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Abstract 11 

The myoelectric manifestation of fatigue (MMF) is predominantly assessed using median 12 

frequency and amplitude of electromyographic (EMG) signals. However, EMG has complex 13 

features so that fractals, correlation, entropy, and chaos MMF indicators were introduced to 14 

detect alteration of EMG features caused by muscle fatigue that may not be detected by linear 15 

indicators. The aim of this study was to determine the best MMF indicators. Twenty-four 16 

participants were equipped with EMG sensors on 9 shoulder muscles and performed a 17 

repetitive pointing task. They reported their rate of perceived exertion every 30 seconds and 18 

were stopped when they reached 8 or higher on the CR10 Borg scale. Partial least square 19 

regression was used to predict perceived exertion through 15 MMF indicators. In addition, the 20 

proportion of participants with a significant change between task initiation and termination 21 

was determined for each MMF indicator and muscle. The PLSR model explained 73% of  the 22 

perceived exertion variance. Median frequency, mobility, spectral entropy, fuzzy entropy, and 23 

Higuchi fractal dimension had the greatest importance to predict perceived exertion and 24 

changed for 83.5% participants on average between task initiation and termination for the 25 

anterior and medial deltoids. The amplitude, activity, approximate, sample, and multiscale 26 

entropy, degree of multifractality, percent determinism and recurrent, correlation dimension, 27 

and largest Lyapunov exponent analysis MMF indicators were not efficient to  assess MMF. 28 

Mobility, spectral entropy, fuzzy entropy, and Higuchi fractal dimension should be further 29 

considered to assess muscle fatigue and their combination with median frequency may further 30 

improve the assessment of muscle fatigue. 31 
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1 Introduction 1 

Muscle fatigue is defined as a transient decrease in the capacity to perform physical actions  2 

[1]. Since muscle fatigue is not a physical variable by itself, its assessment requires the 3 

identification of indicators based on measurable physical variables such as force, kinematics, 4 

or electromyography (EMG) [2–4]. Myoelectric manifestations of fatigue (MMF) [5,6], 5 

measured from EMG signals, have numerous advantages such as non-invasiveness, 6 

applicability in situ [7], real-time monitoring [8], and ability to monitor fatigue of a particular 7 

muscle [9]. Considering that wearable sensors are now common in the workplace [10–12], 8 

high standard of data processing is required to extract accurate MMF information from EMG 9 

signal and better prevent work-related musculoskeletal disorders due to muscle fatigue 10 

[11,13]. 11 

A consensual approach to assess MMF is the Joint Analysis of Spectrum and Amplitude 12 

(JASA) method [14]. As the name would suggest, JASA is a computational technique that 13 

accounts for both the spectrum and amplitude of EMG signal. According to this method, 14 

muscle fatigue is characterized by a power spectrum shift toward lower frequency and 15 

amplitude increase of EMG signals. The shift of power spectrum toward lower frequency, 16 

measured via the median frequency [15,16], is attributable to the increase in motor unit 17 

synchronization [17,18] and the decrease of muscle fibers conduction velocity [6,17] possibly 18 

triggered by altered distribution of H+ and K+ ions across the sarcolemma [19] and muscle 19 

membrane excitability that increase the duration of intracellular action potentials [20]. 20 

Regarding amplitude increase, measured by the EMG activation level, it is attributable to  the 21 

reduction of motor units firing rate and their increased synchronization [20,21]. However, 22 

changes in EMG activation level may not systematically reflect muscle fatigue, but rather 23 

strategies of motor unit rotation triggered by sensations related to general fatigue  [22,23]. 24 

Indeed, some studies have reported a decrease of EMG activation level with fatigue during 25 

low load fatiguing manual handling tasks [24] or no change during repetitive static arm 26 

abductions [25] and repetitive work in butchers [26]. Consequently, the JASA method may 27 

provide false negative results considering that the EMG activation level does not 28 

systematically increase in the presence of muscle fatigue. 29 

Linear indicators, such as median frequency and activation level, are based on the assumption 30 

that EMG signal is a Gaussian random process [27,28], which may have limitations to assess 31 

MMF. Indeed, EMG signals, as well as other neurophysiological signals such as 32 

electroencephalogram and electrocardiogram [29,30], have complex properties [31–34]. The 33 
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complexity of the EMG signal is attributed to the mechanisms underlying its generation  that 1 

contain some non-linear or chaotic features [35,36]. As a result, in recent years, several 2 

complexity-based EMG indicators have been introduced [37–41] in order to detect alteration 3 

of EMG features caused by muscle fatigue that may not be detected by linear indicators. In  a 4 

recent literature review, Rampichini et al., [28] classified four groups of complexity-based 5 

MMF indicators, namely, fractal and self-similarity, correlation, entropy, and deterministic 6 

chaos. The fractal and self-similarity group includes fractal dimension [42] and degree of 7 

multifractality. During sustained isometric contractions, fractal dimension was found to 8 

decrease with fatigue [18,43–45] while the degree of multifractality increased during 9 

fatiguing static and dynamic contractions and was a more sensitive MMF than median 10 

frequency [40,46–48]. Moreover Marri and Swaminathan., [49] demonstrated that the 11 

performance of multifractal indicators were more suitable for sEMG signals as compared to  12 

monofractal fractal dimension indicators such as Higuchi fractal dimension, in their study of 13 

the classification of muscular non-fatigue and fatigue conditions using EMG and fractal 14 

algorithms. The correlation group includes correlation dimension and recurrence 15 

quantification analysis. The latter was shown to increase with muscle fatigue during biceps 16 

brachii contractions [33,50,51]. Coelho et al., [34] and Ito et al.,[52] even showed that 17 

recurrence quantification analysis was better at detecting muscle fatigue than frequency-based 18 

indicators. Although there is no evidence to date that correlation dimension is a relevant 19 

indicator of MMF, Wang et al., [28] suggested that it may be a good candidate to assess 20 

muscle fatigue. The entropy group includes sample entropy, fuzzy entropy, spectral entropy, 21 

approximate entropy, and multiscale entropy that all have showed to decrease during fatiguing 22 

isometric [53–55] and dynamic contractions [48,56]. Particularly, fuzzy and multiscale 23 

entropy were found to have a superior robustness and performance to assess MMF than 24 

frequency-based [54] and approximate and sample entropy indicator [57,58]. Finally, the 25 

chaotic properties of a non-linear system can be assessed through the largest Lyapunov 26 

exponent [59] that was shown to decrease during a fatiguing task involving the low back 27 

muscles [60]. However, as stated by Rampichini et al., [28], future standardized fatiguing 28 

protocols are needed to confirm whether the largest Lyapunov exponent could be an 29 

appropriate indicator to assess MMF. Taken together, the literature on the identification of 30 

muscle fatigue based on EMG signal has shown that complexity-based indicators seemed 31 

efficient to detect MMF. Consequently, it is now essential to determine what are the best 32 

