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Abstract

Pandemic preparedness requires institutions, including public health authorities and governments, to detect,

survey and control outbreaks. To maintain an accurate, quantitative and up-to-date picture of an epidemic

crisis is key. For SARS-CoV-2, this was mostly achieved by ascertaining incidence numbers and the effec-

tive reproductive number (Reff), which counts how many people an infected person is likely to infect on

average. These numbers give strong hints on past infection dynamics in a population but fail to clearly char-

acterize current and future dynamics as well as potential effects of pharmaceutical and non-pharmaceutical

interventions. We show that, by using and combining infection surveillance and population-scale contact

statistics, we can obtain a better understanding of the drivers of epidemic waves and the effectiveness of

interventions. This approach can provide a real-time picture, thus saving not only many lives by quickly

allowing adaptation of the health policies but also alleviating economic and other burdens if an intervention

proves ineffective. We factorize Reff into contacts and relative transmissibility: Both signals can be used,

individually and combined, to identify driving forces of an epidemic, monitoring and assessing interventions,

as well as projecting an epidemic’s future trajectory. Using data for SARS-CoV-2 and Influenza from 2019

onward in Germany, we provide evidence for the usefulness of our approach. In particular, we find that the

effects from physical distancing and lockdowns as well as vaccination campaigns are dominant.
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1. Introduction1

Infectious diseases represent serious threats to2

an ever increasingly connected humankind, on par3

with e.g. natural disasters and infrastructure fail-4

ures. Epidemic preparedness – the ability to pre-5

dict and mitigate future epidemic outbreaks – has6

thus risen to one of the most pressing challenges in7

∗Corresponding author: steven.schulz@netcheck.de.

modern societies and recently focused a wealth of8

research efforts building on a variety of data [1] in9

response to awareness elicited by the SARS-CoV-210

pandemic [2].11

Epidemic dynamics are shaped at the crossroads12

of human and viral driving forces: a pathogen’s re-13

productive cycle, defining its relative transmission14

rate upon physical proximity between individuals15

with full or partial susceptibility, as well as hu-16
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man behaviour, via the frequency of transmission-17

prone contacts between individuals itself [3]. Criti-18

cal events such as the emergence of fitter mutants or19

collective shifts in human activity patterns set the20

pace for new epidemic waves. Real-time monitoring21

of these forces during an epidemic, whether it is fu-22

eled mostly by increased contact levels or changes23

in relative transmissibility, is of paramount value24

for epidemic forecasting as well as the ability to set25

up informed, targeted mitigation strategies and es-26

timating the effects of (non-)pharmaceutical health27

policies [4].28

Using SARS-CoV-2 and Influenza as key exam-29

ples of airborne transmissible contagions, we show-30

case monitoring and forecast tools for epidemic31

crises centered around a crowd-sourced, real-time32

method to assess levels of physical proximity in33

a population using GPS location information, the34

Contact Index CX [5]. We show that diverg-35

ing trends between contact levels and indepen-36

dently recorded infection surveillance are indica-37

tors of altered relative viral transmissibility. Using38

2020-specific data as a baseline for purely contact-39

driven SARS-CoV-2 epidemics, all observed transi-40

tion points are explained by the onset of key im-41

mune escape variants (alpha, delta, omicron). The42

resulting dual evolution, Contact Index CX and rel-43

ative transmissibility T , provides a highly transpar-44

ent and timely picture of ongoing epidemics, includ-45

ing the possibility to identify likely driving forces in46

future epidemic waves.47

2. Materials and Methods48

2.1. Contact metrics relevant for epidemics49

Contact networks are a representation of hu-50

man interactions [6] with immediate implications51

for the spread of contagions in a population [7, 8]:52

Nodes represent individuals and edges are drawn53

between pairs of nodes in the event of contact be-54

tween them (Figure 1(a,b)). A contagion can prop-55

agate through a population along paths following56

the links of the network.57

Intuitively, transmission levels scale with the58

average number of links per node 〈k〉 =59 ∑
k≥0 kP (k) = 2L/N [3], where P (k) is the dis-60

