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Abstract 
Mild Cognitive Impairment (MCI) is a phase that can precede Alzheimer’s Disease (AD). To 
better understand the molecular mechanisms underlying conversion from MCI to AD, we 
applied a battery of machine learning algorithms on 800 samples from the EMIF-AD MBD 
study. The cohort comprised participants diagnosed as 230 normal cognition (NC), 386 MCI 
(with longitudinal data on AD conversion or remaining stable) and 184 AD-type dementia. 
Data consisted of metabolites (n=540) and proteins (n=3630) measured in plasma coupled to 
clinical data (n=26). Multiclass models selected oleamide, MMSE and the priority language 
as the most confident features while MCI conversion models selected pTau, tTau and JPH3, 
CFP, SNCA and PI15 proteins. These proteins selected for MCI conversion have been 
previously associated with AD-related phenotype. Oleamide, a possible anti-inflammatory, 
prompted in-vitro experiments in rodent microglia. The results demonstrated that disease-
associated microglia synthesize oleamide which were excreted in vesicles. In addition, 
plasma vesicles extracted from participants with AD showed elevated oleamide levels 
compared to controls (P<0.05). This study uncovered MCI conversion pathways that involve 
inflammation, neuronal regulation and protein degradation. 
 
Keywords: Alzheimer’s Disease; multiomics, machine learning; mild cognitive impairment; microglia. 
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Abbreviations: AD = Alzheimer’s Disease; MCI = mild cognitive impairment; cMCI = MCI converted to 
Alzheimer’s; sMCI = MCI stable; MMSE = mini mental state examination; NC = normal cognition; ML = 
machine learning; LR = logistic regression; MLP = multi-layer perceptron network; RF = random forest; SVM 
= support vector machine. 
 

Introduction 
Mild cognitive impairment (MCI) is defined as the symptomatic predementia stage 
characterized by objective impairment in cognition that does not interfere notably with 
activities of daily life1. It is estimated that over 15% of community dwellers have MCI. The 
prevalence of MCI increases with age and decreases with education, and it is a heterogeneous 
and unstable condition2. MCI individuals who eventually progress to Alzheimer’s Disease 
(AD) diagnosis are classified as MCI converters (cMCI), while those who remain stable or 
improve are classified as MCI stable (sMCI). It has been reported that approximately 29% of 
individuals with prevalent or incident MCI will progress to dementia, while 38% will revert 
back to a normal cognition diagnosis3.  
 
The conversion of MCI to dementia has been studied using various data sources, including 
neuropsychological tests, demographic information, neuroimaging (both structural and 
functional), genetics, and cerebrospinal fluid biomarkers, either alone or in combination4–10. 
With the advancement of high-throughput sequencing technologies, there has been increased 
interest in "omics" data, which measure different molecules such as the genome, 
transcriptome, proteome, metabolome, and lipidome11. The most common method to quantify 
proteins, metabolites and lipids is mass spectrometry, which measures the mass-to-charge 
ratio of ionized molecules12. These measures are taken from biofluids such as plasma and 
cerebrospinal fluid, as structural and functional changes in the brain can be reflected in these 
fluids13. Many studies investigating MCI progression to AD use traditional methods such as 
basic statistical tests, correlation and similar metrics10 as well as models such as Cox 
regression5,10 or Bayesian networks9. However, the high dimensionality of omics data is 
particularly suited for machine learning (ML), a computational approach that delivers further 
insight into complex data14. Previous research using omics, imaging and clinical data to study 
AD applied ML algorithms such as lasso regression4,9, support vector machines (SVM)4 as 
well as different deep learning algorithms such as multiple kernel learning4,6 and multimodal 
recurrent neural network8. In this same line, in our previous works, we employed random 
forest, SVM and regression-based approaches for the study of omics related to AD15–17.  
 
In order to identify early disease pathways involved in the conversion to AD, we analyzed 
both proteomics (n=3630) and metabolomics (n=540) data from 800 participants from the 
European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker 
Discovery Study (EMIF-AD MBD)18. The cohort comprised 230 donors diagnosed with 
normal cognition (NC), 386 MCI participants and 184 AD-type dementia participants. Our 
study aims to address two main research questions: 1) which proteins and metabolites are 
most relevant in differentiating between NC, MCI, and AD? and 2) which proteins and 
metabolites are most relevant in differentiating between sMCI and cMCI? To specifically 
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examine MCI progression to AD, we created a smaller cohort with same person paired 
proteomics and metabolomics data from 103 sMCI and 93 cMCI participants. We applied 
four ML algorithms to create both multiclass models and MCI conversion models. Multiclass 
models selected oleamide (an endocannabinoid), MMSE and the priority language as the 
most confident features while MCI conversion models selected pTau, tTau and JPH3, CFP, 
SNCA and PI15 proteins. Since another endocannabinoid (EC), anandamide, was previously 
found in microglia cells19, we investigated oleamide in the same cell type. In addition, we 
identified properdin (CFP), a plasma glycoprotein that activates the complement system of 
the innate immune system, as a relevant molecule involved in MCI conversion, which 
motivated a focus on neuroinflammation. Our results in people with an MCI conversion 
diagnosis indicate the presence of pathways related to inflammation, sedation, neural and 
protein degradation. 
 
 

Results 

Multiclass classifiers for NC, MCI and AD-type individuals 

Multiclass models were created to classify NC, MCI and AD donors using four different 
machine learning algorithms in two different datasets: proteins with clinical covariates and 
metabolites with the same covariates. For both approaches, a similar performance was 
observed between the four different algorithms in the training step, with a mean accuracy of 
0.86 for the proteins and 0.826 for metabolites (Table 1, Supplementary Figure 1). However, 
when evaluating the models on the test set, SVM performance with both proteins and 
metabolites was superior. Within the protein models, the mean accuracy of all algorithms on 
the test set was 0.717 while SVM obtained a 0.882 of accuracy. Analogously, when dealing 
with the metabolites, the overall accuracy on the test set was 0.717 but SVM obtained an 
accuracy of 0.854 (Table 1). A possible explanation was that SVM was less prone to 
overfitting for diagnosis prediction, therefore, it got a better test accuracy20. 
 
Despite the algorithms perform similarly during training, the approaches largely identified 
different relevant features. For the protein models, the top 20 most predictive clinical and 
molecular features were extracted for each algorithm and the features overlap between 
algorithms were represented with a Venn Diagram (Figure 1A, Supplementary Table 1). The 
four approaches identified different features, and this is because 1) we used algorithms from 
different families, that is, they use different strategies to identify patterns in the data; 2) this 
was a high-dimensionality problem, the presence of collinearity (features highly correlated) 
can also influence feature selection, therefore, we can find complementary but different 
markers selected by each algorithm. We decided to keep the features selected as relevant by 
most of the algorithms since we considered they would be more universal (not exclusive to a 
particular algorithm), hence a candidate to interpret biologically with more confidence.  
 