MMF indicators to assess muscle fatigue during multi-joint movement such as repetitive 33 

fatiguing tasks.  34 
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To this end, an interesting approach is to predict the rate of perceived exertion (RPE), which 1 

is known to increase with muscle fatigue [61], from MMF indicators. Interestingly, several 2 

studies have also shown a close relationship between the RPE [62] and MMF indicators 3 

[24,63–68]. For instance, Goubault et al., [24] used correlation analyses between six MMF 4 

indicators and RPE scores assessed using the CR-10 Borg scale [69] during a laboratory 5 

simulated manual handling task. They showed that spectral entropy, median f requency, and 6 

mobility were the MMF indicators that explained the largest percentage of the RPE variance, 7 

with R-square ranging from 11% to 39%. In comparison, activity explained between 17% and 8 

21% of the RPE variance, and activation level showed no significant relationship with the 9 

RPE [56,70,71]. In a recent study, Ni et al., [68] showed that time, frequency, and time-10 

frequency domains MMF indicators are strongly correlated to RPE. Consequently, predicting 11 

RPE through MMF indicators is a relevant experimental paradigm to determine the best 12 

EMG-based indicators to assess muscle fatigue. 13 

Consequently, the aim of the present study was to determine the best MMF indicators, f rom 14 

15 MMF indicators identified in the literature as potentially relevant to assess muscle fatigue  15 

during a repetitive pointing task (RPT) performed with the upper limb. We hypothesized that 16 

for the anterior and medial deltoids, which are the muscles showing the largest signs of 17 

fatigue during the upper limb repetitive task used in the present studies [72–74], the mobility , 18 

median frequency, spectral entropy, fuzzy entropy, multiscale entropy [24,28,41,75,76], and 19 

degree of multifractality [40,47,49,53] will have greater importance to predict the evolution of 20 

the RPE. In addition, these MMF indicators will significantly change for a large proportion of  21 

the participants in the anterior and medial deltoid in comparison to approximate and sample 22 

entropy, recurrence quantification analysis, correlation dimension, and the largest Lyapunov 23 

exponent [28,40,46,55]. 24 

2 Materials and methods 25 

2.1 Participants 26 

Twenty-four right-handed participants (12 ♀; age: 32.9 ± 8.9 years old; mass: 66.8 ± 10.9 kg; 27 

height: 166 ± 9 cm) were recruited among workers exposed to repetitive tasks in a tea 28 

packaging factory. To be eligible, participants had to be free of upper-limb disabilities or 29 

musculoskeletal disorders at the time of the experiment. All participants read and signed a 30 

written informed consent form before any experimental procedure. The experimental protocol 31 

was approved by the Université de Montréal’s Ethics Committee (#CERC-19-086-D). 32 
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2.2 Instrumentation 1 

EMG recordings. Participants were equipped with 10 wireless surface EMG electrodes 2 

(Trigno EMG Wireless System, Delsys, USA) positioned on specific anatomical landmarks of 3 

the right side of the upper limb [77,78]; namely, the anterior, medial, and posterior deltoids, 4 

the upper, middle, and lower trapezius, long head of the biceps brachii, lateral head of the 5 

triceps brachii and the serratus (Figure 1-A). Before electrode positioning, hair was shaved 6 

with a razor and skin was cleaned with alcohol swabs at the electrode sites. EMG signals were 7 

recorded at a sampling frequency of 2000 Hz.  8 

Repetitive pointing task (RPT). Two cylindrical touch-sensitive sensors (length: 6 cm, radius: 9 

0.5 cm, Quantum Research Group Ltd, Hamble, UK) were used as proximal and distal targets 10 

for the RPT (Figure 1-B and C). The sensors were placed at shoulder height in front of the 11 

participant’s midline and at 30% (proximal target) and 100% (distal target) of the chest-arm 12 

distance. When participants touched the sensors, they delivered auditory feedback that helped 13 

participants to synchronize with the metronome as well as a transistor-transistor logic pulse 14 

recorded at 2000 Hz using Nexus software (Vicon, Oxford, UK). 15 

Force. A unidirectional S-shape load cell (363-D3-300-20P3, InterTechnology Inc., Don 16 

Mills, Ontario, Canada) was used to measure the maximal voluntary isometric upward f orce 17 

of the right shoulder. The load cell was attached to a fixed horizontal bar located abo ve the 18 

RPT setup (Figure 1-B). 19 

2.3 Experimental protocol 20 

Participants performed a maximal voluntary isometric contraction (MVIC) bef ore and after 21 

the RPT described earlier. The MVIC consisted of performing a 3-sec upward maximum 22 

contraction against a fixed bar with the arm flexed at 90°. Verbal encouragement was given to 23 

participants.  24 

The RPT consisted of alternatively pointing the proximal and distal targets with the index 25 

finger with the arm constrained to move in a horizontal plane, at a rhythm of one flexion-26 

extension cycle per two seconds [79] with the aid of an external metronome. To this end, 27 

participants stood upright with the right arm in horizontal plane and the feet parallel at 28 

shoulder width. To ensure that participants maintained their arm horizontal, a mesh barrier 29 

was placed under the elbow trajectory. Participants’ left arm rested on the side of the body. 30 

This task has been shown to fatigue the anterior and medial deltoid [72–74]. Every 31 

30 seconds, participants reported their RPE using the CR-10 Borg scale (RPE) [62] without 32 
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interrupting the RPT movement. Additionally, every 2 minutes, the RPT was interrupted so 1 

that participants could perform a MVIC as described above. Immediately after the MVIC, 2 

participants resumed the RPT without resting. Participants were asked to “perform the task for 3 

as long as possible”. They were stopped as soon as they reached a score of 8 or higher on the 4 

RPE scale but were not aware of this stoppage criteria. 5 

This figure includes material that was not allowed for preprint. Please, contact the 6 

corresponding author to request access to this figure. 7 

Figure 1. (A) Participant equipped with EMG’s sensors (black rectangle boxes). (B) Picture of 8 

the MVIC setup. (C) Schematic top view of the RPT. Note that data collected from reflective  9 

markers are not used in the present study and results obtained from inertial measurements 10 

units sensors (orange rectangle boxes) were presented in a previous study [80]. 11 

2.4 Data preprocessing 12 

Data processing was performed using Matlab R2019a (The MathWorks Inc., Natick, MA, 13 

USA). EMG data were filtered using a 2nd order Butterworth zero-lag 10-400 Hz bandpass 14 

filter. Data were then zero-aligned by subtracting the mean signal value and resampled to 15 

