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29 Abstract

30 Background:

31 Interpretation of lung ultrasound artifacts by clinicians can be inconsistent. Artificial intelligence (AI) 

32 may perform this task more consistently. 

33 Research Question

34 Can AI characterize lung ultrasound artifacts similarly to humans, and can AI interpretation be 

35 corroborated by clinical data? 

36 Study Design and Methods: 

37 Lung sonograms (n=665) from a convenience sample of 172 subjects were prospectively obtained using a 

38 pre-specified protocol and matched to clinical and radiographic data. Three investigators scored 

39 sonograms for A-lines and B-lines. AI was trained using 142 subjects and then tested on a separate dataset 

40 of 30 patients. Three radiologists scored similar anatomic regions of contemporary radiographs for 

41 interstitial and alveolar infiltrates to corroborate sonographic findings. The ratio of oxyhemoglobin 

42 saturation:fraction of inspired oxygen (S/F) was also used for comparison. The primary outcome was the 

43 intraclass correlation coefficient (ICC) between the median investigator scoring of artifacts and AI 

44 interpretation. 

45 Results: 

46 In the test set, the correlation between the median investigator score and the AI score was moderate to 

47 good for A lines (ICC 0.73, 95% CI [0.53-0.89]), and moderate for B lines (ICC 0.66, 95% CI [0.55-

48 0.75]). The degree of variability between the AI score and the median investigator score for each video 

49 was similar to the variability between each investigator’s score and the median score. The correlation 

50 among radiologists was moderate (ICC 0.59, 95% CI [0.52-0.82]) for interstitial infiltrates and poor for 

51 alveolar infiltrates (ICC 0.33, 95% CI [0.07-0.58]). There was a statistically significant correlation 

52 between AI scored B-lines and the degree of  interstitial opacities for five of six lung zones. Neither AI 

53 nor human-scored artifacts were consistently associated with S/F. 
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54 Interpretation: 

55 Using a limited dataset, we showed that AI can interpret lung ultrasound A-lines and B-lines in a fashion 

56 that could be clinically useful.

57 Keywords: 

58 “lung ultrasound”, “artificial intelligence”, “inter-rater variability”

59 Abbreviations:

60 AI: Artificial intelligence neural network 

61 BLUE 1:  Point 1 on left side of thorax

62 BLUE 2: Point 2 on left side of thorax

63 BLUE 3: Point 3 on left side of thorax

64 BLUE 4: Point 1 on right side of thorax

65 BLUE 5: Point 2 on right side of thorax

66 BLUE 6: Point 3 on right side of thorax

67 COPD: Chronic Obstructive Pulmonary Disease

68 ICC: Intraclass correlation coefficient

69 US: Ultrasound

70 S/F: Oxyhemoglobin saturation divided by fraction of inspired oxygen
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79 Introduction: 

80 Lung ultrasound (US) is used for real time identification and prognostication of lung pathology by 

81 clinicians at the bedside. Because of its ease of use and because it does not expose patients to ionizing 

82 radiation, this imaging modality has undergone explosive growth in intensive care units, emergency 

83 departments, and hospital wards to inform management decisions[1]. Lung ultrasound outperforms 

84 traditional radiographs in the diagnosis of some common lung pathologies such as cardiogenic pulmonary 

85 edema and pneumothorax[2,3]. 

86

87 Normally aerated lung attenuates the transmission of sound waves making it difficult to directly visualize 

88 disease pathology. Instead, the accurate interpretation of lung ultrasound relies on the characterization of 

89 reverberation artifacts that are generated at the interface of unaerated and aerated lung.

90     

91 Lichstenstein designated over 40 lung ultrasound artifacts in his seminal work on thoracic sonography[4]. 

92 A-lines and B-lines are the artifacts most readily understood by practicing clinicians[1]. A-lines are 

93 generated by reflection of the ultrasound wavefront back and forth between the skin and the pleura. A-

94 lines are present in healthy lung and some pathologic conditions, such as pneumothorax and emphysema. 