tribution of these numbers across a network and61

N (L) is the number of nodes (links). Beyond62

this local property, more global topological network63

features – how contacts are collectively configured64

across the network – do also affect the course of epi-65

demics [3] by fueling and constraining the number66

of available paths. Groundbreaking epidemiological67

and network-theoretical work established that the68

effective reproduction number Reff , quantifying epi-69

demic spreading, scales with 〈k
2〉
〈k〉 [3, 9, 10, 11, 12],70

i.e. the presence of very social nodes (superspread-71

ers) with outstanding k mediate enhanced propa-72

gation. Typical social networks are very inhomoge-73

neous in terms of social activity, with outstanding74

community structure and few individuals responsi-75

ble for most contacts [9]. The pivotal role of the76

second moment 〈k2〉 =
∑
k≥0 k

2P (k) is intuited by77

the friendship paradox [13]: An individual’s friends78

are on average more social than oneself; in other79

words, the number of next-nearest neighbors 〈k2〉 in80

the network exceeds the expectation 〈k〉2 from the81

number of nearest neighbors, a mere consequence82

of non-zero variance in P (k): 〈k2〉−〈k〉2 > 0 (Supp83

Mat S2).84

2.2. Assessing contact levels in real-world networks85

The contact network relevant to transmission of86

airborne viruses such as Influenza and SARS-CoV-87

2 arises from physical proximity between individ-88

uals (Figure 1(a)). Compared to (virtual) social89

networks, such real-world networks are expected to90

have distinct properties, as they are constrained91

by geography and physical distance, but are also92

tremendously more difficult to track at the popula-93

tion scale. Coarse contact and mixing patterns in94

real-world networks have been inferred using lim-95

ited data gathered from surveys [14, 15] or viral96

2
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phylogeny [16]. Locally confined real-world net-97