1000 Hz to reduce computation time. For the calculation on each indicator, each participant's 16 

data was segmented into flexion-extension cycles. Each indicator described below was 17 

calculated for the 5 cycles preceding each RPE for the PLSR analysis, and for the first 10 18 

(RPT initiation) and last 10 (RPT termination) for the analysis of the proportion of change of  19 

MMF indicators among participants. 20 

2.4.1 Data processing: linear MMF indicators 21 

Median frequency was calculated using the following formula: 22 

 ∫ 𝑇𝐹𝑅(𝑡)
𝑀𝐷𝐹

0 =  ∫ 𝑇𝐹𝑅(𝑡)
∞

𝑀𝐷𝐹 =  
1

2
∫ 𝑇𝐹𝑅(𝑡)

∞

1  Eq. 1 23 

TFR is the power spectral density calculated in the time-frequency resolution; the time-24 

frequency analysis was performed by applying a continuous Morlet wavelet transform (wave 25 

number: 7, frequency range: 1 to 400 Hz in 1 Hz steps) to the pre-processed EMG signals [81] 26 

(WavCrossSpec Matlab package), t is a time instant. 27 

Spectral entropy was computed as follow [24]: 28 

 𝑆𝑝𝑒𝑐𝐸𝑛(𝑡) =  −
1

𝑙𝑜𝑔(𝐿)
. ∑ 𝑇𝐹𝑅(𝑡). 𝑙𝑜𝑔 [𝑇𝐹𝑅(𝑡)]𝑛

𝑡=1  Eq. 2 29 
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where, L is the number of spectral components in the EMG spectrum, TFR is a power spectral 1 

density calculated in time-frequency, t is a time instant, n is the number of seconds in the trial. 2 

Activation levels were obtained from 9 Hz low-pass filtering of the full-wave rectified EMG 3 

signals normalized by the maximum voluntary muscle activation [24] obtained using the 4 

average of the maximum 2-sec non-consecutive window across all MVIC tests.  5 

 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 =
1

𝑁
∑ 𝑦0

𝑥2
𝑥1

 Eq. 3 6 

where 𝑥1 and 𝑥2 represent the muscle activation segment, 𝑁 represents the number of 7 

elements between 𝑥1 and 𝑥2, and 𝑦0 represents the normalized EMG envelop of the signal. 8 

Activity is the measure of the variance (𝜎0) of the signal [56,70,71].  9 

Mobility is defined as the root square of the ratio between the variance of the first derivative 10 

of the signal and the variance of the signal [24,56,70,71]. The first-time derivative of the 11 

EMG signal was calculated on the entire signal using the following equation: 12 

 𝐸𝑀𝐺′(𝑡) =  
𝐸𝑀𝐺(𝑡+1)−𝐸𝑀𝐺(𝑡)

𝑑𝑡
  Eq. 4 13 

The variance of the first-time derivative of the EMG signal and the variance of the EMG 14 

signal were then calculated on each muscle activation segment, before calculating the root 15 

square of the ratio between both. 16 

 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝜎1𝑥1

𝑥2

𝜎0𝑥1
𝑥2

  Eq. 5 17 

where 𝜎1 𝑥1
𝑥2 represents the variance of the first derivative of the EMG signal for muscle 18 

activation segment between 𝑥1 and 𝑥2, and 𝜎0𝑥1
𝑥2 is the variance of the EMG signal for muscle 19 

activation segment between 𝑥1 and 𝑥2. 20 

2.4.2 Data processing: Non-linear MMF indicators 21 

2.4.2.1 Fractals Self-Similarity 22 

Higuchi fractal dimension (HFD) was computed using the algorithm proposed by Higuchi 23 

(1988). Briefly, EMG is analyzed in time, as a sequence of samples x(1), x(2),..., x(N),  and k  24 

new self-similar time series 𝑋𝑘
𝑚 constructed as [42,82]:  25 

 𝑋𝑘
𝑚: 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘) … 𝑥(𝑚 + 𝑖𝑛𝑡 [

𝑁−𝑚

𝑘
] 𝑘) Eq. 6 26 
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for the initial time m = 1, 2, ..., k; the time interval k = 2, ...., 𝑘𝑚𝑎𝑥 [82]; and Int[r] the integer 1 

part of a real number r. Then, the length of every 𝐿𝑚(𝑘) is calculated for each time series or 2 

curves 𝑋𝑘
𝑚 as: 3 

 𝐿𝑚(𝑘) =
1

𝑘
[(∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|)]

𝑁−1

𝑖𝑛𝑡[𝑁−𝑚

𝑘
]𝑘

𝑖𝑛𝑡[𝑁−𝑚

𝑘
]

𝑖=1   Eq. 7 4 

and is averaged for all m, therefore forming an average value of a curve length L(k) f or each 5 

k=2, …, 𝑘𝑚𝑎𝑥 such as: 6 

 𝐿(𝑘) =
∑ 𝐿𝑚(𝑘)𝑘

𝑚=1

𝑘
  Eq. 8 7 

Finally, HFD is evaluated as the slope of the best-fit form of ln(L(k)) vs. ln(1/k): 8 

 𝐻𝐹𝐷 =
𝑙𝑛(𝐿(𝑘))

𝑙𝑛 (
1

𝑘
)

  Eq. 9 9 

HFD was calculated using the Higuchi FD Matlab function [83] using 𝑘𝑚𝑎𝑥 = 8. 10 

Degree of multifractality (DOM) was calculated from the multifractal detrended fluctuation  11 

analysis (MFDFA) [40,47]. For an EMG signal {x(t), t = 1, 2, . . ., N}, MFDF analysis first 12 

involves a random walk construction in this form [84]: 13 

 𝑌(𝑡) = ∑ 𝑥(𝑖)𝑡
𝑖=1  Eq. 10 14 

where {Y(t), t = 1, 2, ..., N}. Next, a moving average function is computed in a moving 15 

window 16 

represented as: 17 

 𝑦̃(𝑡) =
1

𝑛
∑ 𝑦(𝑡 − 𝑘)

[(𝑛−1)(1−𝜃)]
𝑘=−[(𝑛−1)𝜃]  Eq. 11 18 

where n is window size, [(𝑛 − 1)(1 − 𝜃) ] is largest integer not greater than x, [(𝑛 − 1)𝜃] is 19 

smallest integer not smaller than x, and 𝜃 is a position parameter with value varying in 20 

between 0 and 1. After three more steps consisting on detrending the signal series to  get the 21 

residual, then dividing the residual series into 𝑀 disjoint segment with same size n, where 22 

