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Abstract 34 
Adopting a computational approach for the assessment of urine cytology specimens has the 35 
potential to improve the efficiency, accuracy and reliability of bladder cancer screening, which 36 
has heretofore relied on semi-subjective manual assessment methods. As rigorous, quantitative 37 
criteria and guidelines have been introduced for improving screening practices, e.g., The Paris 38 
System for Reporting Urinary Cytology (TPS), algorithms to emulate semi-autonomous 39 
diagnostic decision-making have lagged behind, in part due to the complex and nuanced nature 40 
of urine cytology reporting. In this study, we report on a deep learning tool, AutoParis-X, which 41 
can facilitate rapid semi-autonomous examination of urine cytology specimens. Through a large-42 
scale retrospective validation study, results indicate that AutoParis-X can accurately determine 43 
urothelial cell atypia and aggregate a wide-variety of cell and cluster-related information across a 44 
slide to yield an Atypia Burden Score (ABS) that correlates closely with overall specimen atypia, 45 
predictive of TPS diagnostic categories. Importantly, this approach accounts for challenges 46 
associated with assessment of overlapping cell cluster borders, which improved the ability to 47 
predict specimen atypia and accurately estimate the nuclear-to-cytoplasm (NC) ratio for cells in 48 
these clusters. We developed an interactive web application that is publicly available and open-49 
source, which features a simple, easy-to-use display for examining urine cytology whole-slide 50 
images (WSI) and determining the atypia level of specific cells, flagging the most abnormal cells 51 
for pathologist review. The accuracy of AutoParis-X (and other semi-automated digital 52 
pathology systems) indicates that these technologies are approaching clinical readiness and 53 
necessitates full evaluation of these algorithms via head-to-head clinical trials. 54 
 55 
  56 
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Introduction 57 

Urothelial carcinoma is highly prevalent (9th most common worldwide) and has the highest 58 

recurrence rate among all forms of cancer (74%) 1,2. The treatment and management of urothelial 59 

carcinoma requires follow-up urine cytology (UC), expensive, painful chemotherapy, and/or 60 

invasive cystoscopy procedures for long periods of time (typically the remainder of the patient’s 61 

life), necessitating the development and implementation of less invasive screening and follow up 62 

measures 3.  63 

 64 

The detection and screening for bladder cancer has greatly improved since the earliest recorded 65 

evaluation of hematuria was recorded in the papyrus of Kahun, circa 1900 B.C.. In 1550 B.C., it 66 

was suggested that hematuria originated from “worms in the belly” 4. A causative agent, S. 67 

haematobium, was identified in 1854 by Theodor Bilharz 5,6. In 1947, Dr. George Papanicolaou, 68 

widely considered the father of modern cytopathology, proposed a formal system for evaluation 69 

of malignant cells exfoliated from the bladder’s epithelium, which has largely remained intact 7,8. 70 

Over the past half-century, efforts to rigorously define quantitative assessment criteria (e.g., 71 

nuclear-to-cytoplasm (NC) ratio, chromatin structure, etc.) and improve specimen preparation 72 

methods have sought to resolve remaining ambiguity. Yet, traditional cytological approaches are 73 

still hampered by inter-rater variability, specimen quality issues, and the tendency towards 74 

‘hedging’ to the atypical category 9–12.  75 

 76 

In recent years, The Paris System for Reporting Urinary Cytology (TPS), formulated in 2013, 77 

published in 2016, and updated in 2022, has emerged as a more quantitative and reproducible 78 

reporting system bladder cancer 13–17. TPS criteria are applied to assign one of four main ordered 79 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.23286639doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286639


 4 

categories (negative, atypical urothelial cells, suspicious for high-grade urothelial carcinoma, 80 

positive for high-grade urothelial carcinoma) based on the following criteria for a positive 81 

diagnosis: (1) at least five malignant urothelial cells (updated to ten in 2022), (2) an NC ratio at 82 

or above 0.7, (3) nuclear hyperchromasia, (4) markedly irregular nuclear membrane, and (5) 83 

coarse/clumped chromatin 2. It is often easier to evaluate specimens that have clear-cut 84 

diagnoses, either negative or positive, than those that are atypical or suspicious. Atypical 85 