95 In contrast, B-lines are created by reverberations within the first millimeter of diseased but aerated lung. 

96 B-lines are most commonly seen when there is either interstitial edema or fibrosis. Increasing numbers of 

97 B-lines correspond to increasing disease severity[5,6]. 

98

99 The collage of reverberation artifacts in a lung ultrasound encodes important diagnostic information. 

100 However, the interpretation of this collage is subjective and only semi-quantitative leading to 

101 inconsistencies in interpretation, even among ultrasound fellowship-trained clinicians[7]. 

102
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103 Because artificial intelligence systems (AI) can handle many more input variables, they have been shown 

104 to outperform humans in complex tasks such as the interpretation of mammograms[8]. We therefore 

105 hypothesized that an AI network could be trained to decode lung ultrasound artifacts in a fashion similarly 

106 to humans. To test this hypothesis we prospectively enrolled patients in a study investigating the 

107 correlations among human and AI scoring of lung US. We corroborated AI sonographic findings with 

108 selected clinical and radiographic variables. The specific reverberation artifacts chosen were A-lines and 

109 B-lines. 

110

111 Materials and Methods:

112 This was a prospective, observational study conducted on a convenience sample of 172 adult patients 

113 admitted to a university-affiliated hospital from January 2021 to February 2022. The protocol was 

114 approved by the local institutional review board (LSU IRB#1509).  All patients admitted to the study 

115 hospital over 18 years of age were eligible to participate. Written informed consent was obtained prior to 

116 the performance of any study related procedures. 

117

118 Ultrasound Protocol 

119 Sonographers consisted of a Pulmonary/Critical Care attending, Pulmonary/Critical Care fellow, and five 

120 residents. All sonographers received specific training on the technique of obtaining quality lung 

121 ultrasounds. Training consisted of 2 hours of independent, directed learning using an accredited lung 

122 ultrasound educational product and 6 hours of didactic training involving lung ultrasound acquisition (S1 

123 Appendix). 

124

125 Patients were scanned with a point-of-care ultrasound system (X-Porte, Fujifilm Sonosite, Bothell, WA), 

126 using a linear array probe (HFL38xp/13-6 MHz) and the following presets: depth 6 cm, near field gain 

127 0%, far field gain 100%, mechanical index 0.5, tissue index 0.2, tissue harmonics off. Patient’s were 
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128 scanned in the sitting (preferred), or semirecumbent position at three points on each side: the 2nd 

129 intercostal space at the mid-clavicular line, 4th intercostal space at the mamillary line, and 5th intercostal 

130 space at the posterior axillary line (Figure 1) similar to the BLUE protocol (BLUE points)[9]. The probe 

131 was placed in the intercostal space and oriented parallel to the ribs. Six second clips were obtained at each 

132 point. 

133

134 Figure 1. BLUE points of one hemithorax. 

135

136 Imaging Interpretation

137 Sonograms were scored by two physicians and one research staff member (BD, TF, GG), each blinded to 

138 clinical data. These investigators received 6 hours of explicit training on lung ultrasound interpretation 

139 using accredited training material (S1 Appendix)[10] and had at least an additional 2 years of research 

140 experience in this subject matter. Each sonogram was scored for the presence and character of A-lines and 

141 the quantity of B-lines on an ordinal scale (Table 1). 

142

143 Table 1. Lung Ultrasound Artifact Scoring 

Artifact
Scoring 

categories

A-Lines None

No A-line 

Weak

Faint A-line(s) 

Bold

A-line(s) 
immediately 
recognizable

Sub-A Lines

A-line(s) 
immediately 

recognizable and 
reflections of 

fascial planes also 
identifiable in the 
subpleural space. 

