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Abstract  

Background 

The Fontan operation palliates single ventricle heart defects and is associated with significant 

morbidity and premature mortality. Native anatomy varies; thus, Fontan cases cannot always 

be identified by International Classification of Diseases, Ninth and Tenth Revision, Clinical 

Modification (ICD-9-CM and ICD-10-CM) codes, making it challenging to create large 

Fontan patient cohorts. We sought to develop natural language processing (NLP) based 

machine learning (ML) models, which utilize free text notes of patients, to automatically 

detect Fontan cases, and compare their performances with ICD code based classification. 

Methods and Results 

We included free text notes of 10,935 manually validated patients, of whom 778 (7.1%) were 

Fontan and 10,157 (92.9%) non-Fontan patients, from two large, diverse healthcare systems. 

Using 5-fold cross validation, we trained and evaluated multiple ML models, namely support 

vector machines (SVM) and a transformer based model for language understanding named 

RoBERTa (2 versions), for automatically identifying Fontan cases based on free text notes. 

To optimize classifier performances, we experimented with different text representation 

techniques, including a sliding window strategy to overcome the length limit imposed by 

RoBERTa. We compared the performances of the ML models to ICD code based 

classification using the F1 score metric. The ICD classification model, SVM, and RoBERTa 

achieved F1 scores of 0.81 (95% CI: 0.79-0.83), 0.95 (95% CI: 0.92-0.97), and 0.89 (95% CI: 

0.88-0.85) for the positive (Fontan) class, respectively. SVM obtained the best performance 

(p<0.05), and both NLP models outperformed ICD code based classification (p<0.05). The 

novel sliding window strategy improved performance over the base RoBERTa model 
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(p<0.05) but did not outperform SVM. ICD code based classification tended to have more 

false positives compared to both NLP models.  

Conclusions 

Our proposed NLP models can automatically detect Fontan patients based on clinical notes 

with higher accuracy than ICD codes. Since the sensitivity of ICD codes is high but the 

positive predictive value is low, it may be beneficial to apply ICD codes as a filter prior to 

applying NLP/ML to achieve optimal performance.   
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Introduction 

The Fontan operation is typically performed in early childhood to palliate single 

ventricle congenital heart defects (CHDs), with heterogeneous native anatomy. Following the 

Fontan operation, the absence of a pulsatile pulmonary circulation and chronically elevated 

hepatic venous pressures lead to numerous comorbid complications with age including 

arrhythmias, heart failure, hepatic fibrosis, renal disease, and other late complications1. The 

International Classification of Diseases, Ninth and Tenth Revision, Clinical Modification 

(ICD-9-CM and ICD-10-CM) diagnostic codes can be used to identify the categories of 

patients by their native anatomy and are commonly used in research for retrieving targeted 

cohort data. Additionally, ICD-9-CM and ICD-10-Procedure Coding System (PCS) 

procedural codes can be used to identify procedures a patient may have undergone. While all 

Fontan patients have similar post-surgical anatomy and complications regardless of the native 

anatomy2, not all patients with the same native anatomy require a Fontan operation. 

Therefore, it is difficult to identify Fontan cases strictly by their ICD codes.  

Text notes associated with the electronic health records (EHRs) of Fontan patients 

typically contain lexical cues indicative of the Fontan operation, recognizable by subject 

matter experts. However, manually reviewing notes in EHRs is time-consuming, and the task 

is often impractical. Natural language processing (NLP) methods provide a potential solution 

to automatically detect evidence of Fontan for longitudinal cohort studies. NLP, a sub-

discipline of computer science concerned with the use of computers to process information 

from human language, has been widely applied to clinical notes for creating healthcare 

applications. For example, studies have leveraged NLP of clinical notes for studying chronic 

diseases3, extracting critical human immunodeficiency virus and cardiovascular risk 

information4,5, analyzing critical limb ischemia6, and extracting ad-hoc concepts7. An 

effective NLP system, which can automatically identify Fontan cases from text notes in 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.01.23286659doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286659
http://creativecommons.org/licenses/by-nc/4.0/


 6

EHRs, will help improve the efficiency of creating Fontan cohorts, and hence, conducting 

health-related studies on Fontan cases.  

In this paper, we sought to train and evaluate NLP based supervised ML systems to 

identify Fontan cases based on unstructured clinical notes in two large healthcare systems. 

We employed different text representation strategies and proposed a technological innovation 

to better model text using state-of-the-art transformer based text representation methods.  