specimens are those that are hedged against a negative diagnosis, while suspicious specimens are 86 

those that are hedged against a positive diagnosis, but allow fewer than five malignant cells to be 87 

detected. Unsurprisingly, the two indeterminate designations suffer from poor inter-rater 88 

variability 12,17. 89 

 90 

There are a number of drawbacks to cytological assessments, despite improvements in screening 91 

criteria: cytology slides are far less structured than traditional histological specimens (as they are 92 

a random dispersion of cells); there is high inter-rater variability; and the workload involved 93 

often leads to cytologist exhaustion– all of these factors increase the likelihood of 94 

misclassification. Furthermore, TPS does not introduce rigorous screening criteria for urothelial 95 

cell clusters, instead mainly relying on aggregates of individual cellular estimates. Systems to 96 

automate the assessment of cytology specimens can provide more quantitative assessments of 97 

atypia, while improving reliability and reproducibility.  98 

 99 

Advances in cytopathology vis-à-vis increased automation can bring several benefits to all 100 

stakeholders in the healthcare space 18–22. The adoption of computer assisted Papanicolaou 101 

(‘Pap’) test screening helped laboratories address overwhelming numbers of tests that formerly 102 
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required manual screening, leading to inevitable workflow backlogs and diagnostic errors 103 

resulting from overwork. The end result of this practice was the drafting of the CLIA-88 104 

regulations concerning cytotechnologist workload limits and the development of semi-automated 105 

Pap screening devices such as the FocalPoint™ GS and the ThinPrep ® Imaging System (TIS) 106 

23,24. The commercial success of these automated systems in the gynecologic cytology market 107 

provides a window into the possibilities of future computational applications in urine cytology 108 

25–33. The factors which drove the creation of automated gynecologic cytology systems are 109 

similarly present in urine cytology: to improve clinical outcomes and integrate smoothly within 110 

the daily workflows of cytopathology laboratories. Outside of gynecologic cytology, several 111 

computational methods have been developed for cytological applications in screening cancers of 112 

varying types of specimens 18,34–36. For instance, efforts have been made to screen potential 113 

malignancies in thyroid fine-needle aspirations (FNA), liquid-based lung cancer specimens, 114 

pancreaticobiliary FNA, breast lesions, and urine specimens 37–42. 115 

 116 

Systems to automate cytology screening can provide more quantitative assessments of atypia 117 

while improving reliability, precision and reproducibility of findings. State-of-the-art approaches 118 

leverage deep learning, which relies on the use of artificial neural networks (ANN– inspired by 119 

the central nervous system), to construct indicators of atypia that can be formulated into 120 

diagnostic tests. For instance, Sanghvi et al. developed a semi-autonomous diagnostic decision 121 

aid for bladder cancer using a deep learning algorithm to quantify abnormal cytomorphological 122 

features 43. The algorithm detected urothelial cells using QuPath, urothelial clusters using 123 

density-based clustering and used convolutional neural networks for scoring cells for atypia (e.g., 124 

NC ratio, hyperchromasia, etc.). Although the effectiveness of QuPath, the scoring algorithms, 125 
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and density-based clustering was not fully discussed, the study showed promising results in 126 

estimating overall atypia and could potentially improve bladder cancer screening. However, it 127 

should be noted that other studies have highlighted the limitations of QuPath in disaggregation of 128 

cells within clusters in favor of detection-based approaches, indicating a need for further 129 

refinement of the algorithm 44–47. 130 

 131 

We previously developed the AutoParis system to automatically report the presence of malignant 132 

cells across cytology specimens through cross-tabulation of the degree of atypia and NC ratio for 133 

all urothelial cells in the preparation 48. Cross-tabulation is used to generate an Atypia Burden 134 

Score (ABS) to directly classify the specimen. The current AutoParis system operates by: 1) 135 

using connected component analysis (morphometry) and watershedding to separate individual 136 

cells from cell clusters within the specimen; 2) estimating the NC ratio of the cell using a 137 

segmentation neural network to separate the nucleus and cytoplasmic components on a pixel-by-138 

pixel basis; 3) simultaneously assigning the cell as urothelial and recording whether the cell is 139 

atypical (atypia score) from a classifier which separates negative urothelial cells, positive 140 

urothelial cells, leukocytes, red blood cells (RBCs), debris, squamous, and crystals; and 4) 141 

generating digital images in which the cells are arranged in order of atypia, which could be 142 

helpful to pathologists. Limitations in current classification systems for urine cytology include 20: 143 