B-Lines None Few (1-3) Some (4-5) Many/Coalescing White Lung
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Artifact
Scoring 

categories

No B-lines 
Between 1 and 

3 B-lines 
Between 4 and 6 

B-lines

(>6)

More than 6 B-
lines, or so many 

B-lines that 
individual vertical 
artifacts cannot be 

distinguished

The entirety 
of the 

subpleural 
space is 

hyperechoic 
with 

coalescing B-
lines 

144

145 Three staff radiologists blinded to the clinical data independently scored the digital chest radiograph in 

146 the test set closest in time to the ultrasound exam. Radiographs obtained less than 24 hours from 

147 ultrasound acquisition were included. Radiographs were scored for the degree of interstitial and alveolar 

148 opacities at 6 different lung zones similar anatomically to the BLUE points (Figure 2)[11]. Each 

149 radiographic sextant was scored on a scale of 0 (no infiltrate) to 3 (dense infiltrates) for both interstitial 

150 and alveolar infiltrates using an electronic slider to provide a continuous variable[11]. To improve 

151 reproducibility, prior to scoring, each radiologist had obtained explicit instruction and had trained using 

152 the scoring system on a separate data set. 

153

154 Figure 2. Chest radiograph scoring: Each chest radiograph was divided into 6 anatomical zones 

155 corresponding to the 6 ultrasound BLUE points. Two lines separate the thorax in the transverse plane, and 

156 the spinous process divides it sagittally to form six lung zones. Line A is drawn at the level of the inferior 

157 wall of the aortic arch. Line B is drawn at the level of the inferior wall of the right inferior pulmonary 

158 vein. 

159

160
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161 Artificial Intelligence Network 

162 A previously published artificial intelligence neural network which has been used to analyze lung 

163 ultrasound artifacts[12,13] by employing a Temporal Shift Module (TSM)[14] was trained using 485 

164 ultrasound clips from 142 research subjects. The previously published model characterized A and B line 

165 artifacts with an accuracy of 76.4% and a precision of 70.8%[13]. The TSM model is video-based model 

166 that jointly analyzes a group of frames belonging to a video clip in order to simultaneously predict A-lines 

167 and B-lines[14]. Such a video-model is better suited to detect transitory features (B-lines) rather than 

168 frame-based models[15,16] that only use a single frame for analysis. 

169

170 In the present study, no crossover existed between patients in the training set and those in the test set. 

171 Subjects in the training and test sets had sonograms conducted in a similar fashion to that outlined as 

172 above. For AI training, each sonogram clip was pre-labeled by one of the investigators (BD, TF, or GG) 

173 using an annotator that captured the predominant artifacts. The training involved exposing AI to the 

174 labeled video clip, as has been described previously[14]. 

175

176 Once trained, AI was tasked with interpreting a separate test set of 180 unlabelled clips from 30 patients 

177 for A-lines and B-lines. For each clip, AI predicted a probability that selected A-line patterns and selected 

178 B-line patterns would be present. Any A-line or B-line pattern with a probability greater than 50% was 

179 scored as being present. For example, in a single clip, AI may produce a probability that weak A-lines 

180 were present (40%), bold A-lines were present (60%), etc. If two or more A-line patterns were scored as 

181 being present, the bolder descriptor for the pattern was chosen. For example, if weak and bold A-lines 

182 were scored as being present (had probability scores greater than 50%), the bold A-line option was 

183 chosen. In another example, if “few” and “many/coalescing” B-lines were scored as being present, the 

184 clip was scored as having “many/coalescent” B-lines. This determination was made a priori, and is 

185 consistent with clinician scoring. It was not anticipated prior to data interpretation that there would be 

186 clips where AI was unable to identify a B-line pattern with a probability greater than 50%. In these 
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187 instances we chose the B-line pattern with the highest probability, even if that probability was less than 

188 50%.

189

190 Clinical Data 

191 In the test set, the following demographic and clinical descriptors were obtained at the time of each exam: 

192 age, gender, admission location, arterial oxygen saturation/fraction of inspired oxygen (S/F), BMI, final 

193 diagnosis at discharge, and NIH ordinal scale[17]. S/F was determined using pulse oximetry performed 

194 concurrently with the lung US. Diagnosis and NIH ordinal scale was established by reviewing the primary 

195 team’s documentation, contributing lab and imaging studies, and response to treatments. Method of 

196 diagnosis for specific conditions is included in the online supplement(S1 Table).

