictors was 216 

compared to the histological examination, e.g., tumor grade/stage and whether the tumor was 217 

carcinoma in situ (Cis). Separate cox models were fit to the imaging predictors alone, tumor 218 

grade and carcinoma in situ, and both, adjusting for age and sex. Models were compared through 219 

partial likelihood ratio testing, which would indicate whether imaging predictors alone were 220 

more informative than the histological findings (H1: Imaging>Grade+Cis) and separately 221 

whether the imaging predictors supplemented tumor grade information to add additional 222 

predictive capacity (H1: Imaging+Grade+Cis>Grade+Cis). We separately reported the hazard 223 

ratios for the imaging predictors after adjusting for tumor grade/stage and Cis. Results were 224 

compared at all collection times. We did not adjust models for whether the patients had 225 

chemotherapy due to unreliability in recording patient start date and adherence, though this 226 

information was recorded in the demographic tables for additional context. 227 

 228 

Dynamic recurrence predictors. Time-dependent predictors (denoted as dynamic predictors) 229 

were modeled using cox proportional hazards models which allowed repeat measures by patient. 230 

These predictors were modeled with and without time varying effects (similar to estimating 231 

multiple survival curves across discrete time intervals) (Figure 1D), which reports changes to the 232 

relationship between predictors and recurrence as a function of time (i.e., certain intervals may 233 

be more predictive of recurrence) 53.  234 

 235 

Individual predictors were modeled in a univariable setting, adjusting only for age and gender. 236 

These variables were combined into multivariable models. Predictor selection was accomplished 237 

using the variance inflation factor (VIF) after fitting the survival models and iteratively removing 238 
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predictors until the largest VIF score was less than 6.5 72. We had also performed LASSO 239 

predictor selection but opted for VIF as these models outperformed LASSO 73. Concordance 240 

statistics (C-index; as reported using the survival R package) were reported for the univariable 241 

and multivariable models, along with hazards ratios, confidence intervals and p-values. For the 242 

time-varying effects, hazards ratios and their statistical significance were reported across time for 243 

individual predictors and overall across many predictors 54. Hazard predictions were 244 

dichotomized into low and high risk and fixed predictors were visualized using Kaplan Meier 245 

plots using the survminer package (R v4.1) 74. 246 

 247 

Studying Trajectories of ABS Scores 248 

After fitting the cox models, we additionally sought to uncover longitudinal patterns of atypia 249 

related to high recurrence risk (Figure 1E). This was accomplished by clustering the trajectories 250 

of ABS scores across time using dynamic time warping (DTW). DTW was used to construct a 251 

distance matrix between individual patient trajectories, which were reduced into two features per 252 

patient using multi-dimensional scaling using the scikit-time library (Python v3.8) and reticulate 253 

package (R v4.1) 75,76. Separately, the patients were clustered using hierarchical clustering of the 254 

DTW distance matrix via the hclust function (R v4.1). Cases were omitted if they did not contain 255 

at least two points. Associations between the DTW clusters and features were identified through 256 

generalized linear mixed effects modeling. The average ABS score was visualized across time, 257 

aggregated for low-risk / high-risk patients and separately for the derived clusters at binned time 258 

periods. Beta hierarchical regression models with post-hoc comparison via emmeans were used 259 

to report how ABS differed between high and low risk patients across time 55,56,77: 260 
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𝐴𝐵𝑆! ∼ Βeta(µ! ∗ 𝜙! , (1 − µ&) ∗ ϕ&) 261 
𝑔(𝜇!) = 𝛽' + 𝛽(𝑡𝑖𝑚𝑒! + 𝛽)𝑟𝑖𝑠𝑘! + 𝛽*𝑡𝑖𝑚𝑒! ∗ 𝑟𝑖𝑠𝑘! + 𝜃+,-!./-[!]; 𝑔(⋅) ∶ (0,1) → ℝ 262 

𝜃+,-!./-[!] ∼ 𝑁(0, 𝜏)) 263 

We identified several patients who had multiple recurrences. We visualized changes in ABS 264 

before and after recurrences by creating scatter plots of ABS versus time. We fit a hierarchical 265 

beta regression model to depict overall changes in ABS score across time between patients’ first 266 

and second recurrences, with similar hierarchical beta regression models fit, excluding risk from 267 

the model. 268 

 269 

Results 270 

Recurrence Predicted from Fixed Predictors 271 

Fitting cox proportional hazards models at various collection times, we found there was 272 

moderate ability to predict recurrence using UC imaging predictors (Figure 2C,D; 273 

Supplementary Figure 1; Supplementary Table 2). When only collecting cytological 274 

information up to the first positive primary (collection time = 0 days), imaging and manually 275 

assessed UC class predictors yielded a C-index of 0.672. Overall, imaging predictors were more 276 

informative than manual cytological examination (Supplementary Table 2, see “% Outperform 277 