1) confounding by the presence of blood, high cellularity, neobladders (abundant degenerated 144 

enterocytes) and scanning artifacts. Other previously unaccounted for cell types may also 145 

confound classifiers (e.g., polyomavirus encrusted cells conflated with positive urothelial cells, 146 

leukocytes vs. clusters of leukocytes, urothelial cells with no nucleus present, renal tubule cells) 147 

49; 2) morphometry algorithms may not scale to hundreds of thousands of cells at maximal 148 
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resolution; 3) density-based clustering / watershedding is likely insufficient to separate 149 

overlapping cells; 4) using a single classifier does not adequately separate the tasks of 150 

determining whether a cell is both urothelial and atypical; 6) orientation and size of cell could 151 

confound the classifier; and 7) existing graphical displays for communicating the burden of 152 

atypia are static rather than dynamic. 153 

 154 

We set out to improve on the AutoParis classification tool by addressing the above limitations 155 

and additionally trained the models using a more expansive dataset– we dub the new tool 156 

AutoParis-X (AP-X). In AutoParis-X, we addressed challenges associated with cell cluster 157 

assessment by developing an artificial intelligence tool that uses detection models to localize 158 

urothelial cells, overlapping cell boundaries, dense regions of significant overlap, and identify 159 

visual markers of urothelial atypia. By breaking clusters into their constituent architectural 160 

components, this preprocessing tool facilitates downstream association studies and predictive 161 

algorithms that incorporate quantitative cluster-level features. The cell border identification tool 162 

helped develop a more comprehensive understanding of urothelial cell cluster atypia as it 163 

pertains to bladder cancer screening. In comparison to the previous AutoParis study, which was 164 

validated on a small well-curated test set, we performed a large-scale retrospective validation of 165 

AutoParis-X on nearly 1,300 real-world specimens from internal cohorts. In this manuscript, we 166 

discuss improvements to the previous approach and its potential for real-time assessment as a 167 

mature diagnostic decision aid. 168 

 169 
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 170 
Figure 1: AutoParis-X specimen processing workflow: A) Connected component analysis 171 
isolates candidate cells and cell clusters; B) Individual cells and cytoplasmic borders isolated 172 
from cell clusters using BorderDet; C) UroNet isolates specific cell types across slide, in order: i) 173 
urothelial cells, ii) polyomavirus infected cells, iii) crystals, debris, RBCs, iv) leukocytes, v) 174 
leukocyte clusters, vi) squamous cells; D) AtyNet estimates atypia score for each urothelial cell; 175 
E) UroSeg calculates the NC ratio for each urothelial cell after being isolated using the 176 
connected component analysis or BorderDet; F) example rich information frame cell and cluster 177 
level scores, which cross tabulate statistics across the slide; G) mixed effects machine learning 178 
method predicts atypical burden score which correlates with the reported diagnosis; H) 179 
cytopathologists can rapidly assess the specimen using the AutoParis-X web application 180 
 181 
 182 

Methods 183 

Specimen Collection and Slide Processing 184 

A total of 1,303 urine specimens were collected across 140 bladder cancer patients (median of 8 185 

specimens per patient; IQR: [8-13]) from 2008 to 2019 at Dartmouth-Hitchcock Medical Center. 186 

Forty-seven of these specimens were used to curate data for training the cell and cluster-level 187 

machine learning models (cell and cluster-level training and validation cohort). Four specimens 188 

were removed due to equivocal findings and/or excessive confluent cellularity. AutoParis-X was 189 
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further trained and validated on 1,252 specimens after curating slide-level cell/cluster predictors 190 

(slide-level training and validation cohorts; see Calculation of Cell and Cluster Slide-Level 191 