works, such as on cruise ships [17], school cam-98

puses [18] or within towns [19] have been measured99

using Bluetooth communication between nearby100

mobile devices.101

We use a previously developed approach to probe102

population-scale real-world contact networks based103

on crowd-sourced datasets of GPS locations [20, 5]104

to measure the Contact Index CX = 〈k2〉
〈k〉 as a105

statistical measure of contact levels relevant for106

epidemics [5]. The crowd-sourcing data is col-107

lected in near real-time via opt-in from each of an108

anonymized panel of 1 million mobile app users109

(roughly 1 % of Germany’s population) and con-110

sists of ≈ 100 daily samples per device tagged with111

time and GPS location information. It allows us112

to reconstruct samples of the actual contact net-113

work realized in the population: Contacts (links)114

are drawn between devices (nodes) co-located in115

space and time (Figure 1(a) and Supp Mat S1). Ex-116

amples of reconstructed contact networks are shown117

in Fig. 1(e).118

2.3. Network sampling correction119

The incomplete nature of such crowd-sourced120

data represents a major challenge: Contacts from121

uninvolved or inactive devices are not captured, giv-122

ing rise to missing nodes and links in the network.123

This aspect of our data can be crafted into a net-124

work sampling framework [21, 22] in which nodes125

and edges are randomly removed with probabili-126

ties p and q, respectively (Figure 1(b,c) and Supp127

Mat S3). p denotes the population share repre-128

sented in the panel of app users, while q is inter-129

preted as the rate fij of simultaneous samples from130

pairs of app users (Figure 1(c)), a necessary con-131

dition to detect a contact between users with indi-132

vidual sample rates fi and fj , respectively. These133

sampling parameters are subject to change over134

time beyond daytime-related periodicity (see be-135

low), mostly in response to software updates and136

app usage (Figure 1(d)), and are heterogeneous in137

space (Supp Mat S4 and Figure S3(a,b,c)).138

For simplicity, we here use daily averages of sam-139

ple rates. The rate fij of simultaneous samples140

tends to exceed the expectation from individual fre-141

quencies fifj under the hypothesis of independence142

of distinct mobile devices, i.e. fij > fifj , espe-143

cially prior to February 2020 (Figure 1(d)); a ma-144

jor app update in February 2020 has significantly145

altered the daytime distribution and overall num-146

ber of samples (Figure 1(d)). This apparent correla-147

tion between devices stems from the non-uniformity148

of the sampling activity over the day: Devices are149

more active during daytime than at night, an effect150

particularly prominent prior to February 2020 (Fig-151

ure 1(d)). However, aside from a common daytime152

pattern, devices show a predominantly independent153

activity pattern from one another (Figure 1(d)):154

At any given timepoint (2 min interval), squared155

single-device distributions, i.e. ρ1(t)2∫
ρ1(t)2 dt

, do cap-156

ture the distribution of simultaneous samples ρ2(t)157

across the day well. Solely in consequence to the158

daytime-related correlation, we are likely to slightly159

underestimate the true value of q by using daily av-160

erages.161

Our improved mathematical modeling based162

on Horvitz-Thompson theory disentangles actual163

changes in contact levels from signals unrelated to164

the users’ contact behaviour, including participa-165

tion and activity levels in the user panel, but ex-166

cluding correlation between devices, see above. We167

thus achieve a persistent and comparable results168

across the full time span since the beginning of mea-169

surement in 2019 (Supp Mat S3 and Supp Mat S4).170

In summary, we show that the Contact Index CX171

of an unobserved complete network G can be re-172

trieved from a network sample G∗ obtained under173

the described sampling scheme according to174

CX − 1 =
CX∗ − 1

pqeff
, (1)

3
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where CX∗ = 〈k∗2〉∗
〈k∗〉∗ is the same quantity measured175

within the network sample and qeff is an effective176

node sampling probability for networks of unique177

contacts (see below).178

Importantly, abstractions of contact networks ex-179

ist in two distinct flavours: weighted versus un-180

weighted [23]. Links may be endowed with weights181

wij ∈ {0, 1, 2, . . . } representing the duration or182

multiplicity of contact between individuals i and183

j [24] or simply indicate the presence or absence of184

contact aij = sgn(wij) ∈ {0, 1} (Figure 1(f)). In185

the epidemiological context, we assume that net-186

work topology, represented by aij , is more im-187

portant than the recurrence of contacts between188

the same individuals: For instance, the (statisti-189

cal) contribution to viral spread from a cluster of190

short contacts at a crowded event would outpace a191

lengthy contact between an isolated couple while in192

lockdown. We thus focus on unweighted networks193

and exclude contact duration in our analyses other194

than in the fact that short contacts are unlikely to195

be recorded during the random sampling inherent196

to the crowd-sourcing method.197

However, network sampling destroys topological198

information about underlying complete networks199

(Figure 1(f)); the success of Horvitz-Thompson the-200

ory [21] to establish a connection between original201

and sample networks relies in the use of weighted202

links (Supp Mat S3). To establish the same con-203

nection for unweighted networks, we devised a204

Bayesian approach which identifies missing topo-205

logical information as the weight distribution for206

existing links in the complete network P (w|w > 0)207

and defines the edge sampling probability as208

qeff = P (w∗ > 0|w > 0) = 1−Gw|w>0(1− q), (2)