𝑀 =
𝑁

𝑛
− 1, and finally determining the 𝑞𝑡ℎ order overall fluctuation function, the power law 23 

can be determined by varying the segment size 𝑛 for fluctuation function as:  24 

 𝐹𝑞 (𝑛) = 𝑛ℎ(𝑞) Eq. 12 25 

The multifractal scaling exponent is given as: 26 

 𝜏(𝑞) = 𝑞ℎ(𝑞) − 𝐷 Eq. 13 27 
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where 𝐷 is the fractal dimension of geometric support of multifractal measure [85]. The 1 

singularity strength function and multifractal spectrum are obtained using Legendre transform 2 

[86] and represented as respectively followed: 3 

 𝛼(𝑞) =
𝑑𝜏(𝑞)

𝑑𝑞
 Eq. 14 4 

 𝑓(𝑞) = 𝑞𝛼 − 𝜏(𝑞) Eq. 15 5 

Finally, the degree of multifractality is measured as the distance between maximum exponent 6 

and minimum exponent in multifractal spectrum:  7 

 𝐷𝑂𝑀 = 𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛 Eq. 16 8 

For MFDF computation, the MFDFA1 MATLAB function was used with a scale q varying 9 

between -10 and 10 with increments of 0.1, and m varying between 22 and 212 with 10 

increments of 20.1 as input parameters [40,47]. 11 

2.4.2.2 Entropy 12 

Approximate entropy was computed as follow: 13 

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
1

𝑁−𝑚
∑ 𝑙𝑛 (

𝐶𝑖
𝑚(𝑟)

𝐶𝑖
𝑚+1(𝑟)

)𝑁−𝑚
𝑖=1  Eq. 17 14 

where the embedding dimension m = 2, the distance threshold r = 0.25 [58], N the number of  15 

sample in the time series, and 𝐶𝑖
𝑚(𝑟) the number of vector u(i) within the distance r from the 16 

template vector u(i) computed as: 17 

 𝐶𝑖
𝑚(𝑟) = (𝑁 − 𝑚 + 1) −1 ∑ 𝐻𝑁−𝑚+1

𝑖=1 (𝑟 − |𝑑(𝑢(𝑖), 𝑢(𝑗))|) Eq. 18 18 

with H () being the Heaviside step function where H is 1 if (𝑟 − |𝑑(𝑢(𝑖), 𝑢(𝑗)) ≥ 0 and 0 19 

otherwise. For the computation, the ApEn Matlab function [87] was used with the mentioned 20 

above parameters as input. 21 

Sample entropy can be defined mathematically by: 22 

 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  −𝑙𝑛 (
𝐵𝑚+1

𝑚 (𝑟)

𝐵𝑚(𝑟)
) Eq. 19 23 

with 𝐵𝑚(𝑟) defined as: 24 

 𝐵𝑚(𝑟) =  
1

𝑁−𝑚
∑ 𝐶𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1  Eq. 20 25 

where 𝐵𝑚(𝑟) is the number of matches of length m and 𝐵𝑚+1
𝑚 (𝑟) as the subset of 𝐵𝑚(𝑟) that 26 

also matches for length m+1. Here the embedding dimension m is equal to 2 and the tolerance 27 
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r = 0.25 [55,56] and N the number of sample in the time series. For the computation, the 1 

SampEn Matlab function [88] was used with the mentioned above parameters as input. 2 

Fuzzy Entropy was computed as follow [28,54,55]: 3 

 𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑚, 𝑛, 𝑟, 𝑁) = − 𝑙𝑛 (
𝐶𝑚+1(𝑟)

𝐶𝑚(𝑟)
) Eq. 21 4 

where N is the number of samples in the time series, 𝐶𝑚(𝑟) is the average of 𝐶𝑖
𝑚(𝑟) 5 

calculated as: 6 

 𝐶𝑖
𝑚(𝑟) = (𝑁 − 𝑚 + 1) −1 ∑ 𝛺𝑁−𝑚+1

𝑗=1,𝑗≠𝑖 (𝑑𝑖,𝑗
𝑚, 𝑟) Eq. 22 7 

with 8 

 𝛺(𝑑𝑖,𝑗
𝑚 , 𝑛, 𝑟) = 𝑒𝑥𝑝 (−(𝑑𝑖𝑗

𝑚)𝑛/𝑟) Eq. 23 9 

using an embedding dimension m = 2, a power factor n = 2 and a tolerance r = 0.25 10 

[54,55,58]. For the computation, the FuzzyEn Matlab function [89] was used with the 11 

mentioned above parameters as input. 12 

Multiscale Sample Entropy was calculated using the rapid refined composite multiscale 13 

sample entropy algorithm (R2CMSE) [53]. 14 

 𝑅2𝐶𝑀𝑆𝐸(𝑥, 𝑚, 𝑟, 𝜏) = − 𝑙𝑛 (
𝑛̅𝑚+1

(𝜏)

𝑛̅𝑚
(𝜏) ) Eq. 24 15 

with n̅k,i,m

(τ)
 the number of vector-matching pairs defined as: 16 

 𝑛̅𝑘,𝑖,𝑚

(𝜏)
=

1

𝑁−𝑚
𝑛̅𝑘,𝑖,𝑚

(𝜏)
 Eq. 25 17 

where N is the number of sample in the time series, the embedding dimension m = 2, a 18 

tolerance r = 0.25, and a time scale factor 𝜏 = 20 [53,90]. For the computation, the R2CMSE 19 

Matlab function [53] was used with the mentioned above parameters as input. 20 

 21 

2.4.2.3 Correlation 22 

Recurrence Quantification Analysis (RQA) was performed using the percent of determinism 23 

method (%DET) which quantifies the amount of rule-obeying structures present within  any 24 

physiological signal, and the percent of recurrence (%REC) which quantifies signal 25 

correlations in higher dimensional space [28,91].  26 

 𝑅𝑄𝐴(%𝐷𝐸𝑇) =
∑ 𝑙.𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑅𝑖,𝑗
𝑁
𝑖,𝑗

 Eq. 26 27 
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 %𝑅𝐸𝐶(𝜀) =
1

𝑁2
∑ 𝑅𝑖,𝑗(𝜀)𝑁

𝑖,𝑗=1  Eq. 27 1 

where P(l) is the frequency distribution of diagonal lines, with length l an integer number, and 2 