In this regard, three clinical variables were selected as relevant by all the algorithms, these 
were: priority attention z score, priority language z-score and priority memory delayed z 
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score. Amyloid status and MMSE were selected by all algorithms except one. Five proteins 
were selected in only two algorithms (none in 3 and 4), these were: Apolipoprotein D (Apo 
D), Trypsin-1 (PRSS1), Procollagen C-endopeptidase enhancer 1 (PCOLCE), B melanoma 
antigen 3 (BAGE3) and Semaphorin-6C (SEMA6C).  
 
The same procedure was repeated with metabolite models. Two clinical variables, MMSE 
and priority language z-score, were selected by all the algorithms (Figure 1B, Supplementary 
Table 1). In addition, one metabolite - oleamide – was selected by all four algorithms. 
Pairwise comparisons of oleamide levels were computed between the four groups of 
participants (NC, sMCI, cMCI and AD) (Figure 1D). Oleamide levels were increased in 
sMCI donors compared to NC (Wilcoxon test P<8.721 · 10

���, W = 7793). Oleamide levels 
increased even more in cMCI donors compared to sMCI (Wilcoxon test P<2.696 · 10

��, W 
= 4548). However, oleamide levels decreased in AD donors compared to cMCI donors 
(Wilcoxon test P<1.593 · 10��, W = 9640.5). Finally, AD donors reached similar oleamide 
levels compared to NC donors.  
 
Changes in oleamide levels were significantly associated with diagnosis status after adjusting 
for age and sex covariates including all donors (ANCOVA P<2 · 10

���, F=28.095, df=3) and 
only MCI donors (ANCOVA P<4.3 · 10

��, F=12.779, df=1). These same models shown that 
sex had no influence on oleamide levels while age had a significant influence on oleamide 
levels when including all donors (ANCOVA P<1.22 · 10

��, F=33.452, df=1) and only MCI 
donors (ANCOVA P<7.72 · 10

��, F=20.979, df=1).  
 
Additionally, methionine sulfoxide was selected by three algorithms. AB Zscore, 
glycerophosphorylcholine (GPC), glycosyl-N-tricosanoyl-sphingadienine-d18:2/23:0, 
iminodiacetate (IDA), N1-methylinosine, serotonin, 3-hydroxyhippurate and 
ximenoylcarnitine (C26:1) were selected by two algorithms. The features selected as relevant 
by each algorithm were reported in Supplementary Table 1.  
 

 

Classifier proteins involved in MCI conversion 

MCI conversion models reported a mean ROC of 0.64 across the different algorithms, with a 
mean sensitivity of 0.614 and mean specificity of 0.582 (see Supplementary Table 2). All 
algorithms performed similarly in terms of metrics. The overlap of the top 20 most relevant 
variables of the four models was represented with a Venn Diagram (Figure 1C, 
Supplementary Table 1). Seven features were selected as relevant in all models. Among 
them, three clinical variables, local pTau and tTau, tTau Zscore were selected. In addition, 
four proteins were selected by all the algorithms: Peptidase inhibitor 15 (PI15), Properdin 
(CFP), Alpha-synuclein (SNCA) and Junctophilin-3 (JPH3). Proteins selected by three 
algorithms were Pancreatic hormone (PPY), Phospholipase A2 (PLA2G1B), Carnitine O-
acetyltransferase (CRAT) and Tumor necrosis factor receptor superfamily member 19 
(TNFRSF19). Finally, for two algorithms, 5-dodecenoic acid (12:1(n-7)) metabolite was 
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selected as relevant. None of these clinical features, proteins or metabolites was also selected 
as relevant by the multiclass models. All proteins selected as relevant for MCI conversion, 
except PLA2G1B, were previously associated with AD-related phenotype. Most of these 
proteins were found to have evidence for brain eQTL and RNA expression change in the AD 
brain (Supplementary Table 3). 
 
CFP was increased in cMCI compared to sMCI (Wilcoxon test P<6.99 · 10��, W = 6010), 
while JPH3 (Wilcoxon test P<6.072 · 10

��, W = 3348), PI15 (Wilcoxon test P<9.625 ·

10
��, W = 3164) and SNCA were decreased in cMCI compared to sMCI (Wilcoxon test 

P<1.672 · 10
��, W = 3217) (Figure 1E). After adjusting for age and sex covariates, we found 

significant differences between cMCI and sMCI participants for PI15 protein (ANCOVA 
P<5.96 · 10

��, F= 12.194, df=1), SNCA protein (ANCOVA P<7.08 · 10��, F= 11.853, 
df=1), JPH3 protein (ANCOVA P<9.91 · 10

��, F= 11.191, df=1) and CFP protein 
(ANCOVA P<6.39 · 10

��, F= 12.057, df=1). We found that sex had no influence on the 
levels of these proteins for MCI participants while age only had a significant effect on SNCA 
protein levels (ANCOVA P<0.0305, F= 4.749, df=1).  
 
The features selected by three of the four algorithms from multiclass models and MCI 
conversion models were represented in a correlation network to visualise any additional 
relationships between the selected molecules. MCI conversion was the target outcome and 
proteins or metabolites were linked to each other (Figure 1F). The network shows the 
strength of the relationships as Pearson correlations. Only significant correlations were shown 
in the figure (P<0.05). All the protein molecules correlated with cMCI (corr > |0.3|), 
however, the metabolites had low correlation (corr< |0.1|). A maximum correlation |0.97| was 
observed between amyloid z-score and status measures. The results shown that cMCI had 
relatively higher levels of brain biomarkers such as tau and amyloid compared to sMCI while 
MMSE score was lower for cMCI individuals compared to sMCI individuals. 
 
To investigate the prediction ability of these selected clinical features, proteins and 
metabolites, we employed the same four ML algorithms to predict MCI conversion with a 
nested cross-validation. The final models showed a mean accuracy of 0.745 (0.015), with a 
very similar performance between the different algorithms (Supplementary Table 4). 
 
 

Oleamide in in-vitro disease-associated microglia  

We conducted oleamide experiments in microglia culture from rodents and humans 
motivated by anadamide's potential metabolism within microglia and their vesicles based on 
previous studies19,21,22. The LC-MS quantitation for oleamide was carried out on microglia 
cultures and their secreted extracellular vesicles (EVs). The concentration of oleamide was 
normalized by the total proteins in cells and EVs. Details about the LC-MS quantification 
method are available in Methods and Supplementary Material sections.  
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The amount of oleamide was higher in microglia compared to the supernatant and further 
concentrated in EVs (n=3) (Figure 2A). Moreover, it can be observed that activated microglia 
contained higher amounts of oleamide compared to unstimulated cells. We also observed a 
similar amount of oleamide in mouse and rat microglial EVs (two independent experiments, 
three measurements) (Figure 2B).  
Quantitation for oleamide was carried out on EVs extracted from plasma of five AD and five 
control subjects. The concentration of oleamide was significantly increased in AD (Wilcoxon 
test P<0.05) (Figure 1D). Figure 2C presents a hypothetical mechanism where microglia 
activated by fibrils in MCI/AD brains release oleamide in EVs, oleamide as an EC could 
possibly modulate or inhibit neuronal transmission. 
 