UC Class”, number of imaging predictor with better performance than manual examination). The 278 

predictiveness of the UC imaging predictors increased when predictors were aggregated across 279 

larger time intervals / collection times, for instance yielding a C-index of 0.77 when collecting 280 

quantitative cytological information over the first 180 days after the first positive primary 281 

(collection time = 180 days). Collecting cytological information past this point in time and 282 

aggregating yielded marginal to no additional information on recurrence. The imaging variables 283 
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differed significantly in their predictive capacity. Surprisingly, imaging features extracted from 284 

urothelial cell clusters proved remarkably predictive (C-index for: number of atypical cell 285 

clusters = 0.733; number of dense cell clusters = 0.748 at collection time 180 days) as opposed to 286 

variables which correlate more closely with UC Class (e.g., ABS). 287 

 288 

Imaging predictors extracted from cytology and separately in conjunction with risk assessment 289 

models based on tumor grade/type were more informative for recurrence risk prediction than that 290 

derived from tumor grade/type alone (Supplementary Figure 2; Supplementary Table 3), as 291 

assessed through partial likelihood ratio testing 78,79. At nearly every collection interval, imaging 292 

predictors demonstrated statistically significantly better predictive capacity than tumor 293 

grade/type alone and effects from the imaging predictors were highly statistically significant, 294 

even after adjusting for tumor grade/type (Supplementary Table 3). 295 

 296 

 297 
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Figure 2: Findings from Recurrence Risk Models: A) Dot chart indicating concordance 298 
statistics for each of the imaging predictors for the time-varying covariate and time-varying 299 
effects cox proportional hazards models; UC class stands for category assigned via manual 300 
examination by the cytopathologist; VIF and LASSO refer to multivariable models with the 301 
respective predictor selection methods; All/Overall predictors refers to multivariable models with 302 
all imaging predictors; B) Ribbon plot illustrating hazard ratios and confidence intervals for 303 
univariable time-varying effects cox proportional hazards model for individual imaging 304 
predictors, demonstrating differing associations with recurrence at distinct time intervals; C) 305 
Kaplan-Meier plot and rank-based statistic for fixed imaging predictors collected before or up to 306 
the date of the first positive primary, reported for low (blue) and high (yellow) risk patients as 307 
assessed using the Cox model; D) similar KM plot for patients with 90 days of follow-up 308 
information collected, predicting recurrence risk after this collection period 309 

 310 

Recurrence Predicted from Dynamic Predictors 311 

When considering all individual cytology exams dynamically over time (time-varying 312 

covariates) and not aggregating across distinct time windows, imaging predictors corresponded 313 

with recurrence with a C-index of 0.66 (Figure 2A; Supplementary Table 2). The Atypical 314 

Score (C-index=0.65) was more predictive than UC Class (C-index=0.58) using this approach. 315 

Fitting recurrence models, allowing effects of different predictors to vary– these time varying 316 

effects were reported for each distinct time period (time-varying effects; association between 317 

variables and recurrence risk updated every half year; Figure 2B), achieved an overall C-index 318 

of 0.73, greater than that offered by the time-varying covariates. The Atypical Score (C-319 

index=0.65) was still more predictive than UC Class (C-index=0.62) using this approach 320 

(Supplementary Table 4). The association between individual imaging predictors and 321 

recurrence risk varied across these intervals (Figure 2B; Supplementary Table 5). For instance, 322 

ABS and UC Class were highly positively associated with recurrence risk during the first year 323 

and after the second year of follow-up (Figure 2B; Supplementary Table 5). As another 324 

example, the number of atypical cells and atypical clusters demonstrated their greatest 325 
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association with recurrence risk at intermediate intervals (e.g., 180-540 days) (Figure 2B; 326 

Supplementary Table 5). 327 

 328 

Trajectory Cluster Analysis 329 

 330 

Figure 3: Atypia Burden Scores reported across time, aggregated across distinct time 331 
periods using point interval plots: A) Each curve/color represents ABS scores from patients 332 
belonging to three different temporal trajectories (red, blue, green clusters), determined using the 333 
time series clustering and summarized using the aggregate statistics for each time period; B) 334 
Each curve is colored based on low (blue) and high (yellow) risk patients, measured from the 335 
time since first positive primary; C) Comparing ABS scores between low/high risk patients, 336 
similar to the previous plot, with cytological exams grouped by days until the first recurrence 337 
instead of from the date of the first positive primary; D) ABS scores, combined across distinct 338 
time periods, for patients from the first until the second recurrence, grouped by the days until the 339 
second recurrence, demonstrating increasing atypia prior to the recurrence finding 340 