where Gw|w>0(ξ) =
∑
w>0 P (w|w > 0)ξw is the209

probability generating function of P (w|w > 0)210

(Supp Mat S3). We find that available com-211

plete real-world networks in various contexts [17,212

18, 19] appear to show strikingly similar weight213

distributions (Figure 1(g)), which suggests a uni-214

versal shape of P (w|w > 0) also applicable to215

our problem. Here, “complete” refers to the216

aspect that these networks represent a fraction217

of the population (p < 1), but all contacts218

within that sub-population are being detected219

(q = 1) – node sampling, but no edge sampling.220

These distributions are consistent with power laws221

P (w|w > 0) = w−(1+α)/ζ(1 + α) with small expo-222

nents [25, 26] (Figure 1(g)), a repeatedly demon-223

strated feature of complex networks [27] and be-224

yond [28]. Yet, we do not imply that power laws225

are the true mechanism behind network weights, as226

a variety of other distribution classes are easily con-227

founded with power laws [28, 29, 30], but merely use228

it as a prior for P (w|w > 0).229

3. Results230

3.1. Evolution of CX since 2019231

By means of our refined correction method for232

network sampling effects, we achieve a consistent233

measurement of contact levels since the begin-234

ning of crowd-sourcing in 2019, despite the time-235

dependent sampling. That is, we cover the prelude236

and entire course of the SARS-CoV-2 epidemic in237

Germany (Figure 2(a)). The gap in February 2020238

is explained by missing data due to the rollout of a239

major crowd-sourcing software update.240

Holiday season comes along with reduced CX un-241

der normal conditions, as shown by the Fall and242

Christmas breaks in 2019, thus showing a reduc-243

tion of transmission-prone contacts. The onset of244

the first SARS-CoV-2 wave in March 2020 induced245

an unequivocally more pronounced drop in CX,246

probably explained by a more systematic cessation247

of super-spreading activities. The dramatically al-248

tered contact network structure during a lockdown249

is depicted in Figure 1(e).250

Since onset of the SARS-CoV-2 pandemic,251

changes in contact behaviour as reflected by CX252

underwent several periods of spiking (partial or253

4
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complete deregulation of mass events in fall 2020,254

fall 2021 and spring 2022) and damping (winter255

wave 2020, emergence of the omicron variant in256

late 2021). Overall, a similar evolution is observed257

between CX and the rigor of SARS-CoV-2-related258

policy as measured by the Government-Response259

Index [31] (Figure S1(a)), thus indicating broad260

awareness of the situation at the population and261

governance levels albeit no causal link shall be im-262

plied.263

Interestingly, recent CX values have not yet re-264

turned to pre-pandemic levels by a factor of 2 to 3,265

despite a return to no contact-related restrictions266

in 2022. This suggests the existence of a hystere-267

sis effect in addition to the fast response of CX268

discussed above: The collective behaviour has not269

returned to its unperturbed state in response to re-270

laxed conditions, possibly as a result of continued271

broad perception of disease risk [32, 33].272

From a dimensional viewpoint, CX represents273

an average number of (next-nearest) contacts per274

(nearest) contact: Comparing values of CX across275

areas with vastly different population densities276

within Germany supports our expectation that CX277

scales (non-linearly) with the absolute propensity278

of physical proximity between individuals (Fig-279

ure S3(d) and Supp Mat S4).280

3.2. Deciphering epidemic forces: contacts vs. rel-281

ative transmissibility282

In 2020, SARS-CoV-2 epidemic trends were pri-283

marily driven by trends in contact levels, as both284

immune escape variants and vaccines were not yet285

relevant and relative SARS-CoV-2 transmissibility286

– its intrinsic transmission probability per contact287

– was thus constant (Figure 2(b)): Official daily288

now-cast reproduction numbers Reff , independently289

recorded from national infection surveillance [34],290

correlate well with daily CX, but CX shows a291

time lead of approximately 2 − 3 weeks over Reff292

(Figure S1(a, right inset)) [5], explained by incu-293

bation time as well as testing and reporting de-294

lays. This underlines the predictive character of295

real-time contact metrics for wild-type dominated296

epidemics [20]. Since then, the correlation between297

Reff and CX has repeatedly changed, with the re-298

sulting signal quantifying shifts in relative transmis-299

sibility accountable to key epidemic changes other300

than contacts.301

The effective reproduction number Reff is defined302

by Reff = 〈k〉 · U · τ , where 〈k〉 denotes the contact303

number per day, U the probability of transmission304

per contact, and τ the mean duration of infectivity305

in days. Both U and τ are determined by physio-306

logical processes involved in transmission and, to-307

gether, define the intrinsic transmission efficiency308

(per contact) T = U · τ .309

Furthermore, as we assume CX = 〈k2〉
〈k〉310

replaces 〈k〉, we replace the definition by311

Reff = (a + b · CX) · T . A linear relationship of312

this form between CX and Reff is motivated by our313

findings in 2020. We use values for a and b obtained314

from a linear regression between CX and wild-type315

Reff data at the optimal time delay of ∆t = 16 days316

(Figure S1(a, left inset) and Supp Mat S5). Upon317

interpreting RWT(CX) ≡ a+b·CX as the wild-type318

specific reproduction number, we have that319

Reff = RWT(CX) · T, (3)