 

Discussion 

The use of artificial intelligence in uncovering disease-specific pathways has gained great 
interest in recent years. Machine learning models, by their nature, have the ability to analyze 
big data and potentially detect complex molecular interactions, such as non-linear 
relationships. In this study, we used the EMIF-AD MBD dataset and applied ML algorithms 
to identify key molecules involved in the conversion of MCI to AD. Four different algorithms 
(logistic regression, support vector machines, random forest, and multi-layer perceptron) 
were used to classify: 1) NC vs MCI vs AD, and 2) cMCI vs sMCI. Further molecular 
exploration focused on molecules that were consistently identified in four algorithms and thus 
assumed to be universally linked to disease status. 
 
Models performance and clinical covariates 
The four algorithms showed a similar performance in the training of multiclass models for 
both proteins (0.86 mean accuracy) and metabolites (0.826 mean accuracy). All the 
algorithms showed a lower accuracy of prediction for the MCI class, possibly due to the 
heterogeneity covered by the MCI diagnosis (Supplementary Figure 1). SVM outperformed 
all other algorithms in the test data, reaching values of accuracy of 0.882 for proteins and 
0.854 for metabolites.  
The model’s performance was in line with previous work. Stamate et al.16 analyzed a 
previous cohort with fewer individuals (115 AD donors and 242 NC donors) with different 
ML algorithms to demonstrate that plasma metabolites have the potential to match 
established AD CSF biomarkers. In this previous work, deep learning model produced an 
AUC value of 0.85, Extreme Gradient Boosting model reported a 0.88 whereas the random 
forest model resulted in a 0.85 AUC value. Additionally, a proteomics study by Shi et al.23, 
where ML algorithms were used to classify amyloid positive and amyloid negative 
participants. Lasso Regression and SVM models parsed a predictive panel composed of 44 
proteins, age and the risk gene APOE4 achieving an AUC of 0.68 in a replication group.  
 
Clinical covariates were included in all the models to interpret pathway biology. For 
example, in the multiclass models, the MMSE test and the priority language score were 
ranked high for both proteins and metabolites models while these variables did not play an 
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important role in MCI conversion. Instead, Tau-related measures (pTau and tTau) were 
shown by the binary model to be most relevant. This is interesting because Tau or amyloid 
measures are deemed to be a more accurate and objective measure for diagnosis. Other 
important features among the clinical metadata were known risk factors of AD, such as sex, 
age, years of education and the volume of the hippocampus which is known to be related to 
the memory function in the brain. However, these were not chosen consistently by the models 
(see Supplementary Table 1). 
 
Multiclass models select oleamide  
Multiclass models (NC vs. MCI (all) vs. AD) for metabolite models showed that one lipid, 
oleamide, was selected as a predictor by all algorithms while methionine sulphate was chosen 
by three. Oleamide is a molecule thought to be synthesized in the brain to aid with sleep24 and 
is a potent endogenous endocannabinoid25. The increased levels in the MCI group suggested 
that sleep deprivation could be involved in memory and cognitive impairment. In a previous 
study with fewer participants, oleamide,  within other ECs, was associated with elevated 
amyloid levels in the brain26. In sensitivity analyses, oleamide was significantly higher in 
cMCI (see Figure 1D) and it also associated with age. Xie et al.27 showed that sleep helps 
with toxic clearance in the brain and hence, we hypothesised  that if oleamide aids with sleep 
in early AD, this could be an early coping mechanism. 
Furthermore, methionine is a sulfur-containing essential amino acid that, among many 
different functions, it intervenes in the biosynthesis of glutathione to counteract oxidative 
stress and inflammation28. The same proteins were not selected in more than two multiclass 
models. 
 
 
MCI conversion models select mainly proteins  
MCI conversion models selected four key proteins: peptidase inhibitor 15 (PI15), properdin 
(CFP), alpha-synuclein (SNCA), and junctophilin-3 (JPH3). Decreased levels of alpha-
synuclein and junctophilin (JPH3) were found in the blood of cMCI participants. Notably, the 
presence of dual motor and memory symptoms has been shown to increase the risk of 
developing dementia42. The JPH3 protein is particularly interesting because it is a neuron 
specific protein. JPH3 is regulated in a unique neuron-restricted fashion to control electrical 
excitability of neurons in different brain regions and is involved in the regulation of 
intracellular calcium signalling. JPH3 has been linked previously to Huntington-like disease-
229. Properdin was the only protein that was elevated in cMCI compared to sMCI. It belongs 
to the complement system, a well-established pathway of inflammation. This supports the 
hypothesis that inflammation in the brain exacerbates the progression of AD. The last protein 
selected by all algorithms was peptidase inhibitor 15 (PI15), which is an inhibitor against 
trypsin and, although unexplored in brain, may play a role in protein degradation in the 
central nervous system.  
 
Correlation network and models with selected molecules 
The features selected by three of the four algorithms were represented in a correlation 
network to visualise links between the selected molecules. At baseline, cMCI donors had 
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relatively higher levels of brain biomarkers such as tau and amyloid and the average MMSE 
score was lower for cMCI individuals too (mean of 25) compared to sMCI individuals (mean 
of 26) (demographics supplementary table 5). Two new proteins selected by three ML 
algorithms, PLA2G1B and CRAT, showed weak positive correlation with conversion. PLA2 
is a lipase enzyme involved in the hydrolysis of phospholipids, previously linked to AD30. 
CRAT on the other hand is a carnitine acetyltransferase that has been associated with a severe 
neurometabolic disorder named Leigh syndrome31. The final models with the selected 
molecules had similar performance with the ML methods with a mean value over seventy. 
 
Oleamide is detected in microglia and extracellular vesicle (EV)  
The decision to conduct oleamide experiments in microglia was motivated by anandamide 
metabolism within microglia as based on previous studies. Briefly, microglia are known to 
release a variety of signaling molecules that impact synaptic transmission in response to 
injury or inflammation and play a crucial role in maintaining balance in neuronal networks32. 
Stella N.21 demonstrated that microglia produce in vitro 20-fold higher amounts of ECs than 
neurons or astrocytes, likely representing the main source of ECs in the inflamed brain. In 
this regard, Gabrielli, M. et al.22 demonstrated that ECs are secreted  by microglia through 
extracellular membrane vesicles and these inhibit presynaptic transmission in target 
GABAergic neurons. In addition, ECs have been linked to learning, memory and long-term 
plasticity33–35 and can be neuromodulator lipids36. 