Methods 

Machine Learning Classification Framework 

The framework for the NLP based ML model training and evaluation is shown in 

Figure 1. The process includes three steps: (i) collecting clinical data, (ii) manually 

annotating whether a patient has had a Fontan operation or not, and (iii) training and 

evaluating supervised classification models. We provide further details in the following 

subsections. 

 
Study Population and Data Collection 

This study utilized data on patients with at least one CHD ICD-9- or ICD-10-CM 

code (Table S1) documented in a healthcare encounter between 1/1/2010 and 12/31/2019 in 

databases for two state-wide multi-hospital tertiary healthcare systems, one pediatric (PHS) 

and one adult (AHS). Data were collected under a cooperative agreement with the Centers for 

Disease Control and Prevention (CDC-RFA-DD19-1902B). Emory University Institutional 

Review Board (IRB) approved the study on August 26, 2020 (IRB# STUDY00001030) and 

included a complete waiver of HIPAA authorization as well as waiver of informed consent. 

Manually abstracted Fontan cases were collected and managed using REDCap (Research 

Electronic Data Capture) at Emory University, a secure, web based software platform 

designed to support data capture for research studies.8,9   
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Case Validation 

Fontan cases were confirmed in one of four ways: (1) Their Fontan operation was 

identified and noted by clinicians and trained abstractors during a manual abstraction and 

clinical review of health records for 1500 CHD cases of all types in the PHS and AHS; (2) 

Their Fontan operation was documented in the pediatric STS database, which includes data, 

entered by trained research coordinators and clinicians and reviewed by a clinician, on 

diagnoses and surgeries of all pediatric congenital heart surgical cases in the United States; (3) 

The Fontan patient was included in an adult clinical Fontan tracking list created and 

maintained by clinicians to monitor clinical care for adult Fontan patients and verified by 

congenital cardiology clinicians; (4) An NLP-driven search was conducted on all text notes 

available for patients with at least one select single ventricle diagnosis code or Fontan 

procedure code (Table 1) who were not already labeled as Fontan cases from one of the first 

3 mechanisms. The NLP-driven search performed inexact or fuzzy matching of the term 

‘Fontan’ within the text of the notes so that words similar to Fontan, including potential 

misspellings, were captured. All retrieved posts were manually reviewed and Fontan cases 

were labeled. Reasons for false positives with NLP-driven search were noted, as were reasons 

for false negatives with ICD code based classification of single ventricle cases. 
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Classification Models 

To automate the classification process and identify the best automatic classification 

strategy, we developed and evaluated multiple ML algorithms—Support Vector Machines 

(SVM) and a robustly optimized transformer based model for language understanding named 

RoBERTa (2 versions). Particularly, we compared what is an effective traditional text 

classification approach (SVM) to the latest and state-of-the-art approach (RoBERTa) 

currently known, and also compared the performance of the ML models to the ICD code 

based classification. For ML models, we used stratified 80-20 training-testing splits of data to 

ensure that the class distributions of the training and test sets remain the same. The model 

performances were measured by the precision (positive predictive value (PPV)), recall 

(sensitivity), and F1 score (harmonic mean of PPV and sensitivity) over the positive class on 

the test sets. We chose F1 score as the primary metric for comparison because it ensures that 

neither precision or recall is optimized at the expense of the other. Equations for computing 

these metrics are shown in Equation 1. For each classification model, we computed the 

performance on the test set for the cases from the AHS, the cases from the PHS, and the cases 

from both databases, respectively. Bootstrap resampling was used to compute 95% 

confidence intervals for the F1 scores.10 We performed significance testing for the F1 scores 

using the assumption-free randomization-based method proposed by Yeh (2000).11,12 The 

method computes a p-value based on the predictions of two models. If the p-value is less than 

0.05, the difference in performance between the two models is significant. Further model-

specific details are provided below.  