where T represents relative transmissibility with re-320

spect to wild-type in a fully susceptible population321

(TWT = 1). Note that, in contrast to now-cast data,322

Eq. (3) assigns reproduction numbers to the day of323

contact/infection.324

From independently recorded values for Reff and325

CX, we can determine the relative transmissi-326

bility of the contagion by factoring out contact-327

related contributions from overall infection dynam-328

ics as T = Reff

RWT(CX) for any given day. We ex-329

pect network-wide propagation of transmissibility-330

related information to be slow compared to network331

dynamics itself and, thus, T to undergo evolution332

on longer timescales. We interpret fast signal in333

5
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T as random fluctuations from the measurement of334

Reff and capture actual trends by 〈T 〉, centered av-335

erages over sliding time windows of 2 months (Supp336

Mat S5).337

3.3. Epidemic evolution of relative SARS-CoV-2338

transmissibility339

The evolution of relative SARS-CoV-2 transmis-340

sibility 〈T 〉 is shown in Figure 2(b). This time se-341

ries reenacts the various phases of the SARS-CoV-2342

pandemic:343

Relative SARS-CoV-2 transmissibility 〈T 〉 is ap-344

proximately equal to unity throughout 2020, an345

initial period purely driven by unperturbed wild-346

type epidemics that we used to “calibrate” CX and347

Reff which evolve on shorter timescales. It sub-348

sequently follows a tug-of-war pattern shaped by349

alternating epidemic forces beyond contacts: im-350

mune escape variants and development of popula-351

tion immunity through infection and vaccination.352

Three waves of increased relative transmissibility353

are explained by the takeover of fitter virus lin-354

eages (Figure 2(b)), specifically alpha (spring 2021),355

delta (summer 2021) and omicron BA.1/BA.2 (win-356

ter 2021/22). We hypothesize that subsequent re-357

laxation of 〈T 〉 after each wave may be attributed to358

natural immunity, while the superposed long-term359

downward trend may be explained by the additional360

immunity acquisition through (initial and booster)361

vaccination campaigns. Interestingly, the effect of362

omicron BA.4/BA.5 takeover in summer 2022 on363

〈T 〉 is nowhere close to those of previous variants.364

Comparing correlations with different parame-365

ters rules out the possibility that the measured 〈T 〉366

is shaped by factors confounding the reproduction367

numbers or CX values (Figure S1(b,c) and Supp368

Mat S5). These possible confounders include viral369

prevalence, CX itself through higher-order effects370

from network sampling not captured by our mod-371

eling and other topological network features (such372

as clustering, small-world properties) as well as Reff373

itself through changes in testing strategies and sys-374

tematic under-reporting of infections [35]. For in-375

stance, testing individuals indiscriminately versus376

focusing test capacities on suspected infection cases377

may lead to incomparable snapshots of ongoing in-378

fection dynamics. Overall, strong positive correla-379

tion is exclusively observed between 〈T 〉 and variant380

dynamics (Figure S1(b,c)) [36]. In this analysis, we381

use test positivity [37] and results from local preva-382

lence studies [38] as proxies for overall prevalence.383

Also, we neglect possible effects from network sam-384

pling on different topological measures [39, 40], but385

we expect trends to be conserved as long as the386

sampling process remains unchanged.387

We note the absence of seasonal oscillations in388

〈T 〉 as well as clear signatures of mask mandates389

(in effect across many social contexts between April390

2020 and April 2022). A seasonal oscillation in 〈T 〉,391

larger values in winter and smaller values in sum-392

mer, might be expected from the shift of human ac-393

tivity between in- and outdoor settings. Also, pre-394

vious research established the effectiveness of mask395

usage at reducing transmission of respiratory dis-396

eases (reviewed in [41]). Overall, our results sug-397

gest that, at least in the epidemic stage of SARS-398

CoV-2, infection rates were predominantly driven399

by the strong variability in contacts as well as the400

repeated emergence of more transmissible variants,401

in line with previous findings [42, 43, 44].402

3.4. Forecast of infection level and trend changes403

The challenge of epidemic forecast consists in the404

accurate prediction of current and future reproduc-405

tion numbers Reff . Using the rationale that trends406

in infection levels carry the combined signature of407

trends in contact and relative transmissibility lev-408

els, we propose to construct predictions according409

to410

Rtrue(t) = RWT(CX(t)) · 〈T (t)〉, (4)