The present study provides the first evidence of oleamide being present also in microglia and 
enriched in EVs released in the pericellular space. It also showed that EVs from blood 
contain oleamide in their cargo and this was more abundant in persons with AD. Figure 2C 
presents a hypothetical drawing where microglia activated by fibrils in MCI/AD brains 
release oleamide in EVs, oleamide as an EC could neuromodulate or inhibit neuronal 
transmission. 
 
Limitations of the study  
Machine learning applications to omics data have some limitations, most notably, 
collinearity, can increase bias, and usually, datasets are still small when compared with 
imaging studies. Another limitation is that, at baseline, the cMCI and sMCI groups were not 
matched in CSF biomarkers, as tau and amyloid were elevated in cMCI participants 
compared to sMCI. Nonetheless, the study has the advantage of having CSF biomarkers and 
extensive clinical covariates, to help with interpretation.  
For the additional studies of selected molecules, the authors were unable to find another 
existing cohort with both omics data and follow-up outcomes for MCI individuals, which 
could further validate this study. Moreover, the oleamide measurements were carried out on 
EVs and microglia in primary culture, an artificial condition far from the in vivo setting. In 
addition, oleamide was measured in EVs from people with AD but in the samples donated by 
individuals with AD, it was not clear if there were more EVs from brain or more oleamide in 
the EVs. 
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In conclusion, our findings revealed inflammation pathways during MCI conversion. The 
main findings included the lipid oleamide which is linked to sleep and memory and was 
secreted by microglia via EVs in vitro. A neural protein, JPH3, was also a new potential 
target, together with PI15 which is a peptidase inhibitor of unknown brain function. The ML 
based pipeline also confirmed established proteins such as synuclein and protein activators in 
the complement cascade. 
 
 

Methods 

The EMIF-AD Multimodal Biomarker Discovery Study 

This study employed data from the European Medical Information Framework for 
Alzheimer's Disease Multimodal Biomarker Discovery Study (EMIF-AD MBD)18. EMIF-AD 
MBD is a cross-cohort study consisting of collated data from 11 European cohorts that aims 
to discover novel diagnostic and prognostic markers for AD-type dementia by performing 
analyses in multiple biomarker modalities. In the present study, we used data from 230 NC 
donors, 184 AD participants and 386 participants diagnosed with MCI. Of 386 MCI 
participants, 100 were later diagnosed with AD-type dementia (defined as AD converting 
MCI [cMCI]), 219 remained as MCI (defined as stable MCI [sMCI]) and 67 participants do 
not have this information available. The average follow-up length was 2.5 years. From all 
cohorts, available data on demographics, clinical information, neuropsychological testing, 
cognition and Aβ status data were gathered. The cognitive tests used varied across centers 
and only the Mini Mental State Examination (MMSE)37 was administered everywhere and 
was available for nearly all subjects. At least one test from the following cognitive domains 
was performed: memory, language, attention, executive functioning and visuoconstruction. 
For each cognitive domain, a primary test was selected. 
 
Metabolomics data for the current study was acquired by Metabolon Inc. (Morrisville, NC, 
USA). The relative levels of 883 plasma metabolites were measured in fasting blood samples 
using three different mass spectrometry methods. Area counts for each metabolite in each 
sample were extracted from the raw data. The extracted area counts were then normalized to 
correct for variation resulting from instrument inter-day tuning differences. Metabolite levels 
below limit of quantification were replaced with 1 while metabolites with more than 20% 
missing data were excluded for the further analysis. Missing values were imputed with the k-
nearest neighbour algorithm. Subsequently, the metabolomics data were log transformed to 
get a change in scale that is more convenient for this type of analysis and then each 
metabolite was further scaled to have a mean value of 0 and a standard deviation value of 1. 
We discarded metabolites with more than 3SD. After data preprocessing, 540 metabolites 
were selected. 
For proteomics analysis, plasma protein levels were assessed in plasma using the SOMAscan 
assay platform (SomaLogic Inc.). This aptamer-based assay enabled the simultaneous 
measurement of up to 3630 proteins. Samples were grouped and measured separately. To 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

11 
 

ensure data consistency across assay runs, 40 subjects were tested in both batches. A detailed 
description of this process has been previously published15,38. 
 
 

Choice of algorithms 

Our aim was to discover the most relevant clinical characteristics, proteins and metabolites 
involved in two different tasks: (1) classifying samples into NC, MCI and AD donors and (2) 
distinguishing between sMCI and cMCI. For each task, we selected four ML algorithms that 
belong to four different algorithm families. Each family refers to mathematical equations 
used to discern patterns in the data. Therefore, by using representatives from four families, 
we improved the confidence of the molecules selected. Logistic regression is one of the most 
used machine learning algorithms because of its interpretability. It assumes a linear 
relationship between each explanatory variable and the logit of the response variable. 
Random Forest, an algorithm combining multiple decision trees for predictions, handles 
tabular data well and can capture complex relationships. SVM particularly excels in binary 
classification tasks and perform well with tabular data, finds the optimal hyperplane that best 
separates classes within a high-dimensional space and can capture non-linear relationships. 
Neural networks can manage big and complex tabular data sets, potentially it can capture the 
most complex patterns between molecules, relevant in the context of AD biology.  
 
Once models were built, the top 20 most relevant features were extracted for each model. 
Model-specific features were selected because each ML method had heightened sensitivity to 
features or patterns within the data. After this step we selected features repeated in three and 
four ML methods. This was done because ML approaches have some limitations, they can be 
prone to overfitting or picking noise incorporating features that lack true relevance. The 
presence of collinearity, where certain features are highly correlated, can also influence 
feature selection. Moreover, if the dataset is too small or lacks the variability necessary for 
describing a diagnosis, it could result in feature variance across models. Therefore, repeated 
molecules were considered more universal or independent of the algorithm family. We have 
previously employed this approach of selecting repetitive features to enhance selected 
molecule confidence39. 
 
 

Pipeline to create multiclass models of NC, MCI and AD donors 

To identify the most relevant proteins and metabolites implicated in the identification of NC, 
MCI and AD donors, multiclass models were created. Proteins and metabolites were treated 
separately in their corresponding pipelines and the same clinical covariates were included in 
both. Multiclass models based on proteins were created using 3630 proteins and 26 clinical 
covariates from a total of 230 NC donors, 184 AD donors and 386 MCI donors. Multiclass 
models for metabolites were created using 540 metabolites with identical clinical covariates 
from a total of 207 NC donors, 136 AD donors and 276 MCI donors. Clinical covariates were 
included in all the models. Statistics of the clinical characteristics of this dataset have been 
previously published by Shi et al.23 
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The same pipeline was applied to create both multiclass models for proteins with covariates 
and the multiclass models for metabolites with covariates. Classes were first balanced using 
the SMOTE approach40 with the ‘imbalanced-learn’ python package. A 5-fold cross-
validation repeated three times was applied with the ‘Repeated Stratified K-Fold’ function 
when fitting the models to address overfitting due to the shape of the data. Four different 
machine learning algorithms were applied with the ‘Scikit-learn’ python package41. The 
algorithms employed were logistic regression (LogisticRegression), random forest 
(RandomForestClassifier), support vector machines (SVM) and artificial neural network 
(MLPClassifier). Each algorithm's hyperparameters were optimized using this same package. 
The performance of each algorithm was evaluated using ROC curves (Scikit-learn and 
matplotlib packages)42.  
 