𝑅𝑖,𝑗 the Euclidian distance matrix created from the phase space and transformed into a 3 

recurrence plot, using a time delay τ = 4ms [33,51], an embedding dimension d = 15 [51], and 4 

a threshold value r = 2 [92]. For the RQA computation, the RPplot Matlab function [92] was 5 

first used with the mentioned above parameters as input, before using the recu_RQA Matlab  6 

function with I = 1. 7 

Correlation dimension is a measure of the amount of correlation contained in a signal 8 

connected to the fractal dimension. Its estimation requires the calculation of the correlation 9 

integral C(r), which is the mean probability that the states of the dynamical systems at two 10 

different times are close, i.e., within a sphere of radius r in the space of the phases [28]. Given 11 

a time series 𝑔(𝑘) , the phase space is reconstructed by the vectors: 12 

 𝐺(𝑘) = [ℎ(𝑘), 𝑔(𝑘 + 𝜏), … , 𝑔(𝑘 + 𝑚 − 1)𝜏)]𝑇  Eq. 28 13 

with 𝑚 the embedding dimension and 𝜏 a delay. The correlation integral is then estimated by 14 

the sum: 15 

 𝐶(𝑟) =
1

𝑁2
∑ 𝐻(𝑟 − |𝐺(𝑖) − 𝐺(𝑗)|)𝑁

𝑖,𝑗=1
𝑖≠𝑗

 Eq. 29 16 

where N is the number of states, and H() the Heaviside function. If 𝑔(𝑘)  is the output of a 17 

complex system, when N increases and r decreases, 𝐶(𝑟) tends to increase as a power of  r ,  18 

𝐶(𝑟)~𝑟𝐶𝐷. The correlation dimension of the system can then be estimated as the slope of the  19 

straight line of best fit in the linear scaling range region in a plot of ln(r) versus ln r [28]. For 20 

the correlation dimension computation, the correlationDimension Matlab function was used. 21 

2.4.2.4 Chaos 22 

Largest Lyapunov exponent can be calculated using the Rosenstein’s method as follow 23 

(Rosenstein, Collins, et De Luca 1993; Chakraborty et Parbat 2017; Rampichini et al. 2020): 24 

 𝑑(𝑡) = 𝐶𝑒 𝜆1𝛥𝑡  Eq. 30 25 

 𝑑𝑗(𝑖)  ≈ 𝐶𝑗𝑒𝜆1(𝑖𝛥𝑡) Eq. 31 26 

where d(t) is the average divergence at time t, and C is a constant that normalizes the initial 27 

separation. By taking logarithm of both sides of the equation above, we obtain: 28 

 𝑙𝑛 𝑑𝑗(𝑖) ≈ 𝑙𝑛 𝐶𝑗 + 𝜆1(𝑖𝛥𝑡) Eq. 32 29 
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It represents a set of approximately parallel lines (for j=1, 2, …, M), each with a slope roughly 1 

proportional to 𝜆1. The largest Lyapunov exponent is easily and accurately calculated using a 2 

least-squares fit to the “average” line defined by: 3 

 𝑦(𝑖) =
1

∆𝑡
< 𝑙𝑛 𝑑𝑗(𝑖) > Eq. 33 4 

Where < > denotes the average over all values of j. For the largest Lyapunov exponent 5 

computation, the lyaprosen Matlab function [93] was used with dt = 0.1 as input parameter. 6 

2.4.3 Statistical analyses 7 

Firstly, a paired t-test was conducted on the maximum voluntary isometric force to assess the 8 

effect of RPT on maximum force.  9 

Then, partial least square regression (PLSR) analyses were performed using z-score values of 10 

MMF indicators as predictors and z-score values of RPE as response variable. PLSR is 11 

particularly suited when the number of predictors is larger than the observations, and when 12 

there is multicollinearity among predictors [94,95], which is the case for predicting RPE 13 

scores from the combination of 135 input variable (9 muscles * 15 MMF indicators) in  this 14 

study. To avoid overfitting of the data, the number of latent variables was determined when 15 

the absolute error of RPE prediction was minimal [94]. In order to calculate the performance 16 

of our approach, the whole data was divided into training and testing sets, and 5-folds cross-17 

validation was used subsequently to reduce the bias due to random sampling of  the training 18 

and test sets [97,98]. To do so, the whole data set was randomly split into 5 mutually 19 

exclusive subsets (folds) i.e., 4-folds included 17 participants used as the training set and 1-20 

fold included 4 participants used as the testing set after excluding three participants because 21 

of missing data. For each model, the absolute error of prediction was calculated on 22 

denormalized values. The cross-validation accuracy was calculated as the average of the 23 

5 individual accuracy measures [99,100]. The variable importance in projection (VIP) was 24 

calculated for each model to determine the most relevant MMF indicators to explain variation 25 

of RPE. This whole PLSR procedure was repeated 100 times in order to have one hundred 26 

partitions of cross-validation, reducing the bias due to random sampling of  the training and 27 

testing sets [101,102]. Then model performance (i.e., absolute error of prediction) was 28 

averaged over the 500 data (100 repetitions * 5-folds). Finally, an unpaired t-test was 29 

performed between the VIP values of the median frequency and the activation level  and the 30 

VIP values of each MMF indicator of each muscle and the to assess the efficiency of the other 31 

indicators compared to the JASA indicators.  32 
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The effect of the RPT for each MMF indicator and muscle was assessed on a participant-1 

specific basis using an unpaired t-tests between the 10 first cycles (RPT initiation) and the last 2 

10 cycles (RPT termination) followed by Cohen’s d effect size computation. We then 3 

determined the percentage of participants for which there was a significant change, namely, a 4 

significant decrease for the median frequency, mobility, Higuchi fractal dimension, 5 

correlation dimension, largest Lyapunov exponent, and spectral, approximate, sample, 6 

multiscale, and fuzzy entropy indicators [17,18,56,103–105], and a significant increase for the 7 

activation level, activity, degree of multifractality, percent of determinism, and percent of 8 

recurrence [5,33,56,84] . 9 

3 Results 10 

3.1 Maximum voluntary isometric force 11 

The paired t-test revealed a significant RPT effect (p<0.001) on maximum voluntary 12 

isometric force. The MVIC performed immediately after the RPT termination was 13 

significantly smaller than the MVIC performed before the RPT initiation (Figure 2). 14 
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 1 

Figure 2. Violin plot representation of maximum voluntary isometric force during pre- and 2 

post-RPT. On each violin representation, the white dot represents the median, the thick gray 3 

bar represents the interquartile range, and the pink area violin-shaped represents the data 4 

distribution. 5 

               

  

  

  

  

   

   

   

 
 
  
 
  
 
 

                                        

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.02.23286583doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286583


 

16 

 

3.2 Partial least square models 1 

3.2.1 Performance of the partial least square regression to predict RPE 2 

Over the 100 iterations, the PLSR model that generated the smallest mean absolute error of 3 

prediction of RPE values on the testing set included two latent variables (1.36 ± 0.29; 4 