 341 

We sought to study the trajectories of specimen atypia from the first positive primary to the first 342 

recurrence. Time series clustering yielded three independent clusters (Figure 3A). The red 343 
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cluster (Figure 3A) revealed the tendency of patients to exhibit a decrease in specimen atypia 344 

immediately after the positive primary (likely resulting from previous treatment), followed by a 345 

sharp increase in specimen atypia thereafter. Patients deemed high risk by the Cox models 346 

(Figure 3B,C) initially have a low atypical burden, similar to the low risk group. However, over 347 

time after the positive primary, the discrepancies in specimen atypia increase substantially 348 

(Figure 3B; Supplementary Table 6). When counting down backwards from the date of first 349 

recurrence, we see that specimen atypia increases steadily from both low and high risk patients 350 

prior to the first recurrence. Within 3-4 months prior to the first recurrence, specimen atypia for 351 

the low-risk patients decreases while continuing to increase for the high risk patients (Figure 352 

3C; Supplementary Table 6).  353 

 354 

These trends were similarly identified for patients who had a first recurrence who would go onto 355 

have a second recurrence (Figure 3D; Supplementary Table 6; Supplementary Figure 3). A 356 

statistically significant increase in overall specimen atypia over time was identified during this 357 

interval between the first and second recurrences (Supplementary Table 6). The Atypia Burden 358 

Scores plotted across time from positive primary date for patients with multiple recurrences can 359 

be found in Supplementary Figure 4, though an in-depth assessment is outside of the scope of 360 

this study. 361 

 362 

Discussion 363 

Bladder cancer has a high rate of recurrence, which requires frequent follow up screening and 364 

monitoring. By using advanced computer algorithms, it is possible to create a non-invasive, 365 

semi-autonomous system that can analyze repeat cytology exams and provide highly precise 366 
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markers of specimen atypia 34,36,40. This approach can improve our understanding of how bladder 367 

cancer progresses and recurs, as well as identify patterns that indicate early detection of 368 

recurrence. This study sought to investigate the potential utility of such an approach, made 369 

possible by the AutoParis-X tool, which can facilitate rapid examination of cytology specimens 370 

40. Imaging predictors derived using AutoParis-X such as the Atypia Burden Score and other 371 

sub-scores (e.g., number of atypical clusters) were followed across time for patients and were 372 

aggregated across distinct time periods and studied dynamically to predict bladder cancer 373 

recurrence. 374 

 375 

The principal findings from our study are twofold: 1) urine cytology exam results can inform 376 

recurrence risk, and imaging predictors extracted through the use of machine learning can be 377 

more informative of recurrence than manual cytological and/or histological examination alone; 378 

and 2) the predictive value of imaging predictors extracted from UC exams varies across time 379 

(both in terms of combining information from previous exams and real-time predictiveness of 380 

time-variant predictors). Our findings support and add to previous studies showing that 381 

preoperative urine cytology examination can predict recurrence 80–82. We also found that 382 

collecting and combining cytological information with summary statistics within the first six 383 

months after the positive primary diagnosis is important for assessing recurrence risk for patients 384 

who have not yet recurred. While there are several other machine learning techniques which 385 

have been developed to perform histological assessments of recurrence risk from the primary site 386 

at the time of resection, cytological assessments are far less invasive (requiring the patient to 387 

simply void into a collection cup in most cases) 41,83. Due to routine screening via UC, more 388 

information is available, which when assessed in totality, can be highly predictive of recurrence. 389 
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It is important to consider how information from cytological and histological examinations can 390 

be used together to provide more comprehensive assessment of risk. The use of imaging 391 

predictors extracted from cytology, both alone and in combination with tumor grade/type, 392 

provided more useful information for predicting recurrence risk compared to relying on tumor 393 

grade/type alone, as determined through partial likelihood ratio testing. The combination of 394 

cytological and histological assessments is especially pertinent for patients who have undergone 395 

a tumor resection and are identified to be at high risk from both cytology and histology. 396 

 397 

There are limitations to this study. For instance, there is still ample room to improve the 398 

AutoParis-X algorithm, which can impact the reliability of these predictors 40. Furthermore, we 399 

have not studied its utility in augmenting medical diagnostic decision-making in conjunction 400 

with the cytopathologist 84–88. Changes in specimen preparation across the past decade and a half 401 

may have impacted imaging predictors estimated using AutoParis-X. We used the last 402 

histological follow up exam with a negative finding as a right censoring event for patients in this 403 

cohort who did not ultimately develop recurrence 89. As this was a retrospective cohort study 404 

with sporadic follow-up (typically every three months as specified by guidelines), it was 405 

challenging to identify suitable follow-up and censorship criteria. Furthermore, death may 406 

present a competing risk to recurrence, which could potentially bias effect estimates. While 407 

methods do exist to account for competing risks, relevant statistical methods and their 408 

computational implementations are underdeveloped and inaccessible in the context of time-409 

varying covariates and effects90,91. These limitations will be improved upon in further 410 

assessments of this tool and these study findings should be interpreted in the context of an 411 

exploratory analysis. The study cohort was restricted to individuals from Northern New England 412 
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and findings are applicable to this population– expansion of this study to large, diverse study 413 

cohorts from geographically disparate regions will improve the generalizability of these findings. 414 