The most relevant variables for each model were extracted using feature importance methods 
from the Scikit-learn package. For logistic regression models, feature relevance was 
represented by the magnitude of the coefficient of the model. For random forest models, 
feature importance was obtained with “feature_importances_” function, calculated as the 
mean and standard deviation of accumulation of the impurity decrease within each tree. As 
SVM and MLP models do not incorporate specific approaches for calculating feature 
importance, we used a general approach based on predictor permutation through the 
‘sklearn.inspection.permutation_importance’ function, where the values in each feature 
column were shuffled, the effect on the model prediction accuracy was observed and these 
steps were repeated for all features. Finally, the features selected as relevant (top 20) by at 
least three of the four algorithms were selected for interpretation.  
 

Pipeline to create MCI conversion models  

To get more specific molecules to MCI conversion to AD, binary models that classify MCI 
donors into cMCI or sMCI were created using the same ML-based approach. For this 
purpose, only MCI donors with MCI conversion information and both proteins and 
metabolites from the same individual were used, taking a total of 103 sMCI and 93 cMCI. 
The descriptive statistics of clinical characteristics for this dataset are reported in 
Supplementary Table 4. Paired proteins (n=3630), metabolites (n=540) and clinical variables 
(n=26) were integrated in the same model.  
  
The pipeline to create the models were based on the functions from the ‘caret’ R package43. 
First, classes were balanced using a downsampling approach (downSample function). Since 
the number of samples was much smaller than the original set, the complete dataset was used 
for training. A 3-folds cross-validation repeated 10 times (‘trainControl’ function) was 
applied to avoid overfitting. In addition, the same four machine learning algorithms were 
applied, including logistic regression (‘glmnet’ method), random forest (‘rf’ method), support 
vector machines (‘svmLinear’ method) and artificial neural networks (‘mlpWeightDecay’ 
method). Hyperparameter tuning was carried out to define our own grid, included in the 
‘tuneGrid’ parameter. The top 20 most relevant features of each algorithm were extracted 
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using the ‘varImp’ function. Among them, the features selected as relevant (top 20) in at least 
three of the four algorithms were selected. 
 
To investigate the prediction ability of the final selected clinical features (see also correlation 
network molecules), proteins and metabolites, we employed the same four ML algorithms to 
predict MCI conversion with a nested cross-validation (5 outer folds and 5 inner folds). 
  

Univariate analysis 

Additional univariate analyses were performed. To test the changes in the main proteins and 
metabolites levels between the four diagnostic groups (NC, sMCI, cMCI and AD), pairwise 
comparisons were carried out with Wilcoxon test (two-side test) with the wilcox.test function 
from the stats R package. In addition, we tested differences in proteins or metabolites levels 
adjusting for age and sex covariates with ANCOVA analysis using ‘aov’ function from the 
stats R package. 

 
Correlation network 

For the multiclass models and MCI conversion models from each approach, the features 
selected as relevant by at least three of the four algorithms were included. All these features 
were put together using a network-based approach, where MCI conversion is the target, and 
the rest of the features (clinical features, proteins or metabolites) can be linked to the target 
and between themselves. To this end, a correlation network was created. First, correlations 
were estimated using the ‘cor_auto’ function from the ‘qgraph’ R package44. Then, the 
correlation network was represented using the ‘qgraph’ function from this same package 
(graph=“cor”). 
 

Further studies of selected proteins and oleamide 

We investigated whether the proteins selected as relevant were previously associated with 
AD-related phenotype using two different resources: 1) a systematic review from Kiddle, S. 
J. et al (2014)45, where a list of 21 published discovery or panel-based blood proteomics 
studies of AD was reviewed and 2) Agora database, a web application that hosts high-
dimensional human transcriptomic, proteomic, and metabolomic evidence for whether or not 
genes are associated with Alzheimer’s disease (https://agora.adknowledgeportal.org/). 

 

Microglia in-vitro experiments  

Rodent microglial culture preparation and EV isolation 

Pure murine and rat primary microglia, established as in Gabrielli et al46. Independent 
experiments were performed as independent cell preparations and from those several 
replicates were collected. Microglia have been stimulated with 1:20 Granulocyte-Macrophage 
Colony-Stimulating Factor (GM-CSF) from murine GM-CSF-transfected X63 cells47. GM-
CSF is a member of the colony-stimulating factor superfamily that  induces microglial 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

14 
 

proliferation, migration and upregulation of surface markers48. Supernatants have been 
cleared from cell debris before storing. Cells have been scraped in physiological solution, 
pelleted and stored in methanol. Extracellular vesicles (EVs) have been isolated through 
differential centrifugation from the cell supernatant upon 30 minutes ATP stimulation at 
110,000xg49 and stored at -80C°. 
 
 
Isolation of EVs from the plasma of AD patient and control group 
Plasma samples were collected from five subjects with a diagnosis of Alzheimer's disease 
(75.6±2.7 years, 2/3 males/females ratio) and five healthy controls (65.6±3.7 years, 3/2 
males/females ratio). All participants or their representatives provided informed written 
consent, following the protocol approved by the Ethical Committee of Fondazione Don Carlo 
Gnocchi, according to the declaration of Helsinki. Inclusion criteria for AD were considered: 
diagnosis of AD according to NIA-AA criteria; mild dementia stage as documented with a 
Clinical and Dementia Rating (CDR) scale score between 0.5 and 1; absence of psychiatric or 
systemic illness. To have a global index of cognitive functioning, all subjects performed 
cognitive evaluation using the Montreal Cognitive Assessment test (MoCA). Human 
peripheral blood samples of each subject were collected in EDTA-treated tubes (BD 
Vacutainer, Becton Dickinson). To isolate the plasma, samples were centrifuged at 
centrifugation at 1300g x 10 min for removing cells and then at 1800g x 10 min for the 
depletion of platelets. Plasma aliquots were anonymized, aliquoted and stored at -80°C in the 
biorepository of the Laboratory of Nanomedicine and Clinical Biophotonics of Fondazione 
Don Carlo Gnocchi (Milan, Italy) until further use. 500 µl of plasma samples were then 
thawed and centrifuged at 10,000 g for 10 minutes and then used for EVs isolation by size 
exclusion chromatography (SEC; qEV, Izon, Christchurch, New Zealand), following 
manufacturer’s instructions. Eluted fractions from 6 to 8 containing EVs in PBS were 
retained, added with 0.1% DMSO and stored at -20°C until further analysis. 