197

198 Statistical Analysis

199 The primary outcome was the intraclass correlation coefficient (ICC) between the median investigator 

200 artifact interpretation and the AI artifact interpretation. Secondary outcomes included inter-rater reliability 

201 of lung artifact interpretation among investigators, and interrater reliability among chest radiograph 

202 scoring among reading radiologists, both determined by the intraclass correlation coefficients. All ICCs 

203 were calculated using a two-way effects, absolute agreement, and single rater model and reported with 

204 95% confidence intervals. 

205

206 External validation was achieved through comparison of AI and investigator artifact interpretation with 

207 radiographic characteristics of pulmonary disease, as well as oxygenation as measured by S/F ratio. These 

208 relationships were quantified with an analysis of variation (ANOVA). Data were reported as p-values and 

209 effect quantification via η2 with statistical significance defined as a p-value less than 0.05. Prior to 

210 conducting the ANOVA, Levene’s test of equality was used to confirm homoscedasticity. Relationships 

211 between the ultrasound artifact interpretation and the clinical data were visualized using box plots. All 

212 analyses were conducted using R version 4.1.3 (R Core Team for Statistical Computing, Austria).
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213

214 Results 

215 Clinical data for research subjects in the test set are shown in Table 2. The average patient age was 66 

216 years; the majority were admitted to an ICU (40%); and there was a relatively equal mix of men (53%) 

217 and women (47%). The most common diagnoses were decompensated heart failure (n=7) and COVID-19 

218 pneumonia (n=7), with bacterial pneumonia, chronic obstructive lung disease (COPD) exacerbations, 

219 pleural effusion, and interstitial lung disease making up a minority of diagnoses (Table 3). 

220 Table 2. Demographic and Clinical Information 

Characteristic N=30a

Age (years) 66 (51,78)

Gender

Female

Male

14 (47%)

16 (53%)

Disposition

Inpatient Ward

Intensive Care Unit

12 (40%)

18 (60%)

BMI 28 (26, 32)

S/F 330 (240, 372)

NIH Ordinal Scale

3

4

2 (6.7%)

2 (6.7%)
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5

6

7

17 (57%)

7 (23%)

2 (6.7%)

221 a:Median (25%, 75%); n (%)

222 Table 3: Frequency table for diagnosis for enrolled patients in the test set.

Diagnosis* Number of Patients

Heart Failure Exacerbation 7

COVID-19 Pneumonia 7

Pleural Effusion 5

Interstitial Lung Disease 5

COPD Exacerbation 4

Bacterial Pneumonia 2

Other 2

223 * Multiple diagnoses could exist in the same patient 

224

225 Inter-rater agreements

226 Among clinicians there was moderate to good agreement overall in A-line pattern description (ICC= 0.75 

227 [95% CI: 0.64-0.83]), and moderate agreement in B-line pattern description (ICC= 0.71 [95% CI 0.58-

228 0.79]). AI scoring of A-lines had moderate to good agreement with the median human A-line score using 

229 intraclass correlation coefficient (ICC= 0.73 [95% CI 0.53-0.84]). AI scoring of B-lines also showed 

230 moderate agreement with median human scoring (ICC= 0.66 [95% CI 0.55-0.75)](Tables 4, 5).
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231  

232 Table 4. ICC among human and AI scoring of A-lines  [95% CI]

233
Anatomic Location ICC among Human Scoring ICC between AI and Median

Human Scoring

BLUE 1 (n=30) 0.92 [0.85-0.96] 0.88 [0.76-0.94]

BLUE 2 (n=30) 0.70 [0.53-0.83] 0.82 [0.66-0.91]

BLUE 3 (n=30) 0.63 [0.36-0.80] 0.62 [0.1-0.85]

BLUE 4 (n=30) 0.74 [0.58-0.85] 0.82 [0.63-0.91]

BLUE 5 (n=30) 0.80 [0.63-0.90] 0.68 [0.43-0.83]