Equations 1: 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐹ଵ𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  
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SVM Model 

SVMs13 are popular choices when feature spaces are large, which is why they have 

been effective for text classification in the past and were chosen for this study. Term 

frequency–inverse document frequency (TF-IDF) for n-grams was used to obtain the 

vectorized representations of text notes used as features.  An n-gram is a contiguous sequence 

of n words from the text. In our setting, we used 1-, 2-, 3-, and 4-grams. Term frequency–

inverse document frequency is a numerical statistic used to measure the importance of a word 

in a document or set of documents. Term frequency (TF) refers to the number of times a 

word appears in a document (i.e., a clinical note). Inverse document frequency (IDF) refers to 

how rare the word is across the entire set of documents (i.e., our entire training dataset). TF-

IDF is used to weigh the importance of words in a document, with respect to the entire set of 

documents. The TF-IDF vectors thus have higher numerical values for n-grams that are 

unique to each document and lower values for those occurring uniformly across all 

documents. During training, grid search was used to optimize two key hyper-parameters—

kernel function 𝐾 ∈ ሼlinear, 𝑅𝐵𝐹ሽ and 𝐶 ∈ ሼ2, 4, 6, 8ሽ—and obtain the optimal setting for the 

model. Five-fold cross validation was used to evaluate the models by performing data-

splitting 5 times, which can result in a less biased estimate of the model skill than using a 

static data split. For each data split, we trained the model on the training set, found the 

optimal model on the validation set, and evaluated the model on the testing set. 

Transformer based Model 

Transformer based models are relatively recent and have achieved state-of-the-art 

performances on many NLP tasks.14–17 As a representative of Transformer based models, we 

used RoBERTa17, a widely used pre-trained transformer based model, for Fontan 

classification. Instead of extracting features from text or generating n-grams, RoBERTa splits 

a clinical note into word pieces (i.e., tokens), encodes each token into a vector, and combines 
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them into a vector representation for the clinical narrative, as shown in Figure 2. Unlike n-

gram vectors, which are sparse in nature, the vectors generated by transformer based models 

are dense, and they also encode the context of each token (i.e., the same token will have a 

different representation based on the context in which it appears). A key limitation of the 

RoBERTa model is that it is limited to 512 tokens when representing texts in vector format. 

We found that most of the clinical notes exceeded that length limitation. This meant that 

using the standard RoBERTa model results in suboptimal or incomplete representations of 

the clinical notes. To overcome this limitation, we used a sliding window strategy to split the 

long notes into multiple partial notes. The sliding window was of size 512 tokens, and when 

passed through the entire note, each unique 512 token sequence in it was represented as an 

individual document. Thus, the model could be applied independently to each of the 

subdocuments represented by the window, and it could make independent predictions for 

each. In our approach, after the model predicted labels for each subdocument independently, 

the mode of the predictions over all the sub-sequences as the final prediction (i.e., majority 

voting) was used. Like SVM, 5-fold cross validation was used to evaluate the model. For 

each data split, we trained the model for 5 rounds. For each round, the model went through 

the training data once. We found the optimal model checkpoint on the validation set and 

evaluated the model on the test set. Other hyper-parameters and technical details are 

presented in Table S2 of the supplementary material. 

ICD Code based Classification Model 

We developed a classification model that used only the ICD codes in Table 1 

associated with each health record to identify potential Fontan patients. ICD-9-CM and ICD-

10-CM diagnostic codes for hypoplastic left heart syndrome (746.7/Q23.4), tricuspid atresia 

(746.1/Q22.4/Q22.6), and double inlet left ventricle/single ventricle (745.3/Q20.4) were 

included as individuals with these single ventricle heart defects typically undergo Fontan 
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palliation in childhood. ICD-9-CM and ICD-10-PCS procedural codes for the Fontan 

operation in Table 1 were also used to identify Fontan cases based on the presence of a 

Fontan operation procedural code associated with the case.18 Depending on the severity of 

their specific heart defect, individuals with double outlet right ventricle, atrioventricular canal 

defect, pulmonary atresia intact ventricular septum, and other native anatomy may undergo 

Fontan palliation or two-ventricle repair; However ICD codes do not capture severity of any 

given anatomic defect to differentiate those who would receive Fontan from two ventricle 

repair so codes for these defects were not used to identify Fontan cases in this classification 

scheme. If any code associated with a patient's record had at least one of the specific single 

ventricle codes included in Table 1 and/or the ICD-10-PCS Fontan operation codes noted in 

Table 1, the patient was classified as a Fontan case for this model. Different from the ML 

models, the ICD code classification was unsupervised, and there was no need to perform 

training-testing data splitting. Therefore, we evaluated the ICD code based classification 

model on the whole dataset. 

Post-classification Analyses 

Learning Curve Analysis:  

To the best of our knowledge, no prior research effort has attempted to automate the 

task of building a Fontan cohort via supervised ML using the text data in their EHRs. 