Figure 3, right). This model explained 73.36 ± 2.94 % of the variance of the RPE on the 5 

training set (Figure 3, left). Although models including more latent variables explained  a 6 

greater percentage of RPE variance on the training set than the two-latent variable model, the 7 

absolute error of prediction on the testing set was greater than for the two-latent variable 8 

model indicating an overfitting [106]. Consequently, the VIP results in the next section were 9 

computed from the two-latent variable model.  10 

 11 

Figure 3. Violin plot representation of the percentage of RPE explained obtained on the 12 

training set (left) and absolute error of prediction obtained on the testing set (right) for the 13 

100 iterations of the 5-fold cross-validation of the PLSR analysis. On each violin 14 

representation, the white dot represents the median, the thick gray bar represents the 15 

interquartile range, and the pink area violin-shaped represents the data distribution.  16 

3.2.2 VIP values for each MMF indicator and muscle 17 

The highest VIP value was obtained for the median frequency of the medial deltoid 18 

(2.28 ± 0.11) and was significantly higher than the VIP of any other MMF indicator of this 19 

muscle (Figure 4). The VIP value of the activation level (1.41 ± 0.18) was significantly lower 20 

than the VIP value of the mobility (2.10 ± 0.14), Higuchi fractal dimension (2.03 ± 0.14), 21 

spectral entropy (1.89 ± 0.15), and fuzzy entropy (1.77 ± 0.10). All other MMF indicators had 22 
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significantly lower VIP values than the VIP value of the activation level. The VIP values 1 

obtained for the anterior deltoid showed similar pattern for the median frequency 2 

(1.77 ± 0.14) that was significantly higher than the VIP value of any other MMF. Then, 3 

fractal Higuchi (1.47 ± 0.14), spectral entropy (1.41 ± 0.14) and fuzzy entropy (1.26 ± 0.12) 4 

had qualitatively higher VIP values than the activation level but did not reach significancy.  5 

For the posterior deltoid, activation level (1.73 ± 0.17) had VIP values significantly higher 6 

than the VIP values of all indicators except Higuchi fractal dimension (1.74 ± 0.15). For the 7 

biceps, the VIP value of the median frequency (1.46 ± 0.12) was significantly smaller than the 8 

VIP value of the mobility (1.57 ± 0.13) and the Higuchi fractal dimension (2.13 ± 0.14); the 9 

VIP value of the activation level (1.12 ± 0.09) was significantly smaller than the VIP value of 10 

the mobility (1.57 ± 0.13), Higuchi fractal dimension (2.13 ± 0.14), spectral entropy 11 

(1.44 ± 0.16), approximate entropy (1.31 ± 0.15), and fuzzy entropy (1.35 ± 0.16). For the 12 

triceps, the VIP value of the activation level (1.98 ± 0.19) was significantly greater than the 13 

VIP value of activity (1.61 ± 0.12), mobility (1.31 ± 0.20), Higuchi fractal dimension 14 

(1.48 ± 0.13) and spectral entropy (1.60 ± 0.20). Finally, the MMF indicators of the serratus 15 

anterior, upper, middle, and lower trapezius had the lowest VIP values. 16 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.02.23286583doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286583


 

 1 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.02.23286583doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286583


 

Figure 4. Violin plot representation of VIP values for all muscles and MMF indicators. On 1 

each violin representation, the white dot represents the median, the thick gray bar represents  2 

the interquartile range, and the pink area violin-shaped represents the data distribution.  An * 3 

indicates a significant difference between activation level and a MMF indicator and a  4 

indicates a significant difference between median frequency and a MMF indicator.  5 

3.2.3 Proportion of change of MMF indicators among participants 6 

Figures in supplementary material S1-9 (one figure per muscle) show row values of each 7 

MMF indicator for each participant at RPT initiation and termination. Concerning the medial 8 

deltoid, the proportion of the participants for whom there was a change between initiation and 9 

termination for median frequency, mobility, Higuchi fractal dimension, spectral entropy, 10 

fuzzy entropy, and percent of determinism, was 90%, 80%, 90%, 86%, 90% and 81%, 11 

respectively. These indicators also showed the strongest effect sizes (Cohen’s d ranged 12 

between 3.5-5.35, the percent of determinism excluded, which had a Cohen’s d value equal to  13 

2.13) (Figure 5). Strong effect sizes were also observed for approximate entropy (Cohen’s 14 

d=4) and activation level (Cohen’s d=3.6). The degree of multifractality, multiscale entropy, 15 

correlation dimension, and Lyapunov exponent changed for only 0%-45% participants with 16 

Cohen’s d effect sizes below 1.1. Concerning the anterior deltoid, the median frequency, 17 

activation level, activity, mobility, Higuchi fractal dimension, spectral entropy and fuzzy 18 

entropy were the MMF indicators that also showed significant change between RPT initiation 19 

and termination for a large proportion of the participants, i.e., 85%, 76%, 74%, 80%, 80%, 20 

84%, 65% (Cohens’ d effect sizes ranged between 2.05-3.16). 21 

Other noteworthy results involved median frequency, activation level, mobility, fractal 22 

Higuchi, spectral entropy and fuzzy entropy of the triceps that significantly changed for 75%, 23 

60%, 67%, 85%, 70%, 70% of the participants respectively (Cohens’ d  ef fect sizes ranged 24 

between 1.9-3.8); the activation level, activity, Higuchi fractal dimension, and spectral 25 

entropy of the biceps changed for 80%, 79%, 76%, 76%, (Cohens’ d effect sizes ranged 26 

between 2.26-2.83); the activation level and the activity of the upper trapezius that changed 27 

for 62% and 60 of the participants, respectively (Cohens’ d effect sizes equal to 0.67 and 0.63, 28 

respectively); the median frequency, the activation level and the mobility of the serratus 29 

anterior changed for 70% of the participants for all the three indicators (Cohens’ d effect sizes 30 

ranged between 1.5-1.8); the activation level and the Higuchi fractal dimension of the 31 

posterior deltoid changed for 75% and 70% of the participants (Cohens’ d effect sizes equal to 32 

2.64 and 1.9, respectively); the degree of multifractality, multiscale entropy, percent of 33 
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recurrence, correlation dimension, and largest Lyapunov exponent changed signif icantly for 1 

less than 45% of participants between RPT initiation and termination with Cohens’ d  effect 2 

sizes lower than 0.7; the middle and lower trapezius showed significant changes for less than 3 

57% of the participants (Cohen’s d effect sizes lower than 1.9) for all MMF indicators.4 
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 1 

Figure 5. Heat maps representation of the percentage of participants showing significant effect of time between RPT initiation and termination on 2 

unpaired t-test (left column) and their corresponding Cohen’s d effect sizes (right column) for each muscle and each MMF indicator.3 
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4 Discussion 1 