Scores). The specimens were prepared using ThinPrep® and Papanicolaou staining before being 192 

examined microscopically 24. The urine slides were scanned using a Leica Aperio-AT2 scanner 193 

at 40× resolution and were stored as 70% quality SVS files representing whole slide images. The 194 

slides were manually focused (by a trained technician) on a single plane during scanning, and z-195 

stacking was not used. Patient and slide-level characteristics from the slide-level training and 196 

validation cohorts can be found in Table 1. All slides were assessed by a group of five 197 

cytopathologists using TPS criteria (negative for high grade urothelial carcinoma, atypical 198 

urothelial cells, suspicious for high grade urothelial carcinoma, positive for high grade urothelial 199 

carcinoma) 12.  200 

 201 
Table 1: Patient and Specimen Cohort Characteristics  202  

Overall 
Number Specimens 1252 
Voided (%) 1103 (88.1) 
Prior History Hematuria (%) 171 (13.7) 
Diagnosis (%) 

 

   Negative for High Grade 
Urothelial Carcinoma 

810 (64.7) 

   Atypical Urothelial Cells 296 (23.6) 
   Suspicious for High Grade 

Urothelial Carcinoma 
98 (7.8) 

   Positive for High Grade 
Urothelial Carcinoma 

48 (3.8) 

Contains Artifact (%) 265 (21.2) 
Number Patients 140 
Age (mean (SD)) 71.19 (12.37) 
Sex = M (%) 106 (75.7) 

 203 
Methods Overview 204 

In this section, we summarize improvements introduced in AutoParis-X, which will be 205 

elaborated on in following sections. AutoParis-X was written using the Python programming 206 

language and neural networks were implemented using the PyTorch and Detectron2 frameworks 207 

50,51. Statistical and machine learning models were implemented in Python and R 52–54. A 208 

graphical overview is provided in Figure 1: 209 
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1. Slide processing– Connected components analysis to isolate individual cells and cell 210 

clusters, sped up through parallel processing 55. 211 

2. Cell border detection (BorderDet)– Isolates cells within urothelial clusters with 212 

overlapping cytoplasmic borders through neural network detection model 44.  213 

3. Cell-Level Measures: 214 

a. Morphometric measures– Additional morphological features to improve cell-215 

type classification and atypia estimation (e.g., size / area). 216 

b. Urothelial Classifier (UroNet)– Used to filter urothelial cells from potentially 217 

conflated cell types through a convolutional neural network, which operates on 218 

images of cells and their morphometric measures 56– trained on an expanded 219 

dataset with more cell classes. 220 

c. NC ratio estimation (UroSeg)– Estimates the NC ratio by neural network pixel-221 

wise segmentation of background, nucleus and cytoplasm. Used as objective 222 

marker of atypia. 223 

d. Atypia score (AtyNet)– For predicted urothelial cells at a particular cutoff 224 

threshold, a subjective score which incorporates multiple screening criteria (e.g., 225 

hyperchromasia, etc.) is determined using another convolutional neural network 226 

which operates on images of cells and their morphometric measures and outputs 227 

an atypia score 48. 228 

4. Cell- and Cluster- Slide-level scores– Established through a combination of the above 229 

scoring methods, counting the number of cells/clusters in the slide with atypical 230 

morphology / cluster architecture as defined by previous works 43,48. Optimal decision 231 
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cutoffs for determining cellular/cluster atypia were decided using Bayesian Optimization 232 

techniques 57. 233 

5. Classifier development– Machine learning classifier which integrates cell and cluster 234 

level scores and other demographic/specimen characteristics into an Atypia Burden Score 235 

(ABS), accounting for repeat measures by patient 58–64.  236 

6. Model interpretation– A hierarchical logistic regression model was constructed from 237 

the machine learning model to identify important indicators of atypia, in addition to 238 

analogous univariable models. Helpful graphical displays were generated through an 239 

interactive web application 65.  240 

7. Demo– A demo was deployed to an Amazon Web Services (AWS) server and software 241 

released through GitHub and PyPI. 242 

 243 

Slide Preprocessing 244 

As detailed in a previous work, individual objects in the image were identified through a 245 

connected component analysis 48. In brief, WSI were converted into grey scale images using 246 

opencv2 in Python (version 3.8) 66. The background of WSIs were converted to white through 247 

intensity thresholding of the grey scale image to form an object mask. Small objects, defined as a 248 

pixelwise area of 50 or below, were filtered using the remove_small_objects (scipy, Python v3.8) 249 

morphological operation 67. Large objects (e.g., ink markings) were similarly filtered as defined 250 

by a minimal area of 500,000 pixels. After small and large object removal, holes within the 251 

object mask were filled through the fill_voids function (which is faster than offerings from the 252 

scipy package) 68. We leveraged the cupy package (Python v3.8) to reduce compute time through 253 

usage of Graphics Processing Units (GPU) where appropriate after extensive timing tests 69. 254 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.23286639doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286639