 415 

In the future, we plan to leverage additional machine learning techniques which are suitable for 416 

recurrence prediction. For instance, tree-boosting approaches and deep learning models exist 417 

which are well-suited for the study of longitudinal / time-to-event data 92–105. They can reveal 418 

interactions between predictors for use in statistical modeling as well as identify cytology exams 419 

/ timepoints which are most informative of recurrence 106. These are estimated dynamically using 420 

sophisticated computational heuristics and are an area of future follow-up.  421 

 422 

The results of this study highlight the need for further research comparing the performance of the 423 

AutoParis-X system with other non-invasive methods for assessing the potential for bladder 424 

cancer recurrence. Many promising approaches make use of various molecular assays developed 425 

for liquid biopsies, and several screening programs have also been developed that use a 426 

combination of different assays to assess the potential for recurrence 107–114. These should be 427 

considered for comparison when attempting to roll out potential screening systems/guidelines. 428 

While early detection of recurrence is important, it is currently unclear what the next steps 429 

should be in terms of treatment and management given the adoption of computational systems 430 

for real-time recurrence assessment 35,39,115–117. This is an area that requires further research. 431 

Furthermore, there are a wide-range of epidemiological studies which could benefit from 432 

incorporating cytological information. For instance, exposure to high levels of arsenic in 433 

drinking water and cigarette smoking are associated with bladder cancer risk and could benefit 434 
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from being studied in conjunction with advanced computational methods for urine cytology 118–435 

123. 436 

 437 

Conclusion 438 

This study sought to investigate the potential benefit of using computer algorithms to extract 439 

highly quantitative, longitudinal cytological features can be used to inform the risk of recurrence 440 

for bladder cancer patients. We found that image predictors extracted using the AutoParis-X 441 

system were indeed associated with tumor recurrence, in many cases more so than traditional 442 

modes of cytological/histological examination, and that the importance/predictiveness of these 443 

predictors varied across time from the positive primary. While this study demonstrates the 444 

potential utility for computerized systems to supplement and make use of screening programs 445 

with a large number of follow up visits, further research is warranted to better understand how 446 

these systems can be integrated into such screening programs. 447 

  448 
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Appendix 764 
 765 

 766 
Supplementary Figure 1: C-index for specific imaging / manual cytology exam results, 767 
reported based on different collection periods/times (days) prior to the recurrence risk follow-up 768 
period; only select AutoParis-X measurements of interest were reported 769 
 770 
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 771 
Supplementary Figure 2: Comparison of KM plots for Imaging versus Histological 772 
Predictors, for cytological information collected across the following collection time periods 773 
after the first positive primary: A) 0 days, B) 90 days, C) 150 days, D) 210 days 774 
 775 

 776 
Supplementary Figure 3: Atypia Burden Score Versus Time Until Second Recurrence: 777 
Reported for 10 patients with at least 4 repeat exams across the period between their first and 778 
second recurrence 779 
 780 
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 781 

 782 
Supplementary Figure 4: Atypia Burden Score Versus Time Across Multiple Recurrence 783 
Events for Select Patients: Each recurrence date is represented with the vertical line 784 
 785 
 786 
Supplementary Table 1: Description of Slide Level predictors of Recurrence 787 

Level Predictor Algorithm Description 
Cell Urothelial cell 

score 
UroNet Predicted probability of urothelial cell from convolutional neural network, 

used to dynamically isolate urothelial cells in specimen 
Atypia score  AtyNet Predicted probability of presence of atypical features in urothelial cell (e.g., 

hyperchromasia, irregular nuclear membrane, etc.), determined using 
convolutional neural network 

NC Ratio UroSeg Nuclear to cytoplasm area ratio derived from pixelwise segmentation of 
nucleus and cytoplasm using segmentatio neural network 

Morphometric 
measures 

Custom Complements binning of urothelial cells and assignment of atypia score, 
features: 1) area; 2) convex area; 3) eccentricity; 4) equivalent diameter; 5) 
extent; 6) Feret’s diameter; 7) maximum diameter; 8) filled area; 9) major axis 
length; 10) minor axis length; 11) perimeter; and 12) solidity 

Cluste
r 

Dense Area BorderDet Whether cluster contains dense architecture of overlapping and 
indistinguishable cytoplasmic borders 

Number 
urothelial cells 

BorderDet/
UroNet 

Whether cluster contained urothelial cells, determined by counting cells with 
high urothelial cell score 

Number 
atypical 
urothelial cells 
(atypia score) 