The aim of this study was to identify the MMF indicators that best assess muscle fatigue 2 

during a repetitive pointing task. To this end, a PLSR method was used to predict the RPE 3 

from 15 linear and non-linear MMF indicators. The trained PLSR model explained 73% of the 4 

RPE variance. Median frequency, mobility, spectral entropy, fuzzy entropy, and fractal 5 

Higuchi had greater VIP values and changed for more than 65% of the participants during the 6 

RPT for both the anterior and medial deltoids. Moreover, the degree of multifractality, the 7 

multiscale entropy, the correlation dimension, the recurrence quantification analysis,  and the 8 

largest Lyapunov exponent were the MMF indicators that had the lowest VIP values f or the 9 

anterior and medial deltoids and did not change for a large proportion of participants.  10 

4.1 Effect of RPT on muscle fatigue  11 

As a decrease in MVIC and an increase in RPE is often used to emphasize muscle fatigue [1-12 

4], the results of this study confirm the presence of muscular fatigue at RPT termination. 13 

Indeed, the t-test analysis revealed a significant decrease of the MVIC performed immediately 14 

after the completion of the RPT compared to the MVIC performed before the RPT. Also, all 15 

participants reached 8 or higher out of 10 at RPE scale at the completion of the RPT, 7 16 

corresponding to “very strong” and 10 to “extremely strong (almost max)” perceived exertion 17 

[69] to perform the RPT at task termination. Since the task remained the same across the RPT, 18 

the increasing perceived exertion, in combination with the decreasing maximum voluntary 19 

isometric force indicated that the RPT caused muscle fatigue [107]. 20 

4.2 PLSR algorithm to predict RPE 21 

For the first time, the present study used PLSR to predict muscle fatigue through the evolution 22 

of RPE and using MMF indicators as predictors during multi-joint movement of the shoulder . 23 

This approach allowed to explain 73% of the RPE variance on the training set, with an 24 

absolute error of prediction of 1.36 on the testing set. This explained variance is greater than 25 

that observed by Goubault et al., [24], Ni et al., [68] and Troiano [43] that used bivariate of 26 

multivariate regression models. Indeed, Goubault et al., [24] performed multivariate 27 

regression analyses between various MMF indicators and RPE scores during a working task. 28 

Their R-square values ranged between 11% and 39%. In the study of Troiano [43], the EMG 29 

fractal dimension and the EMG normalized mean frequency explained the RPE changes by 30 

52% and 50%, respectively, during isometric contractions of the upper trapezius. In Ni et al. ,  31 

[68], EMG indicators explained 49% of the RPE variance during dynamic contractions. In the 32 
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present study, the greater percentage of RPE variance explained can be due to the 1 

combination of several MMF indicators together in the PLSR model. In addition, various 2 

complex indicators identified as good predictors of muscle fatigue [28], such as fuzzy entropy 3 

and Higuchi fractal dimension, were used for the first time in such a model. Interestingly, our 4 

PLSR approach not only provided better prediction of RPE, but also physiologically 5 

meaningful results. Indeed, the highest VIP values were observed for the anterior and medial 6 

deltoids that are the muscles known to fatigue the most during the RPT used in the present 7 

study [72,73] and for the median frequency, a commonly well recognized indicator of muscle 8 

fatigue [108–113].  9 

4.3 Median frequency, mobility, spectral entropy, fuzzy entropy, and fractal Higuchi 10 

MMF indicators to assess muscle fatigue 11 

Median frequency was the MMF indicator that had the highest VIP value (2.28) and changed 12 

for a very large proportion of the participants (>85%) between RPT initiation and termination 13 

in the muscles known to fatigue the most during the RPT used in the present study, i.e., 14 

anterior and medial deltoids [72,73]. This result agrees with Goubault et al., [24], that also 15 

found that when correlating six MMF indicators to RPE, mobility and spectral entropy were 16 

among the MMF indicators that showed the highest R-square values. Our results are 17 

consistent with this recent study as mobility and spectral entropy also showed high VIP values 18 

(1.26-1.41) and significantly changed for a large proportion of the participants (80%-86%) 19 

between RPT initiation and termination for the anterior and medial deltoids, which reaffirms 20 

that these MMF indicators may be relevant to assess muscle fatigue. Concerning chaos, 21 

correlation, entropy, and fractals MMF indicators, Higuchi fractal dimension and fuzzy 22 

entropy were the only indicators that had high VIP values (1.26-2.03) and changed 23 

significantly for a large proportion of the participants (65%-90%) for the anterior and medial 24 

deltoids. Higuchi fractal dimension therefore confirms that the fractal dimension is sensitive 25 

to intrinsic changes of EMG signals occurring with muscle fatigue [18,49]. As to fuzzy 26 

entropy, our results are in line with Xie et al., [54] which stated that it provides an improved 27 

evaluation of time series complexity. Considering that median frequency is sensitive to  both 28 

muscle fiber conduction velocity and motor unit synchronization [17,114], mobility is 29 

sensitive to conduction velocity [56], spectral entropy is sensitive to muscle fiber conduction 30 

velocity and motor units firing rate [56], and fuzzy entropy and Higuchi fractal dimension are 31 

sensitive to the increase of motor unit synchronization [90,104] occurring with muscle 32 

fatigue, our results emphasize the need to consider and combine a variety of MMF indicators 33 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.02.23286583doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286583


 

24 

 

that are sensitive to all parameters of motor unit behavior affected by fatigue in order to 1 

improve its assessment. Noteworthy, median frequency, mobility, spectral entropy, fuzzy 2 

entropy, and Higuchi fractal dimension were the only indicators that both showed low VIP 3 

values and changed for a moderate proportion of the participants (14%-38%) during RPT 4 

initiation and termination for the trapezius muscles, which did not show signs of fatigue 5 

during the RPT used in the present study [72–74]. These five indicators may therefore have 6 

good specificity to assess muscle fatigue, and future investigations should focus on their 7 

combination into a single MMF indicator to maximize the sensitivity and specificity of 8 

muscle fatigue assessment. 9 

4.4 Activation level, activity, approximate, sample, and multiscale entropy, recurrence 10 

quantification analysis, correlation dimension, and chaos MMF indicators to assess 11 

muscle fatigue 12 

The activation level was shown to be a part of the two MMF indicators required to assess 13 

muscle fatigue according to the JASA method [14]. Firstly, our results showed that the VIP 14 

value of activation level of the medial deltoid was 1.41, which was significantly lower than 15 

the VIP value of the median frequency, mobility, Higuchi fractal dimension, spectral entropy, 16 

and fuzzy entropy for this muscle. Secondly, although the activation level of both the anterior 17 

and medial deltoid increased significantly for a large proportion of the participants (76%-18 