 
Sample preparation 

Oleamide was extracted by the addition of 1 ml of ethanol to the dried microglia and 
extracellular vesicles. The tubes were then vortexed, for 5s, shaken at 1500 RPM for 5 min at 
4 °C, vortexed, for 5s, and subsequently centrifuged at 12,000 g for 5 min at 4°C. Next, the 
supernatants were evaporated to dryness using a speedvac cold trap concentrator. Each dried 
sample was reconstituted in a 50 μl methanol: toluene (9:1, v/v) mixture, vortexed for 10s, 
transferred to glass vials with micro-inserts, capped immediately, and injected into the Ultra 
High-Performance Liquid Chromatography (UHPLC)-MS/MS system in multiple reaction 
monitoring (MRM) mode. The oleamide identification was confirmed by comparing the 
retention time and the qualifier/quantifier ion of the analytes in the sample with those 
obtained from the authentic analytical standard. The calibration curve was employed for the 
quantitative determination of oleamide in the samples (see supplementary figure 2 and 
MSMS parameters Supplementary Table 3). For details on LC-MS/MS oleamide quantitation 
with the pure deuterated standard see supplementary methods.  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

15 
 

Code availability 
The code used to preprocess the EMIF-AD proteomic and metabolomic data as well as the 
code to create the machine learning models and represent the results are available on GitHub 
(https://github.com/aliciagp/ML-multiomics). 
 

Data availability 
The generated metabolomic and proteomic data in EMIF is considered sensitive patient data 
and can therefore not be publicly available in compliance with the European privacy 
regulations governed by GDPR and according to limitations included in the informed 
consents signed by the study participants. Data are available upon request by contacting the 
EMIF-AD data hub steering committee via the academic EMIF-AD lead, Prof. Pieter Jelle 
Visser, and data access coordinator Dr. Stephanie Vos (s.vos@maasticuniversity.nl). 
Requests should include the following information, name and contact details of the person 
requesting the data, aims and objectives, study design and methods, requested molecular data 
and clinical variables,  outcomes, timelines and cohorts of interest in the EMIF-AD catalogue 
(https://emif-catalogue.eu/login). Requests will be subject to consideration by the steering 
committees of the cohorts and the management board. Time frame for a response will be 
within 4 months. Data requests under agreement will be subject to appropriate confidentiality 
obligations and restrictions. 
 
The averaged protein and metabolites plasma levels for each diagnosis group (NL, sMCI, 
cMCI and NL) have been deposited on GitHub (https://github.com/aliciagp/ML-multiomics). 
 
 

References 
 
1. Gauthier, S. et al. Mild cognitive impairment. The Lancet 367, 1262–1270 (2006). 

2. Bai, W. et al. Worldwide prevalence of mild cognitive impairment among community 
dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology 
studies. Age Ageing 51, afac173 (2022). 

3. Roberts, R. O. et al. Higher risk of progression to dementia in mild cognitive impairment 
cases who revert to normal. Neurology 82, 317–325 (2014). 

4. Varatharajah, Y., Ramanan, V. K., Iyer, R., Vemuri, P., & Alzheimer’s Disease 
Neuroimaging Initiative. Predicting Short-term MCI-to-AD Progression Using Imaging, 
CSF, Genetic Factors, Cognitive Resilience, and Demographics. Sci. Rep. 9, 2235 (2019). 

5. Heister, D. et al. Predicting MCI outcome with clinically available MRI and CSF 
biomarkers. Neurology 77, 1619–1628 (2011). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

16 
 

6. Hinrichs, C., Singh, V., Xu, G. & Johnson, S. C. Predictive markers for AD in a multi-
modality framework: An analysis of MCI progression in the ADNI population. 
NeuroImage 55, 574–589 (2011). 

7. Huang, K. et al. A multipredictor model to predict the conversion of mild cognitive 
impairment to Alzheimer’s disease by using a predictive nomogram. 
Neuropsychopharmacology 45, 358–366 (2020). 

8. Lee, G., Nho, K., Kang, B., Sohn, K.-A. & Kim, D. Predicting Alzheimer’s disease 
progression using multi-modal deep learning approach. Sci. Rep. 9, 1952 (2019). 

9. Liu, H., Zhou, X., Jiang, H., He, H. & Liu, X. A semi-mechanism approach based on 
MRI and proteomics for prediction of conversion from mild cognitive impairment to 
Alzheimer’s disease. Sci. Rep. 6, 26712 (2016). 

10. Smith, E. E. et al. Magnetic Resonance Imaging White Matter Hyperintensities and Brain 
Volume in the Prediction of Mild Cognitive Impairment and Dementia. Arch. Neurol. 65, 
94–100 (2008). 

11. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their 
integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018). 

12. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 
(2003). 

13. Janelidze, S. et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other 
biomarkers, differential diagnosis, neuropathology and longitudinal progression to 
Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020). 

14. Lin, E. & Lane, H.-Y. Machine learning and systems genomics approaches for multi-
omics data. Biomark. Res. 5, 2 (2017). 

15. Shi, L. et al. Discovery and validation of plasma proteomic biomarkers relating to brain 
amyloid burden by SOMAscan assay. Alzheimers Dement. 15, 1478–1488 (2019). 

16. Stamate, D. et al. A metabolite-based machine learning approach to diagnose Alzheimer-
type dementia in blood: Results from the European Medical Information Framework for 
Alzheimer disease biomarker discovery cohort. Alzheimers Dement. N. Y. N 5, 933–938 
(2019). 

17. Proitsi, P. et al. Association of blood lipids with Alzheimer’s disease: 
A comprehensive lipidomics analysis. Alzheimers Dement. J. Alzheimers Assoc. 13, 140–
151 (2017). 

18. Bos, I. et al. The EMIF-AD Multimodal Biomarker Discovery study: design, methods 
and cohort characteristics. Alzheimers Res. Ther. 10, 64 (2018). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

17 
 

19. Eljaschewitsch, E. et al. The endocannabinoid anandamide protects neurons during CNS 
inflammation by induction of MKP-1 in microglial cells. Neuron 49, 67–79 (2006). 

20. Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised 
machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 
281 (2019). 

21. Stella, N. Endocannabinoid signaling in microglial cells. Neuropharmacology 56 Suppl 
1, 244–253 (2009). 

22. Gabrielli, M. et al. Active endocannabinoids are secreted on extracellular membrane 
vesicles. EMBO Rep. 16, 213–220 (2015). 

23. Shi, L. et al. Multiomics profiling of human plasma and CSF reveals ATN derived 
networks and highlights causal links in Alzheimer’s disease. 2022.08.05.22278457 
Preprint at https://doi.org/10.1101/2022.08.05.22278457 (2022). 

24. Cravatt, B. F. et al. Chemical characterization of a family of brain lipids that induce 
sleep. Science 268, 1506–1509 (1995). 