6
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where Rtrue is assigned to the projected day of con-411

tact/infection. The key difference to Eq. (3) is the412

use of 〈T 〉 which eliminates noise from reproduc-413

tion numbers. Importantly, we therefore expect414

that our prediction Rtrue represents actual epidemic415

trends (ground truth) more accurately than epi-416

demic surveillance (Reff).417

Figure 3(a) shows Rtrue together with data from418

infection surveillance, both plotted with respect to419

their date of recording (assuming real-time CX420

measurement). This shows how our prediction421

overall anticipates current epidemic trends that422

are observed via infection surveillance only about423

∆t = 2 − 3 weeks later. Thus, we propose to use424

our method as a tool for real-time infection surveil-425

lance.426

To extend forecasts beyond this horizon and pre-427

dict future reproduction numbers, CX and 〈T 〉428

themselves need to be projected beyond latest data.429

For several choices of the current day t0, Figure 3(b)430

showcases forecasts (Rpred) where CX and 〈T 〉 are431

continued beyond the last days of available data432

(t0 and t0 − ∆t, respectively) using autoregressive433

integrated moving average (ARIMA) models prior434

to applying Eq. (4) (Supp Mat S6). These fore-435

casts outperform a null forecast based on a mere436

ARIMA-type continuation of infection surveillance437

data (Reff), as shown by narrower distributions of438

residuals (Rpred−Rtrue) across all choices of t0 (Fig-439

ure 3(b)). Furthermore, we highlight the broad ap-440

plicability of our method to airborne infectious dis-441

eases by performing an identical forecast analysis442

for Influenza (Figure S2(a)), using coarser infection443

surveillance data [45] and presuming a similar rela-444

tionship between Reff and CX as for SARS-CoV-2445

(Supp Mat S6).446

Most importantly, trend changes in epidemic447

driving forces such as 〈T 〉 and CX are indicators of448

new phases in an epidemic. Timely detection of new449

trends in these time series, e.g. using anomaly de-450

tection methods, can provide valuable information451

to estimate the risk of upcoming epidemic waves452

and to predict their nature – whether dynamics is453

fueled by contacts or increased transmission effi-454

ciency. Such trend detection is potentially easier455

to achieve but equally informative than the abil-456

ity to accurately predict infection surveillance. The457

onset of rising trends could shape decision-making458

with regard to the effectiveness of health policies,459

e.g. pharmaceutical and non-pharmaceutical in-460

terventions for rising 〈T 〉 and CX, respectively.461

Figures 3(c) and S2(b) highlight rising and falling462

trends in both CX and T for SARS-CoV-2 and In-463

fluenza, respectively, akin to trends in stock prices.464

For SARS-CoV-2, trend changes are timely indica-465

tors of all major escape variant- and contact-driven466

epidemic turning points (Figure 3(c)). Unlike for467

SARS-CoV-2 in its epidemic stage, major upheavals468

in relative transmissibility for Influenza are limited469

to seasonality, with the notable exception of 2020,470

presumably reflecting its endemic dynamics (Fig-471

ure S2(b)).472

Discussion473

We presented a simple, yet insightful quantitative474

method for a data-driven decomposition of overall475

epidemic dynamics into contact-related and trans-476

mission efficiency-related contributions. It relies477

on both the availability of infection surveillance478

data as well as crowd-sourced GPS location data479

to detect and quantify physical proximity between480

susceptible individuals. Its appeal resides in the481

merely bivariate yet highly informative projection482

of epidemics paving the way towards timely iden-483

tification of driving forces in an ongoing epidemic484

– human versus viral factors – and possibly effec-485

tive mitigation strategies – pharmaceutical versus486

non-pharmaceutical.487

The approach can be used for epidemic forecast488

in multiple ways. Recent and projected future val-489

ues of CX and 〈T 〉 can be used for short-term490

(2− 3 weeks) and long-term prediction of infection491
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or reproduction numbers, thus taking our previ-492