80%), which can be interpreted as a MMF [14], the activation level of the posterior deltoid 19 

and upper trapezius also increased for a comparable proportion of the participants (75%-76%) 20 

between the RPT initiation and termination while they the latter muscles did not show sign of  21 

fatigue in previous studies [72,73]. Supporting these results on activation level, muscles act in  22 

synergy so that many postural and movement adaptations are induced by muscle fatigue 23 

during a RPT [72]. Therefore, the upper trapezius and the posterior deltoid  changes in 24 

amplitude-based MMF indicators may reflect compensatory mechanisms in response to 25 

fatigue in prime mover muscles rather than local fatigue [115,116]. Consequently, a change of 26 

activation level may reflect local muscle fatigue for prime mover muscles or compensatory 27 

mechanisms in response to fatigue of prime mover muscles for synergistic muscles  [72,73]. 28 

These observations suggest that activation level, and therefore the JASA method, should be 29 

used with caution for the assessment of muscle fatigue [6] as it may increase the risk of  f alse 30 

positive. Another MMF indicator related to the amplitude of EMG signals is the activity . The 31 

VIP value of the activity of the median and anterior deltoids ranged between 0.73-1.61, which 32 

is qualitatively smaller than the VIP value of median frequency, mobility, Higuchi fractal 33 
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dimension, spectral entropy, and fuzzy entropy (1.26-2.28) for these muscles. Similarly to 1 

activation level, there were changes in activity for a large proportion of the participants in the 2 

upper trapezius (90%), although this muscle is not supposed to fatigue [72,73]. Thus, our 3 

results further confirm that amplitude related MMF indicators are not relevant f or assessing 4 

muscle fatigue. 5 

Approximate and sample entropy had moderate VIP values (0.91-1.57), in  the anterior and 6 

median deltoids and changed for a moderate to large proportion of the participants (52%-7 

76%) between the RPT initiation and termination. To support this latter result, the lack of 8 

consistency and monotonicity of approximate entropy causes difficulty in interpreting the 9 

signal’s complexity and reduced its efficiency to dichotomize fatigue and non-fatigue states 10 

[54,88]. Although sample entropy addresses the drawbacks of approximate entropy 11 

calculation to assess muscle fatigue [88], our results revealed that this MMF indicator had 12 

moderate efficiency to assess muscle fatigue, which may be caused by its high variability  to  13 

precise parameter selection [117]. Multiscale entropy was therefore introduced to better detect 14 

the presence of complexity in time series and overcome the limitations of approximate and 15 

sample entropy [57]. Although multiscale entropy was shown more sensitive to muscle 16 

fatigue than median frequency [118], our results evidenced that multiscale entropy had 17 

significantly smaller VIP values than median frequency and changed for a moderate 18 

proportion of the participants (35%-45%) for the anterior and medial deltoids between RPT 19 

initiation and termination. Consequently, fuzzy entropy, as previously discussed, is the only 20 

entropy-based indicator that may be efficient to assess MMF. Concerning the degree of 21 

multifractality, it had very low VIP values (<0.5) and marginally changed (<10%) between 22 

the RPT initiation and termination. This result contradicts previous studies that found that this 23 

multifractal MMF indicator is more efficient than the median frequency and Higuchi f ractal 24 

dimension to assess muscle fatigue in dynamic and static conditions [40,46,47,49]. More 25 

investigations are therefore required to determine the effectiveness of the degree of 26 

multifractality for assessing MMF. As to correlation dimension, percent determinism, and 27 

percent of recurrence, they had very low VIP values (0.4-1.2), which agrees with previous 28 

evidences that correlation dimension is not sensitive to changes in EMG signal properties 29 

caused by fatigue [28]. Although previous studies have shown an effect of muscle fatigue on  30 

recurrence quantification analyses, our results are in agreement with the lower performance of 31 

this MMF indicator compared to frequency-based and fuzzy entropy indicators [75]. Finally , 32 

the largest Lyapunov exponent also had very low VIP values for all muscles (<0.6) and did 33 

not change during the RPT for more than 38% of the participants between RPT initiation and 34 
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termination in median and anterior deltoid. To support this result, Chakraborty et al., [36] 1 

found that the largest Lyapunov exponent did not change with  fatigue during dynamic 2 

contractions of the biceps brachii. Thus, our results confirm that the potential of approximate, 3 

sample, and multiscale entropy, degree of multifractality, correlation dimension, and the 4 

largest Lyapunov exponent is limited to assess muscle fatigue during low-load repetitive 5 

tasks, which question their sensitivity to changes in muscle fiber conduction velocity 6 

[5,84,104] and motor unit firing rate [35,56,103] and synchronization [35,104] caused by 7 

fatigue. 8 

4.5 Limitations 9 

The first limitation of this study was that, considering the nature of the task which is a multi-10 

joint task performed with the whole dominant upper limb in a standing position, several 11 

muscles act as prime mover and stabilizer muscles so that changes of MMF indicators may be 12 

caused either by their function or muscle fatigue that make interpretation of amplitude related 13 

indicators difficult [115,119]. Another limitation is that the RPE was used as a measure of 14 

fatigue, while its evolution can be multifactorial during a fatiguing task. Finally, even though 15 

the previous literature has suggested the presence of sex differences in some EMG patterns of 16 

fatigue during the performance of the RPT [120], our sample size was too small to develop  a 17 

sex-specific model. 18 

5 Conclusion 19 

The present study confirmed that median frequency, mobility, and spectral entropy are 20 

efficient EMG-based indicators to assess muscle fatigue. Interestingly, our analyses also 21 

showed that fuzzy entropy and Higuchi fractal dimension may also be efficient MMF 22 

indicators. Therefore, a combination of median frequency, mobility, spectral entropy, f uzzy 23 

entropy, and Higuchi fractal dimension should be further considered to assess muscle fatigue 24 

compared to the exclusive use of median frequency and activation level. Alternatively, 25 

although other MMF indicators such as the multiscale entropy, the degree of multifractality , 26 

correlation dimension, the percent of determinism, the percent of recurrence, and the largest 27 

Lyapunov exponent were previously used to assess muscle fatigue, they should no further be 28 

considered as our analyses showed that they poorly contributed to the prediction of RPE and 29 

did not change significantly for a large proportion of the participants during a fatiguing RPT. 30 

These results may help to improve the identification of MMF indicators to accurately assess 31 

muscle fatigue. In the long term, more accurate methods to identify fatigue-related changes in  32 

EMG, combined with other advances such as in workplace wearable sensors, could contribute 33 
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to the real-time, early detection of injury risk factors, and ultimately, prevention  of 1 

musculoskeletal disorders caused by muscle fatigue. 2 
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