 12 

Subimages of slide objects (e.g., candidate urothelial cells and clusters) were returned using the 255 

scipy regionprops function, which also returned various other morphometric measures and 256 

bounding boxes. Inference time and memory usage for the connected component analysis for 257 

object identification was reduced through distributed computing procedures (e.g., Dask), which 258 

use optimized parallelization to operate on larger-than-memory arrays. Using multiprocessing 259 

through dask, operations were also parallelized across subregions within the slide 55. 260 

 261 

Cell Border Identification for Cell Cluster Analysis 262 

To improve detection of individual cells within clusters, we previously developed a cell detection 263 

neural network, BorderDet, (using the state-of-the-art Detectron2 framework) to identify: 1) 264 

location of cells through estimation of bounding boxes (one box per cell) and 2) identify cell 265 

boundaries by separating overlapping cytoplasm from adjacent cells  . BorderDet was developed 266 

using cell clusters identified from the cluster-level training cohort. In brief, two cytopathologists 267 

(LJV and XL) annotated 800 cell cytoplasmic boundaries for squamous cells, inflammatory cells, 268 

negative/atypical urothelial cells, and dense regions of overlapping/indistinguishable cell borders 269 

(dense region). BorderDet is an object detection neural network that can detect multiple 270 

objects/instances (i.e., cells) in a cell cluster image 44. It looks for areas in the image that may 271 

contain an object and then assigns a score that indicates how likely it is that the region contains 272 

an object. The program labels identified objects with the appropriate label (e.g., squamous cell, 273 

dense region) and draws a line around the edges of the object (i.e., segmentation mask) to portray 274 

the exact boundary, which can overlap with adjacent cells. This allows the program to accurately 275 

identify and locate multiple objects in a single cluster. Objects were then filtered using non-max 276 
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suppression, a technique which ranks overlapping objects, as defined through their intersection 277 

over union (IoU), based on their “objectness” score and removes objects with a lower score 70.  278 

 279 

To reduce the number of objects assessed using BorderDet, a size filter was enforced, assessing 280 

candidate cell clusters with a pixelwise area of at least 1800 pixels, determined through a 281 

sensitivity analysis and visual inspection. Parallel processing through multithreading and 282 

multiprocessing was integrated using dask for rapid evaluation 55. Individual cells extracted 283 

through the connected component analysis (area between 256 and 1800 pixels) and objects 284 

extracted from clusters using their instance segmentation masks were further assessed using 285 

single-cell algorithms which report quantitative metrics of atypia (cell-level measures).   286 

 287 

In comparison to the density-based clustering approach that validated urothelial clusters using a 288 

CNN (Sanghvi et al.), which could lead to many false negative findings (i.e., approach only 289 

“screens out” candidate cell clusters), urothelial cell clusters were identified by BorderDet if they 290 

contained urothelial cells 43. This approach improves on watershedding (AutoParis v1) and 291 

density-clustering (Sanghvi et al.) techniques as these two methods do not precisely identify cells 292 

within larger candidate clusters 20,43,44,48. BorderDet also improves upon previous methods by 293 

locating dense urothelial cell architectures with overlapping indistinguishable cytoplasmic 294 

borders which are challenging to assess for individual cells. Furthermore, while presence of a 295 

dense architectural region in a cluster as defined by an area cutoff was used as an atypia 296 

predictor, dense architectures themselves were further subclassified as atypical if surrounding 297 

urothelial cells were labeled as atypical (as defined by morphology). 298 

 299 
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Cellular Morphometric Measures 300 