Consequently, we had to annotate our own data. When annotating a sample of texts for a task 

like this, an important question arises about the amount of data needed to annotate. More 

specifically, at what number of annotations does the ML model start plateauing? To 

investigate this, the model performances were evaluated at different sizes of training data 

(20%, 40%, 60%, 80%, 100%) while keeping the test set identical. We anticipated that this 

analysis may provide some insights about whether further increasing the training data size is 
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necessary to improve the models’ performances, or at what data size the model starts 

performing with sufficient accuracy. 

Error Analysis:  

We manually analyzed the patient records that were misclassified by the ML models 

and summarized the common patterns. The differences between the characteristics of the 

clinical notes from the AHS and the PHS were also analyzed, since these could have affected 

the model performance. This analysis was performed particularly to identify the limitations of 

the model and any potential bias. Knowledge about the causes of errors may guide future 

directions of research to improve the model.  

Results 

A total of 10,935 cases with available text notes, 778 validated Fontan and 10,157 

non-Fontan, were identified following de-duplication and linked back to encounter-level data 

and text notes from the EHR. Of these cases, 210 Fontan and 7400 non-Fontan cases were 

from the AHS, and 568 Fontan and 2757 non-Fontan cases were from the PHS. Cases that 

could not be linked back to text notes or without ICD codes available were excluded 

(n=25,066) from the dataset for the NLP system development and evaluation. The average 

length of clinical notes from the AHS was 35 words, while that from the PHS was 1107 

words.  

Classification Results 

The classification results for the ML models and the ICD code based classification model are 

shown in Table 2, including the precision, recall, F1 score, and 95% confidence interval for 

the F1 score for each model. The exact p-values of the significance tests for the difference in 

performance between pairs of models are shown in Table 3. For both AHS and PHS data 

combined, the ICD code classification model had a precision score of 0.74, a recall score of 
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0.90, and a F1 score 0.81 (95% CI: 0.79-0.83). The ML models significantly outperformed 

the model using ICD codes (p < 0.05). The model performance of RoBERTa with sliding 

window was better than that without sliding window (p < 0.05), especially for the recall score 

(0.81 vs 0.51 in AHS and PHS combined). The results show that applying the sliding window 

strategy to RoBERTa can overcome the limitation of the default model and particularly 

improve the model’s ability to find true positives. SVM significantly outperformed 

RoBERTa (p<0.05), demonstrating that the traditional model is better able to capture the 

meanings of the texts compared to the more recently proposed transformer based RoBERTa 

model that uses a pretrained language model. For both AHS and PHS data combined, 

precision for SVM was 0.97, recall was 0.95, and F1 score was 0.95 (95% CI:0.92-0.97) 

(Table 2). The confusion matrices for SVM and RoBERTa are shown in Figure 3 to visualize 

the high accuracy of SVM as the best-performing model and the performance gap between 

SVM and RoBERTa. 

Post-classification Analysis 

Error Analysis of Machine Learning Models 

The confusion matrices reveal that SVM predicted more true positives and fewer false 

negatives than RoBERTa. This may mean that SVM is better at detecting non-Fontan cases 

compared to RoBERTa. RoBERTa with sliding window significantly underperformed 

compared to SVM on the cases from the AHS but achieved comparable results on the cases 

from the PHS. In contrast, RoBERTa without sliding window significantly underperformed 

compared to SVM on the cases from both sites. The performance gap can be attributed to the 

difference between the average lengths of the clinical notes from the two databases—the 

clinical notes from the PHS were substantially longer than those from the AHS in our dataset. 

The results suggest that although applying the sliding window strategy can help the model 
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performance for long texts, it might lead to suboptimal representation for short texts. Further 

work is required to explore how to address the challenge of long clinical notes. 

 Learning Curve 

For RoBERTa (with sliding window) and SVM, we evaluated the model 

performances at different sizes of training data (20%, 40%, 60%, 80%, 100%) on the same 

test set for which performance is reported in Table 2. Figure 4 presents the F1 scores on the 

test set for different training set sizes. SVM consistently performed better than the RoBERTa 

model although the latter showed greater improvement as more training data was added. This 

suggests that while the SVM classifier performs better with the dataset currently available, it 

is possible that with more training data, the RoBERTa model may outperform it.  