BLUE 6 (n=30) 0.52 [0.24-0.73] 0.43 [0.02-0.70]

Mean (n=180) 0.75 [0.64-0.83] 0.73 [0.53-0.84]

234

235

236 Table 5. ICC among AI and median human US scoring of B-lines [95% CI]

Anatomic Location ICC among Human Scoring ICC between AI and Median 

Human Scoring

BLUE 1 (n=30) 0.82[0.69-0.9] 0.79[0.48-0.91]

BLUE 2 (n=30) 0.64[0.4-0.8] 0.62[0.35-0.80]

BLUE 3 (n=30) 0.65[0.43-0.81] 0.76[0.4-0.90]
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BLUE 4 (n=30) 0.67[0.45-0.82] 0.74[0.5-0.87]

BLUE 5 (n=30) 0.72[0.53-0.85] 0.50[0.17-0.72]

BLUE 6 (n=30) 0.77[0.53-0.89] 0.59[0.261-0.79]

Mean (n=180) 0.71[0.58-0.79] 0.66[0.55-0.75]

237

238 To more directly compare the variability between AI and each investigator, AI was considered as a 

239 separate investigator. Then for each artifact pattern, the variability between AI and the median score of all 

240 investigators was compared to the variability of each investigator and the overall median. For A-lines, the 

241 ICC between each investigator and the median score for each clip ranged from 0.74 (TF vs median) to 

242 0.83 (BD vs median). AI had similar variability with an ICC of 0.74 when compared to the median 

243 investigator score.  For B-lines, investigator variability ranged from 0.6 (ICC between TF vs median of 

244 AI and the other investigators) to 0.75 (ICC between GG vs median of AI and the other investigators) 

245 while AI variability was 0.65 (ICC between AI vs median investigator score) (table 6).Thus AI performed 

246 within the range of human scoring for the detection of specific A-line and B-line artifact patterns.

247  

248 Table 6. Variance shown as ICC [95% CI] between Human and AI scoring of Artifacts versus Median

TF vs median BD vs median GG vs median AI vs median

A-Lines 0.74 [0.48-0.85] 0.83 [0.76-0.88] 0.77 [0.6-0.85] 0.74 [0.53-0.84]

B-Lines 0.6 [0.26-0.77] 0.71 [0.61-0.78] 0.75 [0.64-0.83] 0.65 [0.54-0.73]

249

250

251  Furthermore, there was not a significant difference in interrater reliability in any one disease state over 

252 another, although AI scoring was most similar to humans in scoring sonograms of patients with COVID 

253 and least similar in patients with COPD (S2 Table). Although many clinicians use radiology to inform 
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254 patient care of respiratory diseases, the ICC among radiologist scoring of both interstitial and alveolar 

255 infiltrates was moderate to poor (Table 7).

256

257 Table 7. Inter-rater reliability among radiologists for interstitial and alveolar opacities shown as ICC 

258 [95% CI]

Anatomic Location Interstitial Scoring         Alveolar Scoring

BLUE 1 (n=30) 0.30 [0.09-0.53] 0.24 [0.04- 0.47]

BLUE 2 (n=30) 0.65 [0.47-0.79 ] 0.40 [0.18-0.61]

BLUE 3 (n=30) 0.56 [0.35 -0.73] 0.24 [0.04-0.47]

BLUE 4 (n=30) 0.60 [0.4-0.76] 0.00 [-0.16-0.23]

BLUE 5 (n=30) 0.69 [0.52-0.82] 0.35 [0.13-0.57]

BLUE 6 (n=30) 0.44 [0.22-0.65] 0.36 [0.10-0.60 ]

Mean (n=180) 0.59 [0.52-0.82] 0.329 [0.07-0.58]

259

260

261

262 Comparisons with Clinical Data

263 A statistically significant association (p<0.05) was found between the density of interstitial opacities in 

264 corresponding chest radiographs and number of B-lines counted by AI in five of six anatomic lung zones 

265 using an ANOVA with a large effect size (η2 range: 0.21-0.47). Similarly, the density of interstitial 

266 opacities was associated with investigator-scored B-lines (S4,5 Tables). No statistically significant 

267 association was found between the density of interstitial opacities and the strength of A-lines as scored by 
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268 either AI or investigators using an ANOVA (S6,7 Tables). Box plots of B-lines versus interstitial 

269 opacities demonstrated an increased B-line number by both human and AI scoring in lung zones with 

270 denser interstitial markings on chest radiographs (Figure 3).