Various morphometric features were estimated from individual candidate cells, including: 1) 301 

area; 2) convex area; 3) eccentricity; 4) equivalent diameter; 5) extent; 6) Feret’s diameter; 7) 302 

maximum diameter; 8) filled area; 9) major axis length; 10) minor axis length; 11) perimeter; 303 

and 12) solidity, extracted using scikit-image (Python v3.8) 56,71. These morphometric features 304 

were primarily used to help demarcate urothelial cells. As an example, urothelial cells are 305 

significantly larger than leukocytes, so cell area is an important criterion for separating the two 306 

cell types. Morphometric features were standardized using quantile transformation (implemented 307 

in scikit-learn, Python v3.8) within the training set to reduce the influence of any given cell on 308 

specifically which morphometric features were important for the assessment 72. This places 309 

greater emphasis on the imaging findings as means to delineate between different cell types. 310 

 311 

Urothelial Cell Classification 312 

Urothelial cell classification was accomplished using UroNet, which was modified significantly 313 

from its original incarnation. While AutoParis estimated both the presence and atypia of the 314 

urothelial cell simultaneously 48, as differentiated from several other specimen constituents, 315 

AutoParis-X is chiefly focused on delineating urothelial cells from potentially conflated cell 316 

types and slide objects prior to estimating atypia. When aiming to validate the AutoParis 317 

algorithm, we noticed that a nontrivial number of urothelial cells lacked a nucleus, potentially 318 

related to being out of focus (no Z-stacking) 73, but were not included in our original training set 319 

and thus were often confused with other cell types with a smaller nuclear area (e.g., squamous 320 

cells). We also identified rare urothelial cells with changes consistent with a Polyomavirus 321 
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cytopathic effect 49,74. These cells are benign but assessment can often mimic HGUC and would 322 

certainly mislead any attempt to accurately predict the NC ratio and are thus removed by UroNet.  323 

 324 

A total of 108,388 and 27,097 cells were manually labeled by two cytopathologists (LJV and XL) 325 

and used to train and validate the cell level model respectively from the cell-level training and 326 

validation cohort. A breakdown of cell types present in this training and validation cohort is listed 327 

in Table 2. These cell images were combined into the following classes: 1) urothelial cells 328 

(benign/atypical), 2) urothelial cells with polyomavirus cytopathic effect, 3) debris, crystals and 329 

red blood cells (RBC), 4) leukocytes, 5) clusters of leukocytes, and 6) squamous cells. UroNet was 330 

developed using a residual neural network (ResNet18), augmented with an auxiliary layer which 331 

combines the morphometric information (e.g., area/size, eccentricity, etc.) with features extracted 332 

from ResNet18 by fusing the penultimate layer of the network with this information. The auxiliary 333 

neural network first maps the number of morphometric features, 𝑥!"""""⃗ , to the number of ResNet18 334 

features using a multi-layer perceptron, 𝑓" . Then the morphometric information (same 335 

dimensionality as the ResNet features) is fused with the deep learning features using a gated 336 

attention operation, which decides dynamically on a cell-by-cell basis which set of features (deep 337 

learning, 𝑧#$""""""⃗ , vs morphometric, 𝑧!""""⃗ ) to weight more. The weight is dynamically determined using 338 

the gating neural network, 𝑓% 75.  339 

𝑧′""⃗ = 𝛼#$	𝑧#$""""""⃗ + 𝛼! 	𝑧!""""⃗ 	 340 

𝛼#$ =
exp	(𝑎#$)

exp(𝑎#$) + exp	(𝑎!)
	; 𝛼! =

exp	(𝑎!)
exp(𝑎#$) + exp	(𝑎!)

	 341 

𝑎#$ = 𝑓%(𝑧#$""""""⃗ ); 	𝑎! = 𝑓%(𝑧!""""⃗ ) 342 
𝑧!""""⃗ = 𝑓"(𝑥!"""""⃗ ) 343 

 344 
This operation permits UroNet to filter out cells with significant size differences (e.g., leukocytes 345 

are much smaller than urothelial cells). After model training using the PathflowAI package 76, the 346 
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performance of UroNet was assessed using the cell-level validation set through the area under the 347 

receiver operating characteristic curve (AUC), reported for each class. To assess how much weight 348 

was placed on the morphometric features for prediction, we investigated the attention weights, 𝛼, 349 

across the validation set. We used Integrated Gradients 77,78, a deep learning interpretation method, 350 

to assess which specific image/deep learning and morphometric features were important for each 351 