BorderDet/
UroNet/At
yNet 

Whether cluster contained abnormal urothelial cells, determined by counting 
cells with high atypia score 

Number 
atypical 
urothelial cells 
(NC ratio) 

BorderDet/
UroNet/Ur
oSeg 

Whether cluster contained abnormal urothelial cells, determined by counting 
cells with high NC ratio 

Dense & 
Atypical 

BorderDet/
UroNet/At
yNet/UroS
eg 

Whether cluster contained both dense architecture and atypical cellular 
features 
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Slide Patient 
characteristics 

Supplied Includes age, sex, history of hematuria, specimen source (e.g., voided), 
presence of specimen artifact 

Isolated Cell-
SIF Scores 

Bayesian 
Optimizati
on 

Counting the number of cells with the following features from cells not 
associated with clusters: 1) cellularity (urothelial score), 2) atypia (atypia 
score), 3) atypia (NC ratio), 4) other morphometric measures 

Cluster Cell-
SIF Scores 

Bayesian 
Optimizati
on 

Counting the number of cells with the following features from cells 
associated with clusters: 1) cellularity (urothelial score), 2) atypia (atypia 
score), 3) atypia (NC ratio), 4) other morphometric measures 

All Cell-SIF 
Scores 

Bayesian 
Optimizati
on 

Combines Isolated Cell-SIF Scores and Cluster Cell-SIF Scores 

Cluster-SIF Bayesian 
Optimizati
on 

Counting the number of clusters with the following features: 1) number of 
urothelial clusters, 2) atypical urothelial clusters (atypia score), 3) atypical 
clusters (NC ratio), 4) dense clusters, 5) dense and atypical clusters 

Atypia Burden 
Score 

Mixed 
effects 
machine 
learning 

Integrates all slide-level predictors using machine learning model to 
calculate a score between 0-1 reflecting overall specimen atypia, correlated 
with UC diagnostic category 

 788 
 789 
Supplemental Table 2: Concordance statistics for fixed predictors at the following collection 790 
time periods; also included are performance statistics for dynamic predictors from the time-791 
varying covariate cox model; the percentage of imaging variables which outperform manual 792 
examination is represented as “% Outperform UC Class” 793 
 794 

Collection Time 
(days) 

0 30 60 90 120 150 

Predictors C SE C SE C SE C SE C SE C SE 
ABS 0.549 0.075 0.552 0.075 0.522 0.076 0.566 0.06 0.615 0.065 0.707 0.047 
# Dense Clusters 0.62 0.069 0.62 0.069 0.6 0.069 0.581 0.061 0.666 0.066 0.74 0.051 
UC Class 0.544 0.081 0.548 0.08 0.536 0.079 0.575 0.059 0.614 0.058 0.701 0.065 
Eccentricity 0.558 0.084 0.564 0.088 0.515 0.078 0.557 0.059 0.662 0.059 0.716 0.048 
# Isolated 
Atypical Cells 

0.56 0.077 0.56 0.077 0.524 0.077 0.562 0.059 0.615 0.064 0.704 0.042 

# Atypical 
Clusters 

0.56 0.076 0.56 0.076 0.522 0.078 0.563 0.06 0.626 0.065 0.716 0.054 

# Overall 
Atypical Cells 

0.562 0.079 0.56 0.077 0.524 0.076 0.565 0.059 0.623 0.063 0.701 0.047 

# Cluster 
Atypical Cells 

0.558 0.076 0.556 0.075 0.522 0.076 0.561 0.059 0.623 0.062 0.698 0.047 

% Clusters 
Dense/Atypical 

0.554 0.076 0.554 0.076 0.519 0.077 0.564 0.06 0.631 0.051 0.683 0.054 

# Isolated Cells 
High NC 

0.558 0.081 0.558 0.081 0.522 0.076 0.564 0.058 0.617 0.063 0.713 0.047 

# Overall Cells 
High NC 

0.56 0.08 0.56 0.08 0.526 0.077 0.566 0.059 0.616 0.063 0.713 0.047 

# Cluster Cells 
High NC 

0.562 0.077 0.562 0.077 0.522 0.08 0.562 0.059 0.62 0.062 0.71 0.046 

LASSO 0.59 0.084 0.603 0.073 0.578 0.069 0.584 0.06 0.654 0.058 0.74 0.051 
# Cells 0.558 0.08 0.558 0.08 0.524 0.078 0.573 0.065 0.628 0.065 0.71 0.048 
# Clusters 0.567 0.073 0.571 0.072 0.582 0.07 0.593 0.061 0.645 0.067 0.716 0.05 
Overall 0.672 0.073 0.725 0.055 0.714 0.056 0.707 0.061 0.81 0.074 0.824 0.045 
VIF 0.62 0.073 0.627 0.071 0.632 0.066 0.614 0.055 0.7 0.051 0.752 0.058 
% Outperform 
UC Class 1.000 0.000 1.000 0.000 0.278 0.106 0.278 0.106 1.000 0.000 0.889 0.074 
             