271

272 Figure 3. Box plots of radiographic interstitial score and artifact interpretation are shown. Median 

273 interstitial score determined by radiologists are shown on the Y-axis. Videos scored for the character of 

274 the A-line or number of B-lines by either AI or the median human score. The black bar indicated the 

275 median radiographic interstitial scoring. The colored bar represents the 25th and 75th percentile. The 

276 extent of the whiskers indicate the 95% confidence interval. 

277

278 Three of six lung zones had a statistically significant association (p<0.05) between the degree of alveolar 

279 opacities and AI-scored A-lines, with a large effect size (η2 range: 0.25-0.29). In comparison, two of six 

280 lung zones showed a statistically significant association between the degree of alveolar opacities on chest 

281 radiographs and investigator-scored A-lines (S9,10 Tables). No statistically significant association was 

282 found between the density of alveolar opacities and the number of B-lines on sonograms scored by either 

283 AI or investigators (S11,12 Tables). 

284

285 A statistically significant association was found between oxygenation via S/F and AI-scored A-lines in 

286 three of six lung zones using an ANOVA (S13,14 Tables), and also demonstrated visually by box plots 

287 (Figure 4). There was no statistically significant association between S/F and the brightness of A-lines as 

288 scored by humans (S15,16 Tables). 

289

290 Figure 4. Box plots of lung function quantified by S/F and artifact interpretation are shown. S/F for each 

291 research subject is shown on the Y axis. Human and AI scoring of A-lines and B-lines are shown.The 

292 black bar indicated the median S/F for all videos scored as having each character of A-line or number of 
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293 B-lines. The colored bars represent the 25th and 75th percentiles. The whiskers indicate the 95% 

294 confidence interval. 

295

296 Discussion

297 Human sonographers show significant variability in the scoring of lung ultrasound artifacts. In spite of 

298 this unwanted scoring heterogeneity, point-of-care ultrasound is commonly used to inform patient care 

299 decisions. We also observed variability in our human scoring of lung ultrasound artifacts, furthermore the 

300 degree of variability was in line with existing evidence on this topic[7,18]. 

301

302 Unlike human scoring, a fully trained AI network holds the promise of yielding highly reproducible 

303 results. In the present study, we observed a moderate correlation between AI and investigator 

304 interpretation of A-lines, indicating that AI interpreted clips similarly to investigators for this artifact. 

305 There was a weaker correlation between AI and investigator scoring of B-lines, although the degree of 

306 correlation was in line with existing evidence on this topic[16,19]. In composite, these data suggest that 

307 AI trained on a relatively small data set can interpret A-line and B-line artifacts within the range of human 

308 interpretation. 

309

310 Chest radiographs are a commonly ordered imaging modality in hospitalized patients. It is clear, however, 

311 that like other imaging modalities, there is significant variability in how chest radiographs are 

312 interpreted[20]. When compared to the degree of variability among radiologists interpreting interstitial 

313 and alveolar infiltrates, human sonographers and AI scored A-line and B-line artifacts with lower 

314 interrater variability.

315
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316 Previous studies have shown a positive correlation between increasing interstitial infiltrates and the 

317 number of B-lines[5,6]. We observed a similar relationship between the density of interstitial infiltrates 

318 and the number of B-lines scored by both humans and AI. It is notable that AI did not score any clips in 

319 the test set as having the highest B-line severity (3 or “white lung”), perhaps because too few clips of this 

320 severity were included in the training set. However, ultrasound clips scored by clinicians as having the 

321 highest severity B-line score had wide confidence intervals, which may indicate that this ultrasound 

322 finding is not a reliable indicator of worsening interstitial disease. 