 

Discussion 

Our experiments demonstrate that NLP based ML is a feasible, effective, and accurate 

mechanism for detecting Fontan cases based on the text notes of the EHRs. When analyzing 

the cases which were predicted as negative by the ICD code classifier but positive by the 

best-performing SVM classifier, we found that most of these cases were true positives, 

illustrating that SVM is better at identifying Fontan cases than an ICD code based 

classification. The high classification F1 score of 0.95 suggests this is a reliable method to 

accurately classify Fontan cases in EHRs based on text notes. The learning curve analysis 

showed that despite the strong performance, there maybe room for further improvement, 

particularly for transformer based models. 

The ICD code based classification had several limitations leading to both false 

positives and false negatives. When using a combination of ICD-9-CM and ICD-10-CM/PCS 

diagnostic and procedural codes to identify Fontan cases, the PPV of ICD codes to detect 
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Fontan cases was 58% in the AHS dataset, 83% in the PHS dataset, and 74% in the combined 

dataset. ICD diagnostic codes classify cases by native anatomy, which can vary in severity 

not accounted for by ICD codes. Thus, while some patients may require a Fontan operation, 

others may not despite having the same anatomic CHD. While there are ICD procedural 

codes for the Fontan operation,18 these are typically only used at the time of the operation, 

limiting their usefulness for cases when the operation occurred outside of the surveillance 

period or outside of the dataset. If the operation did not occur within the surveillance window 

and dataset, the only code based indicators that may be used in follow-up encounters to 

document prior Fontan operation are non-specific diagnosis codes for “Personal history of 

congenital heart surgery” (i.e., V13.65 and Z87.74). Researchers may instead decide to 

identify Fontan patients using only ICD codes for hypoplastic left heart syndrome, tricuspid 

atresia, double inlet left ventricle and single ventricle, since patients with these defects most 

likely have had a Fontan operation; however, individuals with other heart defects that may 

undergo Fontan operation, such as unbalanced atrioventricular canal defect or pulmonary 

atresia with intact ventricular septum, would be missed. Alternatively, including more ICD 

codes for these other heart defects to identify Fontan cases would result in false positives, 

since some of these cases may have two ventricle repair in place of Fontan palliation 

depending on the severity of their specific heart defect. Understanding longitudinal and late 

outcomes of Fontan patients with administrative data is limited by the poor PPV of ICD 

codes to identify the cohort.  

Applying NLP based ML models on the clinical notes can improve the precision of 

the system, reduce the risk of mistakenly detecting non-Fontan patients, and capture Fontan 

cases missed by an ICD code based approach. This work is an example of how NLP is more 

accurate than the ICD code based approach for identifying individuals with single ventricle 

heart defects who have undergone Fontan palliation, allowing identification of more cases 
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with greater accuracy. Individuals who have undergone Fontan palliation face complications 

that increase with time following Fontan operations.19 Limited data is available to understand 

factors that contribute to these adverse outcomes. The NLP-driven methodology that we have 

developed may improve longitudinal surveillance of individuals who have undergone Fontan 

palliation in childhood, allowing the incorporation of individuals who may be followed 

outside of tertiary referral centers.  

Strengths and Limitations 

The primary strengths of our study are summarized below: 

• We are the first study to collect clinical notes, develop annotation guidelines, and 

create an annotated dataset to develop NLP based supervised classification models for 

Fontan case detection. 

• We developed and evaluated two supervised classification models—SVM and 

RoBERTa, which can more effectively detect Fontan patients based on clinical notes 

with high F1 score compared to ICD codes. 

• We proposed a strategy for improving the modeling of long texts by the RoBERTa 

classifier. The strategy uses a windowing method followed by majority voting to 

optimize the performance of the classifier. 

• We experimented with data from two diverse health systems and our best-performing 

model demonstrated relatively low variance across the datasets, suggesting that the 

NLP model is generalizable across sites.  

The applicability of our study is limited by the requirement of availability of text notes in 

EHRs. Cases without available text notes could not be included in our cohort. Possible 

reasons for missing text notes include an earlier era of medical record systems which may 

have contained scanned notes, or legacy medical records systems that lack access to older 

notes. However, as almost all health systems are electronic in today’s world, NLP based 
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methods for cohort creation will have high utility beyond the scope of this study. Although 

we are unable to share the data for this study, our code has been made publicly available, and 

researchers with annotated Fontan data from other health systems may adapt our code for 

their studies with relative ease. 