Collection Time 
(days) 

180 210 240 270 300 Time Varying 
Covariates 

Predictors C SE C SE C SE C SE C SE C SE 
ABS 0.722 0.048 0.708 0.051 0.689 0.063 0.68 0.067 0.703 0.06 0.652 0.039 
# Dense Clusters 0.748 0.05 0.688 0.058 0.727 0.057 0.725 0.055 0.727 0.066 0.603 0.038 
UC Class 0.724 0.062 0.673 0.063 0.689 0.06 0.682 0.059 0.689 0.059 0.579 0.05 
Eccentricity 0.724 0.048 0.697 0.059 0.665 0.073 0.639 0.076 0.699 0.068 0.607 0.034 
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# Isolated 
Atypical Cells 

0.717 0.043 0.692 0.056 0.702 0.065 0.697 0.066 0.709 0.061 0.612 0.039 

# Atypical 
Clusters 

0.733 0.053 0.716 0.062 0.7 0.067 0.702 0.064 0.712 0.06 0.62 0.039 

# Overall 
Atypical Cells 

0.715 0.048 0.679 0.062 0.685 0.069 0.682 0.068 0.663 0.067 0.638 0.04 

# Cluster 
Atypical Cells 

0.713 0.048 0.681 0.064 0.685 0.069 0.68 0.069 0.651 0.068 0.637 0.042 

% Clusters 
Dense/Atypical 

0.701 0.055 0.695 0.066 0.641 0.069 0.649 0.072 0.669 0.071 0.588 0.041 

# Isolated Cells 
High NC 

0.724 0.046 0.664 0.061 0.709 0.066 0.69 0.066 0.689 0.063 0.588 0.039 

# Overall Cells 
High NC 

0.727 0.047 0.655 0.054 0.707 0.066 0.685 0.065 0.709 0.062 0.564 0.042 

# Cluster Cells 
High NC 

0.724 0.047 0.645 0.057 0.697 0.068 0.68 0.066 0.699 0.068 0.541 0.044 

LASSO 0.734 0.056 0.723 0.054 0.707 0.061 0.691 0.051 0.726 0.064 0.657 0.038 
# Cells 0.724 0.045 0.705 0.052 0.707 0.058 0.692 0.063 0.712 0.059 0.631 0.039 
# Clusters 0.727 0.049 0.702 0.053 0.743 0.051 0.719 0.056 0.677 0.067 0.6 0.039 
Overall 0.827 0.046 0.849 0.051 0.927 0.035 0.92 0.036 0.911 0.03 0.659 0.041 
VIF 0.773 0.058 0.747 0.057 0.731 0.061 0.743 0.074 0.746 0.06 0.682 0.036 
% Outperform 
UC Class 0.611 0.115 0.722 0.106 0.667 0.111 0.611 0.115 0.667 0.111 0.778 0.098 

 795 
Supplemental Table 3: Comparison between Cytological Imaging Predictors Versus 796 
Histology: Hazard ratios, 95% confidence intervals and p-values, specifically after adjusting for 797 
tumor grade/type, reported for a variable constructed from the imaging predictors alone; also 798 
includes p-values from partial likelihood ratio test assessing whether imaging cytological exams 799 
improves on histological predictors; reports for fixed predictors collected across various 800 
collection time periods  801 

Collection 
Time (days) 

log(HR) 2.5% CI 97.5% CI p-value p-value– H1: 
Imaging> 
Grade+Cis 

p-value– H1: 
Imaging+Grade+Cis> 
Grade+Cis 

0 1.258 0.569 1.947 0.00035 0.220 0.048 
30 1.199 0.533 1.865 0.00042 0.220 0.054 
60 0.980 0.429 1.531 0.00049 0.060 0.042 
90 0.982 0.319 1.646 0.00370 0.144 0.130 

120 1.003 0.519 1.488 0.00005 0.115 0.102 
150 1.019 0.538 1.499 0.00003 0.055 0.059 
180 1.051 0.563 1.539 0.00002 0.060 0.060 
210 1.081 0.542 1.621 0.00009 0.026 0.028 
240 0.962 0.455 1.470 0.00020 0.024 0.017 
270 0.974 0.517 1.432 0.00003 0.020 0.022 
300 1.021 0.452 1.589 0.00044 0.016 0.017 

 802 
 803 
Supplementary Table 4: C-indices for Imaging Predictors from Time-Varying Effects 804 
Models 805 
Predictor C SE 
ABS 0.65 0.039 
Age 0.614 0.046 
# Dense Clusters 0.578 0.037 
UC Class 0.616 0.047 
Eccentricity 0.563 0.049 
Sex 0.54 0.041 
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# Isolated Atypical Cells 0.554 0.042 
# Atypical Clusters 0.572 0.041 
# Overall Atypical Cells 0.599 0.043 
% Clusters 
Dense/Atypical 