25. Fowler, C. J. Oleamide: a member of the endocannabinoid family? Br. J. Pharmacol. 
141, 195–196 (2004). 

26. Kim, M. et al. Primary fatty amides in plasma associated with brain amyloid burden, 
hippocampal volume, and memory in the European Medical Information Framework for 
Alzheimer’s Disease biomarker discovery cohort. Alzheimers Dement. J. Alzheimers 
Assoc. 15, 817–827 (2019). 

27. Xie, L. et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 342, 373–
377 (2013). 

28. Martínez, Y. et al. The role of methionine on metabolism, oxidative stress, and diseases. 
Amino Acids 49, 2091–2098 (2017). 

29. Stevanin, G. et al. Huntington’s disease-like phenotype due to trinucleotide repeat 
expansions in the TBP and JPH3 genes. Brain J. Neurol. 126, 1599–1603 (2003). 

30. Whiley, L. et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s 
disease. Neurobiol. Aging 35, 271–278 (2014). 

31. Laera, L. et al. CRAT missense variants cause abnormal carnitine acetyltransferase 
function in an early-onset case of Leigh syndrome. Hum. Mutat. 41, 110–114 (2020). 

32. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: New Roles for the Synaptic 
Stripper. Neuron 77, 10–18 (2013). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

18 
 

33. Heifets, B. D. & Castillo, P. E. Endocannabinoid Signaling and Long-Term Synaptic 
Plasticity. Annu. Rev. Physiol. 71, 283–306 (2009). 

34. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. 
Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol. Rev. 89, 309–380 
(2009). 

35. Harkany, T., Mackie, K. & Doherty, P. Wiring and firing neuronal networks: 
endocannabinoids take center stage. Curr. Opin. Neurobiol. 18, 338–345 (2008). 

36. Farrell, E. K. & Merkler, D. J. Biosynthesis, degradation, and pharmacological 
importance of the fatty acid amides. Drug Discov. Today 13, 558–568 (2008). 

37. Arevalo-Rodriguez, I. et al. Mini-Mental State Examination (MMSE) for the early 
detection of dementia in people with mild cognitive impairment (MCI). Cochrane 
Database Syst. Rev. 7, CD010783 (2021). 

38. Gold, L. et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker 
Discovery. PLOS ONE 5, e15004 (2010). 

39. Casanova, R. et al. Blood metabolite markers of preclinical Alzheimer’s disease in two 
longitudinally followed cohorts of older individuals. Alzheimers Dement. J. Alzheimers 
Assoc. 12, 815–822 (2016). 

40. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic 
Minority Over-sampling Technique. J. Artif. Intell. Res. 16, 321–357 (2002). 

41. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 
2825–2830 (2011). 

42. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 
(2007). 

43. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28, 1–
26 (2008). 

44. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. 
qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 48, 
1–18 (2012). 

45. Kiddle, S. J. et al. Candidate Blood Proteome Markers of Alzheimer’s Disease Onset and 
Progression: A Systematic Review and Replication Study. J. Alzheimers Dis. 38, 515–
531 (2014). 

46. Gabrielli, M. et al. Microglial large extracellular vesicles propagate early synaptic 
dysfunction in Alzheimer’s disease. Brain J. Neurol. 145, 2849–2868 (2022). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

19 
 

47. Zal, T., Volkmann, A. & Stockinger, B. Mechanisms of tolerance induction in major 
histocompatibility complex class II-restricted T cells specific for a blood-borne self-
antigen. J. Exp. Med. 180, 2089–2099 (1994). 

48. Dikmen, H. O. et al. GM-CSF induces noninflammatory proliferation of microglia and 
disturbs electrical neuronal network rhythms in situ. J. Neuroinflammation 17, 235 
(2020). 

49. Prada, I. et al. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new 
mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol. 
(Berl.) 135, 529–550 (2018). 

 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2023. ; https://doi.org/10.1101/2023.03.02.23286674doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286674
http://creativecommons.org/licenses/by-nc/4.0/


 

20 

Figures and tables 

 

Figure 1. Most relevant clinical features, proteins and metabolites extracted with multiclass models and 
MCI conversion models. 
Venn diagram shows the overlap of the top 20 most relevant predictors of each algorithm for (A) multiclass 
models of proteins, (B) multiclass models of metabolites and (C) MCI conversion models of proteins and 
metabolites; (D) Oleamide level distribution is represented for NC (n=203), sMCI (n=128), cMCI (n=99) and 
AD (n=136) donors. Differences in oleamide levels between pairs of groups were estimated using a Wilcoxon 
test. (E) Main proteins levels distribution is represented for sMCI (n=291) and cMCI (n=100) participants. 
Differences in the protein levels between sMCI and cMCI were estimated using a Wilcoxon test. (F) Correlation 
network including the variables selected as relevant by at least three of the four algorithms proposed in all the 
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approaches: multiclass models for proteins, multiclass models for metabolites and MCI conversion models. 
Pearson correlations were estimated using the sMCI (n=103) and cMCI (n=91) donors with paired data 
(proteomics and metabolomics). Only significant correlations were shown (P<0.05). The minimum and 
maximum strength of the correlation is shown in the figure. Positive correlations were represented with green 
color, negative correlations with red. The color saturation and the width of the edges corresponds to the absolute 
weight and scale relative to the strongest weight in the graph. Features were grouped into target, clinical, 
proteins or metabolites. ns, non-significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 

 

 
 
 
 

 
Figure 2. Oleamide in microglia and vesicles. (A) Oleamide concentration in pure murine primary microglia 
per state and EVs. Concentration is normalized by protein amount in cells and EVs (n=2 independent 
experiments). (B) Oleamide in rodent microglia EVs. Oleamide concentration is normalized per protein amount 
in EVs isolated from mice (n=3 independent experiments) and rats (n=2 independent experiments). (C) 
Oleamide possible mechanisms. Oleamide is released in EVs from activated microglia, these EVs might 
modulate or inhibit neuronal transmission via CB1 receptors. (D) Concentration of oleamide in EVs isolated 
from plasma of AD and healthy subjects. 
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Table 1. Multiclass models performance for proteins and metabolites separately for each algorithm. 
Standard errors indicated in brackets represent cross-validation error. 