ously described short-term forecast further [5]. Yet,493

a timely detection of trend changes could reliably494

forecast upcoming waves and their nature without495

the necessity to accurately predict infection surveil-496

lance data. These tools can lead towards a more497

strategic approach to epidemic mitigation and po-498

tentially save lives by reducing the spread of deadly499

diseases.500

Results from the presumably most systematically501

tracked epidemic to date, SARS-CoV-2, draw the502

picture of co-evolution within the virus-host rela-503

tion: Increasing immunity levels in the host pop-504

ulation alternate with step-wise adaptation of the505

virus through immune-escape variants. Other fre-506

quently discussed factors, including mask policies507

and seasonality, are presumably still below the cur-508

rent statistical resolution of our method, defined by509

the sampling noise in the CX and Reff time series.510

Moreover, a larger impact of seasonal variation is511

expected in the endemic phase of SARS-CoV-2 [46].512

Our method is broadly applicable to airborne513

contagions beyond SARS-CoV-2, but depends on514

the availability of infection surveillance and crowd-515

sourcing strategies that remain persistent over ex-516

tended amounts of time. Changes in testing strat-517

egy can lead to signal and biases unrelated to un-518

derlying epidemic driving forces [35]. More cru-519

cially, systematic infection surveillance is not im-520

plemented beyond the case of SARS-CoV-2. We521

illustrated a framework to correct for the effect522

of varying sampling depth in the contact network.523

Yet, higher-order effects in the signal can occur as524

a result of sampling aspects not captured by our525

mathematical modeling. In order to ensure valid526

prognoses through our method, we advocate for sys-527

tematic and persistent crowd-sourcing and infection528

surveillance strategies across a variety of diseases529

with epidemic potential.530

Geographical resolution of our forecast method531

is currently limited by the sampling depth, as the532

estimation especially of higher moments of degree533

distributions P (k) becomes increasingly difficult as534

smaller portions of the network are available. A535

higher spatial resolution of contact and relative536

transmissibility levels, with potential to locate the537

origin of new variants of concern and define locally538

targeted mitigation strategies, can be achieved by539

e.g. increasing the panel of app users.540

Our analysis assumes statics, but actual contact541

networks are dynamic in nature [47, 48]: While542

some contacts are frequently repeated (e.g. be-543

tween household members), other contacts are ran-544

domly redrawn on each occasion (e.g. in pub-545

lic transportation), with implications for epidemic546

spread [49, 50]. Our method can be improved by547

analyzing contact data in light of existing models548

of dynamic networks [51, 48].549
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[1] A. Rodŕıguez, H. Kamarthi, P. Agarwal, J. Ho, M. Pa-559

tel, S. Sapre, B. A. Prakash, Data-centric epidemic560

forecasting: A survey, arXiv preprint arXiv:2207.09370561

(2022).562

[2] A. Maxmen, Has covid taught us anything about pan-563

demic preparedness?, Nature 596 (2021) 332–335.564

[3] R. Pastor-Satorras, C. Castellano, P. Van Mieghem,565

A. Vespignani, Epidemic processes in complex566

networks, Rev. Mod. Phys. 87 (2015) 925–979.567

doi:10.1103/RevModPhys.87.925.568

URL https : / / link . aps . org / doi / 10 . 1103 /569

RevModPhys.87.925570

[4] T. Alamo, D. G. Reina, P. Millán Gata, V. M. Preciado,571

G. Giordano, Data-driven methods for present and fu-572

ture pandemics: Monitoring, modelling and managing,573

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2023. ; https://doi.org/10.1101/2023.03.02.23286502doi: medRxiv preprint 

https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://www.sciencedirect.com/science/article/pii/S1367578821000419
https://www.sciencedirect.com/science/article/pii/S1367578821000419
https://www.sciencedirect.com/science/article/pii/S1367578821000419
https://doi.org/10.1101/2023.03.02.23286502
http://creativecommons.org/licenses/by-nc/4.0/