0.568 0.043 

# Isolated Cells High NC 0.558 0.039 
# Overall Cells High NC 0.557 0.04 
# Cells 0.603 0.044 
# Clusters 0.627 0.042 
Overall 0.728 0.043 

 806 
Supplementary Table 5: Hazard Ratios for Imaging Predictors from Time Varying Effects 807 
Models; Predictor effect size and significance is reported for every half year, which was used as 808 
the time periods to assess recurrence risk 809 
 810 

Predictor Time log(HR) 2.5% CI 97.5% CI z Pr(>|z|) 
# Overall 

Atypical Cells 
0-180 1.39E-04 8.58E-05 1.93E-04 1.77E+00 7.63E-02 
180-360 3.08E-04 1.90E-04 4.26E-04 1.51E+00 1.32E-01 
360-540 4.60E-04 3.12E-04 6.07E-04 1.50E+00 1.33E-01 
540-720 7.25E-04 1.53E-04 1.30E-03 6.43E-01 5.20E-01 
720-900 -6.14E-04 -1.84E-03 6.08E-04 -6.91E-01 4.89E-01 
>900 1.38E-03 8.03E-04 1.95E-03 1.10E+00 2.69E-01 

# Overall Cells 
High NC 

0-180 2.03E-04 -2.87E-05 4.35E-04 6.93E-01 4.89E-01 
180-360 8.75E-04 4.99E-04 1.25E-03 2.35E+00 1.89E-02 
360-540 1.52E-03 9.92E-04 2.05E-03 1.29E+00 1.98E-01 
540-720 1.09E-03 -1.20E-04 2.30E-03 5.60E-01 5.75E-01 
720-900 -5.97E-05 -2.13E-03 2.01E-03 -3.43E-02 9.73E-01 
>900 8.15E-03 6.09E-03 1.02E-02 3.97E+00 7.23E-05 

# Cells 0-180 4.72E-05 3.32E-05 6.11E-05 1.73E+00 8.39E-02 
180-360 5.16E-05 3.65E-05 6.66E-05 1.65E+00 9.90E-02 
360-540 -4.94E-06 -3.29E-05 2.31E-05 -1.32E-01 8.95E-01 
540-720 7.06E-05 4.95E-05 9.17E-05 2.49E+00 1.28E-02 
720-900 -1.07E-04 -2.38E-04 2.33E-05 -1.41E+00 1.58E-01 
>900 2.03E-04 1.43E-04 2.63E-04 1.58E+00 1.14E-01 

Eccentricity 0-180 4.30E+00 1.89E+00 6.70E+00 8.73E-01 3.83E-01 
180-360 -1.60E+00 -3.89E+00 6.87E-01 -5.49E-01 5.83E-01 
360-540 3.97E+00 4.59E-01 7.47E+00 4.50E-01 6.53E-01 
540-720 1.72E+01 1.12E+01 2.31E+01 1.15E+00 2.49E-01 
720-900 6.20E+00 -2.94E+00 1.53E+01 3.73E-01 7.09E-01 
>900 5.72E+00 -1.11E+00 1.25E+01 4.22E-01 6.73E-01 

# Isolated 
Atypical Cells 

0-180 1.21E-04 -1.75E-04 4.17E-04 3.89E-01 6.98E-01 
180-360 4.85E-04 1.04E-04 8.67E-04 8.19E-01 4.13E-01 
360-540 2.02E-03 1.60E-03 2.44E-03 3.47E+00 5.22E-04 
540-720 1.15E-04 -2.23E-03 2.46E-03 2.37E-02 9.81E-01 
720-900 -4.80E-03 -9.49E-03 -1.21E-04 -7.92E-01 4.29E-01 
>900 2.19E-03 1.24E-04 4.25E-03 5.51E-01 5.82E-01 

# Isolated Cells 
High NC 

0-180 3.20E-04 -3.19E-04 9.60E-04 3.78E-01 7.05E-01 
180-360 2.70E-03 1.86E-03 3.54E-03 3.79E+00 1.51E-04 
360-540 2.33E-03 1.48E-03 3.18E-03 1.19E+00 2.34E-01 
540-720 4.15E-03 2.00E-03 6.30E-03 1.24E+00 2.13E-01 
720-900 -2.49E-03 -7.73E-03 2.75E-03 -6.05E-01 5.45E-01 
>900 1.43E-02 1.09E-02 1.77E-02 2.95E+00 3.15E-03 