 
Omics data Algorithm Training 

accuracy 
Test 
accuracy 

Clinical data and proteins LR 0.860 (0.034) 0.735 (0.046) 

SVM 0.875 (0.025) 0.882 (0.016) 

RF 0.854 (0.049) 0.729 (0.072) 

MLP 0.857 (0.049) 0.701 (0.048) 

Clinical data and metabolomics LR 0.826 (0.074) 0.717 (0.083) 

SVM 0.843 (0.062) 0.854 (0.014) 

RF 0.872 (0.052) 0.763 (0.075) 

MLP 0.844 (0.063) 0.701 (0.070) 
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Supplementary material 

 
Supplementary methods. Analysis of oleamide by UHPLC-MS/MS 

Samples were analyzed in dynamic multiple reaction mode (dMRM) on an Agilent 1290 
Infinity UHPLC system connected to an Agilent 6460 triple quadrupole (QqQ) mass 
spectrometer (MS) from Agilent Technologies Inc. (Santa Clara, CA, USA). Waters HSS T3 
2.1 × 100 mm, 1.8 μm column protected by a C18 HSS T3 VanGuard Pre-column (100Å, 1.8 
µm, 2.1 mm × 5 mm) both from (Waters, Taastrup, DK.). The column temperature was 
maintained at 45°C throughout the run with a flow rate of 0.4 mL/min. The injection volume 
was 5 μL, and a binary solvent mixture was used. Solvent A contained water and solvent B 
acetonitrile/isopropanol (67/33) (v/v). 0.1% formic acid (v/v) was added to both solvents. The 
following gradient was used for positive mode analysis: 0-1 min, 60% A, 1-2 min, ramping to 
20% A, 2-8 min, 0% A, 8-9 min, 0% A, 9-9.2 min, ramping back to 60% A, 9.2-12 min, 60% 
A. Instrument-dependent parameters for mass spectrometry were as follows: The nitrogen 
drying gas flow and the temperature was 12 L/min and 325 °C, respectively. The capillary 
voltage was 3500. The nebulizer pressure was controlled at 45 psi. The nitrogen sheath gas 
flow and temperature were kept at 11.0 L/min and 325 °C, respectively. Supplementary Table 
6 summarizes dMRM transitions, retention times, fragmentator voltages, and collision 
energies used for oleamide. 
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Supplementary figure 1. Multiclass models ROC curves. Models performance to classify NC, MCI and AD 
donors using four different machine learning algorithms using (A) proteins and clinical features, (B) metabolites 
and clinical features. 
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Supplementary figure 2. Identification and quantification of oleamide. (A) The chromatogram obtained 
through LC-MS/MS with multiple reaction monitoring (MRM) mode confirmed the presence of oleamide in 
both the extracellular vesicles (EVs) isolated from the plasma of the AD sample (red) and the plasma of the 
control samples (green). The identification of oleamide was confirmed by comparing the retention time and the 
qualifier/quantifier ion ratio (with a tolerance of 20%) of the oleamide in the sample with those obtained from 
the authentic analytical standard (black). (B) The calibration curve was employed for the quantitative 
determination of oleamide in the samples. 

 
 
Supplementary Table 1. Top 20 features selected per algorithm for multiclass models (proteins and 
metabolites separately) and MCI conversion models (both proteins and metabolites). See excel file. 
 
 
Supplementary Table 2. Performance of the MCI conversion models for proteins and metabolites for 
each algorithm. Standard errors indicated in brackets represent cross-validation error. 

 
Omics data Algorithm ROC 

Training data 
Sensitivity 
Training data 

Specificity 
Training data 

Clinical data, 
proteins 
and metabolites 

LR 0.640 (0.048) 0.614 (0.091) 0.582 (0.089) 

SVM 0.630 (0.043) 0.620 (0.090) 0.575 (0.101) 

RF 0.662 (0.067) 0.621 (0.112) 0.588 (0.092) 

MLP 0.641 (0.058) 0.633 (0.103) 0.549 (0.091) 
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Supplementary table 3. Genetics, transcriptomes and proteomes studies where the candidate proteins 
were also associated with an AD-related phenotype. We checked whether changes in levels of selected 
proteins are relevant in AD brain at genetics, transcriptomics and proteomic level 
(https://agora.adknowledgeportal.org/). Brain eQTL indicates whether or not this gene locus has a significant 
expression Quantitative Trait Locus (eQTL) based on an AMP-AD consortium study. RNA/protein 
expression change in AD brain indicates whether or not this gene shows significant differential (protein) 
expression in at least one brain region based on AMP-AD consortium work. In addition, we also checked if 
blood level of candidate proteins were already associated with AD-related phenotype (Kiddle, S. J. et al 2014). 

UniProt 
ID 

Protein name Gene 
symbol 

Brain 
eQTL 

RNA expression 
change in AD brain 

Protein 
expression change 
in AD brain 

Blood level of 
protein 
change in AD 

P43155 Carnitine O-
acetyltransferase 

CRAT     

P37840 Alpha-synuclein 
 

SNCA     

Q8WXH2 Junctophilin-3 
 

JPH3     

P27918 Properdin CFP   No data  

O43692 Peptidase inhibitor 15 PI15   No data  

P01298 Pancreatic hormone PPY  No data No data  

P04054 Phospholipase A2 PLA2G1B  No data No data  

Q9NS68 Tumor necrosis factor 
receptor superfamily 
member 19 

TNFRSF19   No data  

 
 
 
Supplementary table 4. MCI conversion models performance for each algorithm. Standard errors indicated 
in brackets represent nested cross-validation error. 
 

Omics data Algorithm Training 
accuracy 

Test 
accuracy 

Most relevant clinical features, 
proteins and metabolites 

LR 0.746 (0.056) 0.748 (0.020) 

SVM 0.736 (0.069) 0.758 (0.027) 

RF 0.734 (0.080) 0.722 (0.043) 

MLP 0.767 (0.072) 0.706 (0.046) 
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Supplementary Table 5. Demographics of participants included in the MCI conversion approach by 
diagnosis. One-way analysis of variance (ANOVA) and chi-square tests were used to compare continuous and 
binary variables, respectively. Aβ status was defined by the CSF Aβ42/40 of the central analyses, using a cutoff 
value of < 0.061 to determine abnormality. Standard errors are indicated in the brackets. 

 
Characteristics sMCI cMCI P 

value 

n 103 91 NA 

Age mean (SD) y 69.17 (8.61) 70.76 (7.49) 0.176 

Male sex N (%) 52 (50.5) 50 (54.9) 0.634 

Education mean (SD) y 11.35 (3.24) 11.25 (3.45) 0.832 

MMSE mean (SD) 26.15 (2.69) 24.98 (2.82) 0.003 

Phosphorylated TAU mean (SD) 66.12 (33.58) 83.91 (37.00) 0.001 

Amyloid positive status (%)   71 (68.9)       81 (89.0)        0.001  

Priority Attention Z-score mean (SD) -0.64 (1.40) -0.96 (1.52) 0.121 

Priority Language Z-score mean (SD) -0.76 (1.27) -1.30 (1.37) 0.004 

Priority Memory Immediate Z-score mean (SD) -1.26 (1.32) -1.78 (1.18) 0.004 

APOE E4+ N (%) 55 (53.4) 58 (63.7) 0.190 

 
 
Supplementary Table 6. MS/MS parameters for the analysis of primary fatty acid amides by dMRM in 
positive mode. Q1, quadrupole 1 m/z ratio; Q3, quadrupole 3 m/z ratio; Rt, retention time (min); CE, collision 
energy. 

 
Analyte Q1 (m/z) Q3 (m/z) Rt (min) Frag (v) CE (v) 

Oleamide 282.2 69.2 4.6 92 21 

  55.2  92 45 
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