NLP could be used as an adjunct to detect Fontan cases in a cohort initially identified 

by CHD ICD codes noted in Table S1. While the accuracy of the NLP/ML model is close to 

perfect, it is not correct 100% of the time, so some false positives/negatives are possible. It is 

also possible that the performance of the trained NLP model may be lower when applied to 

data from locations other than the two included in this study. This is a relatively common 

scenario for NLP models when they are trained at one site and evaluated at a different one. In 

this study, the evaluation on data from two vastly different health systems illustrates that the 

automated method is portable, although future research is necessary to address some of the 

limitations of the state-of-the-art NLP models, such as the length limitation. 

Conclusions   

We developed and evaluated two NLP based ML models—SVM and RoBERTa, which can 

more effectively detect Fontan patients based on clinical notes with higher accuracy than ICD 

codes. Our experiments suggested that since the sensitivity of ICD codes is high but PPV is 

low, it may be beneficial to apply ICD codes as a filter prior to applying NLP/ML to improve 

performance. Accurate identification of a Fontan cohort enables the development of large 

Fontan datasets to understand longitudinal outcomes in this population. Our code is available 

at https://github.com/yguo0102/Fontan_classification. 
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Diagnostic Codes for Single Ventricle Heart Defects 
ICD-9-CM ICD-10-CM Code Details 
745.3 Q20.4 Single Ventricle, or cor triloculare, double inlet left ventricle 
745.7 - Cor biloculare  
746.1 Q22.4 Tricuspid atresia, stenosis or absence 
- Q22.6 Hypoplastic right heart syndrome 
746.7 Q23.4 Hypoplastic left heart syndrome 
ICD Procedural Codes for Fontan Operation 
ICD-9-CM Code Details 
35.94 Creation of conduit between atrium and pulmonary artery
ICD-10-PCS Code Details 
021608P Bypass Right Atrium to Pulmonary Trunk with Zooplastic Tissue, 

Open Approach 
021608Q Bypass Right Atrium to Right Pulmonary Artery with Zooplastic 

Tissue, Open Approach 
021608R Bypass Right Atrium to Left Pulmonary Artery with Zooplastic 

Tissue, Open Approach 
021609P Bypass Right Atrium to Pulmonary Trunk with Autologous Venous 

Tissue, Open Approach 
021609Q Bypass Right Atrium to Right Pulmonary Artery with Autologous 

Venous Tissue, Open Approach 
021609R Bypass Right Atrium to Left Pulmonary Artery with Autologous 

Venous Tissue, Open Approach 
02160AP Bypass Right Atrium to Pulmonary Trunk with Autologous Arterial 

Tissue, Open Approach 
02160AQ Bypass Right Atrium to Right Pulmonary Artery with Autologous 

Arterial Tissue, Open Approach 
02160AR Bypass Right Atrium to Left Pulmonary Artery with Autologous 

Arterial Tissue, Open Approach 
02160JP Bypass Right Atrium to Pulmonary Trunk with Synthetic Substitute, 

Open Approach 
02160JQ Bypass Right Atrium to Right Pulmonary Artery with Synthetic 

Substitute, Open Approach 
02160JR Bypass Right Atrium to Left Pulmonary Artery with Synthetic 

Substitute, Open Approach 
02160KP Bypass Right Atrium to Pulmonary Trunk with Nonautologous 

Tissue Substitute, Open Approach 
02160KQ Bypass Right Atrium to Right Pulmonary Artery with 

Nonautologous Tissue Substitute, Open Approach 
02160KR Bypass Right Atrium to Left Pulmonary Artery with Nonautologous 

Tissue Substitute, Open Approach 
02160ZP Bypass Right Atrium to Pulmonary Trunk, Open Approach 
02160ZQ Bypass Right Atrium to Right Pulmonary Artery, Open Approach 
02160ZR Bypass Right Atrium to Left Pulmonary Artery, Open Approach 
021648P Bypass Right Atrium to Pulmonary Trunk with Zooplastic Tissue, 

Percutaneous Endoscopic Approach 
021648Q Bypass Right Atrium to Right Pulmonary Artery with Zooplastic 

Tissue, Percutaneous Endoscopic Approach 
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021648R Bypass Right Atrium to Left Pulmonary Artery with Zooplastic 
Tissue, Percutaneous Endoscopic Approach 

021649P Bypass Right Atrium to Pulmonary Trunk with Autologous Venous 
Tissue, Percutaneous Endoscopic Approach 

021649Q Bypass Right Atrium to Right Pulmonary Artery with Autologous 
Venous Tissue, Percutaneous Endoscopic Approach 