323

324 It was less clear how alveolar opacities on chest radiographs would correlate with lung ultrasound 

325 interpretation. In this dataset, the degree of alveolar opacification, as adjudicated by radiologists, was 

326 inversely correlated with the boldness of A-lines as interpreted by AI in three of six lung zones. 

327 Somewhat surprisingly, the B-line artifact was not a reliable predictor of alveolar infiltrates on chest 

328 radiographs (S12,13 Tables). 

329

330 Artificial intelligence neural networks have previously shown the ability to differentiate normal from 

331 abnormal lung sonograms, identifying, for example, an A-line predominant versus B-line predominant 

332 clip[21]. AI has also been shown to improve novice lung sonographers interpretation[19]. AI systems 

333 have previously been able to characterize multiple lung ultrasound artifacts simultaneously compared to a 

334 human standard[22]. These studies often do not attempt to analyze AI artifact identification beyond its 

335 similarity to human interpretation[23]. 

336

337 There are two novel aspects to the present study that extend previous observations. First, we tasked AI 

338 with characterizing more artifacts in more detail than previous studies. Second, we matched AI ultrasound 

339 artifact interpretations not only to human interpretation of the same sonogram, but also to that of an 
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340 entirely different radiographic modality, as well as to physiologic data. We demonstrated that AI scoring 

341 compared favorably to human interpretation of sonograms, and that it correlated with other radiographic 

342 data. This provides added clinical relevance to AI interpretation of lung ultrasound artifacts.

343

344 Several protocols have been used to obtain thoracic sonograms for research studies, with variations in 

345 probe selection, orientation, and depth settings[24,25]. Of available probes, a high frequency, linear array 

346 probe was chosen for the present study because it allows enhanced resolution of the pleural line and 

347 subpleural structures[26]. The probe was placed in the intercostal space and oriented parallel to the ribs to 

348 allow visualization of a larger area of pleural surface uninterrupted by rib shadow[26,27]. This orientation 

349 also allowed for continuous contact with the skin along the entire length of the probe. Six cm was the 

350 maximum depth setting available for the probe used in this study. 

351

352 Limitations

353 Our study has limitations. First, it was conducted on a small convenience sample of patients from a single 

354 center, and may not be applicable to broader patient populations with more diverse pathologies. Second, 

355 all patients were scanned using an explicit protocol involving a single ultrasound model and probe, which 

356 may limit its generalizability to other ultrasound manufacturers, probes, and scanning techniques. Third, 

357 there was a limited number of sonographers and human interpreters, and the experience beyond the 

358 explicit training received as part of this experiment is not uniform. Fourth, the training set was over-

359 represented with clips taken at the first and fourth BLUE points as opposed to clips more caudally located 

360 on the thorax, which may have contributed to the lower reliability in AI rating at these anatomic locations. 

361 Fifth, only two artifacts were measured in this study, and some patients’ pathology cannot be 

362 characterized using these artifacts alone, such as those with pleural effusions. Sixth, we recognize that in 

363 very obese patients, there may be more three centimeters of soft tissue between the skin and the pleural 

364 line which might have limited our ability to detect A-line artifacts. In this uncommon occurrence, we 

365 attempted to compress the probe against the skin until the skin to pleural distance spanned less than 3 cm. 
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366 Seventh, imaging studies were interpreted by only six investigators (three for ultrasound, three for 

367 radiographs), which limits the statistical validity of variability among humans. Despite these limitations, 

368 this study represents encouraging evidence of the potential for machine learning to accurately characterize 

369 ultrasound artifacts with clinical implications. 

370

371  Conclusions

372 In this prospective, observational study of a small convenience sample of adults admitted to a university 

373 affiliated hospital, we demonstrate that an artificial intelligence network can be trained to identify and 

374 characterize A-line and B-line artifacts within the range of variability of human interpreters. We 

375 corroborate these interpretations with radiographic and clinical comparators that show AI interpretation of 

376 B-lines is associated with degree of interstitial disease. 
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