# Dense 
Clusters 

0-180 2.85E-04 -5.81E-04 1.15E-03 2.38E-01 8.12E-01 
180-360 2.08E-03 1.54E-03 2.61E-03 4.87E+00 1.12E-06 
360-540 9.12E-03 7.59E-03 1.06E-02 4.20E+00 2.64E-05 
540-720 -1.02E-02 -1.91E-02 -1.20E-03 -9.38E-01 3.48E-01 
720-900 -4.12E-03 -1.39E-02 5.63E-03 -3.27E-01 7.44E-01 
>900 -3.12E-03 -1.12E-02 4.96E-03 -2.68E-01 7.89E-01 
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# Clusters 0-180 8.60E-05 5.55E-05 1.16E-04 1.56E+00 1.20E-01 
180-360 1.39E-04 1.10E-04 1.69E-04 3.66E+00 2.50E-04 
360-540 4.19E-05 -9.12E-06 9.29E-05 4.55E-01 6.49E-01 
540-720 4.93E-05 -1.16E-05 1.10E-04 4.64E-01 6.43E-01 
720-900 -5.40E-04 -8.79E-04 -2.02E-04 -1.85E+00 6.48E-02 
>900 5.93E-05 -2.11E-05 1.40E-04 3.87E-01 6.99E-01 

% Clusters 
Dense/Atypical 

0-180 8.25E+00 5.08E+00 1.14E+01 1.93E+00 5.30E-02 
180-360 5.06E+00 -2.06E+00 1.22E+01 3.65E-01 7.15E-01 
360-540 2.56E+01 1.99E+01 3.14E+01 2.64E+00 8.39E-03 
540-720 -2.20E+01 -4.32E+01 -7.23E-01 -6.85E-01 4.93E-01 
720-900 3.74E+01 2.15E+01 5.34E+01 1.67E+00 9.44E-02 
>900 2.29E+01 7.72E+00 3.81E+01 1.02E+00 3.07E-01 

# Atypical 
Clusters 

0-180 7.07E-04 2.25E-04 1.19E-03 1.39E+00 1.65E-01 
180-360 2.89E-03 1.76E-03 4.02E-03 1.53E+00 1.26E-01 
360-540 3.58E-03 2.71E-03 4.45E-03 2.12E+00 3.40E-02 
540-720 3.22E-03 -5.21E-04 6.96E-03 3.99E-01 6.90E-01 
720-900 -6.12E-03 -1.40E-02 1.74E-03 -5.87E-01 5.57E-01 
>900 4.81E-03 9.55E-04 8.67E-03 6.08E-01 5.43E-01 

ABS 0-180 2.74E+00 2.17E+00 3.31E+00 3.00E+00 2.69E-03 
180-360 2.22E+00 1.57E+00 2.86E+00 1.72E+00 8.51E-02 
360-540 -1.86E-01 -1.22E+00 8.45E-01 -1.30E-01 8.96E-01 
540-720 8.28E-01 -5.97E-01 2.25E+00 2.75E-01 7.84E-01 
720-900 2.39E+00 6.42E-01 4.15E+00 9.43E-01 3.46E-01 
>900 7.96E+00 6.45E+00 9.47E+00 3.31E+00 9.41E-04 

UC Class 0-180 1.61E+00 1.35E+00 1.88E+00 3.10E+00 1.96E-03 
180-360 8.31E-01 5.37E-01 1.13E+00 1.38E+00 1.68E-01 
360-540 -2.07E-01 -7.32E-01 3.19E-01 -2.03E-01 8.39E-01 
540-720 4.70E-01 -7.19E-02 1.01E+00 4.38E-01 6.61E-01 
720-900 1.29E+00 6.80E-01 1.91E+00 1.39E+00 1.64E-01 
>900 1.49E+00 1.00E+00 1.98E+00 1.55E+00 1.21E-01 

 811 
Supplementary Table 6: Results from beta regression models comparing recurrence risk to 812 
ABS scores during distinct time periods; Coefficients B represents differences in ABS scores 813 
between low and high risk patients at specific time periods; the final coefficient represents how 814 
ABS scores are changing over time between the first and second recurrences 815 
 816 
Comparison Time Period B 2.5% CI 97.5% 

CI 
p-value 

High vs low risk, days since 
positive primary 

0-113 -0.297 -1.169 0.575 0.506 
114-204 0.134 -1.212 1.479 0.846 
205-295 -0.806 -1.849 0.238 0.133 
295-412 -1.038 -1.888 -0.187 0.019 
413-690 -1.186 -1.957 -0.416 0.003 

High vs low risk, days until first 
recurrence 

>752 -0.070 -0.645 0.505 0.812 
752-391 0.122 -0.438 0.683 0.669 
390-227 -0.496 -1.086 0.095 0.102 
226-114 0.093 -0.459 0.645 0.742 
113-0 -0.595 -1.193 0.003 0.053 

Days until second recurrence, 
starting from first recurrence 

Time in days 
(continuous) 

0.001 0.000 0.001 0.018 
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