021649R Bypass Right Atrium to Left Pulmonary Artery with Autologous 
Venous Tissue, Percutaneous Endoscopic Approach 

02164AP Bypass Right Atrium to Pulmonary Trunk with Autologous Arterial 
Tissue, Percutaneous Endoscopic Approach 

02164AQ Bypass Right Atrium to Right Pulmonary Artery with Autologous 
Arterial Tissue, Percutaneous Endoscopic Approach 

02164AR Bypass Right Atrium to Left Pulmonary Artery with Autologous 
Arterial Tissue, Percutaneous Endoscopic Approach 

02164JP Bypass Right Atrium to Pulmonary Trunk with Synthetic Substitute, 
Percutaneous Endoscopic Approach 

02164JQ Bypass Right Atrium to Right Pulmonary Artery with Synthetic 
Substitute, Percutaneous Endoscopic Approach 

02164JR Bypass Right Atrium to Left Pulmonary Artery with Synthetic 
Substitute, Percutaneous Endoscopic Approach 

02164KP Bypass Right Atrium to Pulmonary Trunk with Nonautologous 
Tissue Substitute, Percutaneous Endoscopic Approach 

02164KQ Bypass Right Atrium to Right Pulmonary Artery with 
Nonautologous Tissue Substitute, Percutaneous Endoscopic 
Approach 

02164KR Bypass Right Atrium to Left Pulmonary Artery with Nonautologous 
Tissue Substitute, Percutaneous Endoscopic Approach 

02164ZP Bypass Right Atrium to Pulmonary Trunk, Percutaneous 
Endoscopic Approach 

02164ZQ Bypass Right Atrium to Right Pulmonary Artery, Percutaneous 
Endoscopic Approach 

02164ZR Bypass Right Atrium to Left Pulmonary Artery, Percutaneous 
Endoscopic Approach 

Table 1: The ICD-9-CM and ICD-10-CM diagnostic codes and ICD-9 and ICD-10-PCS 
procedural codes used to classify Fontan cases for the ICD classifier。 
 

Database 
ICD code for 
single ventricle 
CHD1 

SVM RoBERTa with 
sliding window 

RoBERTa w/o 
sliding window 

AHS and PHS 
combined 

0.74/0.90/0.81 
(0.79-0.83) 

0.97/0.94/0.95 
(0.92-0.97) 

0.99/0.81/0.89 
(0.88-0.95) 

0.85/0.51/0.67 
(0.60-0.73) 

AHS only 0.58/0.92/0.71 
(0.67-0.75) 

0.94/0.80/0.87 
(0.77-0.93) 

0.95/0.46/0.62 
(0.46-0.74) 

0.92/0.56/0.70 
(0.55-0.81) 

PHS only 0.83/0.89/0.85 
(0.83-0.88) 

0.97/0.99/0.98 
(0.96-1.00) 

0.99/0.93/0.96 
(0.93-0.98) 

1.00/0.49/0.65 
(0.56-0.74) 
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Table 2: The results of ICD code classifiers and ML models. The model performances were presented 

as precision/recall/F1 score (95% bootstrap confidence interval). The best model performance for 

each database is in bold. 

1Codes used to identify ‘Fontan’ are shown in Table 1.  

Abbreviations: AHS = adult healthcare system, PHS= pediatric healthcare system, ICD = 

International Classification of Diseases, CHD= Congenital Heart defect, SVM = Support Vector 

Machines, RoBERTa = A robustly optimized transformer based model for language understanding. 

 

Model 1 Model 2 p-value 
SVM RoBERTa with sliding window 0.0003 
SVM RoBERTa w/o sliding window 0.0001 
SVM ICD code for single ventricle CHD 0.0001 
RoBERTa with sliding window RoBERTa w/o sliding window 0.0001 
RoBERTa with sliding window ICD code for single ventricle CHD 0.0001 
RoBERTa w/o sliding window ICD code for single ventricle CHD 0.0001 
Table 3: The significance testing for the difference in performance between two models. 
 

 

 

Figure 1: The development framework of the Fontan patient identification system. 

 

 

Figure 2: The process of how RoBERTa converts a clinical narrative into a vector representation. 
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(a) (b) 

Figure 3: The confusion matrices curve of SVM (a)  and RoBERTa (b). 

 

 

Figure 4: The model performance of SVM and RoBERTa using different percentage of 

training data. 
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