Annual Reviews in Control 52 (2021) 448–464. doi:574

https://doi.org/10.1016/j.arcontrol.2021.05.003.575

URL https : / / www . sciencedirect . com / science /576

article/pii/S1367578821000419577
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Figure 1: Contact networks: definition, measurement and inference. (a) Co-location of 2 (or more) devices i and j
within the same 8 m× 8 m cell within 2 min defines a contact. (b) In the network, pairs of individuals/mobile devices (nodes)
are connected by their contacts (edges). The network sampling induced by the data collection app retains nodes with proba p
(incl. links between pairs of retained nodes), reflective of the population share of app users. Subsequently, links are retained
with proba q. (c) Ticks along the time axes indicate samples from a pair of devices i and j. q depends on the likelihood fij
of simultaneous samples (red encircled samples), a necessary condition to observe a contact between them. (d) Comparison
between actual simultaneous sample rates fij and those predicted from uncorrelated single-device sample rates fifj (left panel)
and between the distribution of simultaneous samples over the day ρ2(t) with the squared distribution of single-device samples
ρ1(t)2 (right panel). (e) Examples of 7-day aggregated networks under lockdown (Apr 2020) and unrestricted (Sep 2022)
conditions. Blue dots represent individuals, gray links the contacts. Zoom over a 2D embedding using SG-t-SNE-Π [52, 53].
(f) In weighted contact networks, links are weighted by the duration/multiplicity of contact wij ∈ {0, 1, 2, . . . } between nodes
i and j, while unique contact networks only distinguish between presence or absence of contact, aij ∈ {0, 1}. Example of
information loss upon link sampling: Networks with distinct topologies (left vs. right set of networks) can yield similar sample
networks (bottom networks) upon the same sampling process (green arrows). Discriminating distinct original networks from the
sample network (red arrows) thus requires additional information. (g) Prior information is extracted from weight distributions
P (w) found in complete contact networks [17, 18, 19].
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(a)

(b)

Figure 2: Real-time observation of driving forces in SARS-CoV-2 epidemics: contact levels and relative trans-
missibility. (a) Evolution of the Contact Index CX = 〈k2〉/〈k〉 in Germany over the course of > 3 years (2019-2022), carrying
the signature of various collective behaviour changes in response to the epidemic situation (as indicated). The gap in February
2022 is explained by a major app update. (b) The slowly varying relative transmissibility 〈T 〉(t) (red) quantifying the intrinsic
efficiency of SARS-CoV-2 transmission, measured from the ratio of reproduction numbers (Reff) and contact levels (CX), see
Eq. (3). The gray-shaded time interval is wild-type dominated and was used to calibrate CX from our crowd-sourcing method
and Reff from infection surveillance (Figure S1(a, inset)). The rising frequencies of key SARS-CoV-2 immune escape variants
(colored lines, see legend) and well as of vaccine status in Germany (light gray lines) are shown (right axis).
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(c)

Figure 3: Forecast of reproduction numbers and trends from contact and transmissibility levels. (a) Comparison
of SARS-CoV-2 effective reproduction numbers Reff from infection surveillance (gray) and projected Rtrue using Eq. (4) (red).
All reproduction numbers are assigned to their day of recording. (b, upper panel) Forecast Rpred of current and future
SARS-CoV-2 reproduction numbers and their uncertainties (solid lines and shaded bands, respectively) using Eq. (4) and the
CX and 〈T 〉 time series. Comparison with actual Rtrue values (dashed lines). Denoting the current day by t0, Reff and 〈T 〉
are available up to t0−∆t, while CX is near real-time (available up to t0); the time series are projected beyond their last time
points using ARIMA models. The forecast is shown for different choices of the current day t0 (see legend). (b, lower panel)
The distribution of residuals between forecasted Rpred and actual Rtrue values over all choices of t0 over the course of 2 years
(black box plots). Comparison to residuals from null projections of Reff that make no use of CX (gray box plots), i.e. simple
ARIMA model-based projection of infection surveillance data. The boxes indicate quartiles, while whiskers cover 90 % of the
data. (c) Identification of rising trends in both contact levels and transmission efficiency (upper panel) and their relation to
rising trends in Reff (lower panel).
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