cell type. 352 

 353 
Table 2: Number of cell types used to train/validate UroNet and AtyNet 354  

Benign 
Urothelial 

Cells 

Atypical 
Urothelial 

Cells 

Polyomavirus 
Infected Cells 

RBC Crystals Debris Leukocyte Leukocyte 
Cluster 

Squamous 
Cells 

Training 3522 3795 3606 11199 220 63317 8037 3425 11267 

Validation 880 949 901 2800 55 15830 2009 856 2817 

 355 
 356 
NC Ratio Estimation  357 

For cells classified as urothelial, the NC ratio was calculated for both isolated and cluster cells 358 

using a segmentation neural network, UroSeg, which employed a U-Net architecture to assign on 359 

a pixelwise basis the presence of nucleus, cytoplasm, or background 48,79,80. These areas were 360 

annotated/outlined by cytopathologists and UroSeg was trained and validated on 3,690 and 1,231 361 

urothelial cells respectively. Performance was reported using the area under the receiver 362 

operating characteristic curve (AUC), reported on a pixelwise basis. For select cell clusters, we 363 

compared the impact of running BorderDet, followed by UroNet and UroSeg to calculate the NC 364 

ratio as compared to running UroSeg then watershedding, as was originally done by the previous 365 

AutoParis algorithm.  366 

 367 

Atypia Score 368 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.23286639doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286639


 17 

Several cytopathologists determined whether every urothelial cell extracted from the cell-level 369 

training and validation cohort (Table 2) was benign or atypical, based on existing markers of 370 

atypia (e.g., presence of nuclear membrane irregularity, abnormal chromatin, hyperchromasia, 371 

etc.). From this information, AtyNet, a CNN based on ResNet18 with a similar architecture as 372 

UroNet, was trained to recapitulate these subjective findings 81. For every urothelial cell, AtyNet 373 

calculates a subjective marker of atypia– the atypia score– which is a value from 0-1 that reflects 374 

the probability that a cell is atypical. We used IntegratedGradients, a deep learning interpretation 375 

method, to assess which specific image/deep learning and morphometric features were important 376 

for atypia assignment. 377 

 378 

Calculation of Cell and Cluster Slide-Level Scores 379 

All extracted individual cell and cluster level statistics are placed into Rich Information Frames 380 

(RIF), which are data frame/tabular data structures 48. For any given WSI, there are three RIFs 381 

(see Table 3 for description of features): 382 

1. Isolated-Cell-RIF: Stores morphometric measures; bounding box locations within 383 

specimens, cell type assignment probabilities; NC ratios; and atypia scores for each cell 384 

not associated with clusters (isolated urothelial cells). 385 

2. Cluster-Cell-RIF: Stores morphometric measures; bounding box locations within 386 

specimens; cell type assignment probabilities; NC ratios; and atypia scores for each cell 387 

associated with clusters, in addition to their cluster assignment label (cluster urothelial 388 

cells). 389 

3. Cluster-RIF: Stores bounding box locations within WSI; cluster size; cytoplasmic 390 

borders; area of dense regions in cluster; and associated cluster label/identifier. 391 
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Information on cellular atypia (e.g., number of atypical cells), number of urothelial cells, 392 

amongst other cluster-level measures, were added to this RIF from the Cluster-Cell-RIFs. 393 

 394 

All RIFs are cross-tabulated to form a Slide Inference Frame (SIF), which represents slide-level 395 

statistics, aggregated across all urothelial cells and urothelial cell clusters. This is accomplished 396 

by thresholding the cutoff probabilities for the cell and cluster-level scores and counting the 397 

number of cells and clusters which meet these criteria. For instance, given an atypia score cutoff 398 

of 0.7 (i.e., cell is atypical if AtyNet assigns a 70% probability), a cluster is deemed to exhibit 399 

cellular atypia if, for instance, more than 20% of the cells within the cluster are atypical under 400 

this definition. Based on the definition of a urothelial cluster (e.g., number of urothelial cells), 401 

the number of atypical clusters within the WSI can be estimated. All urothelial cells with an NC 402 

ratio of 0 were removed prior to calculating these scores. SIF contains the following statistics: 403 

1. Isolated cell subscores: Derived from Isolated-Cell-RIF, for cells which were not 404 

associated with clusters, including the following statistics: 1) number of urothelial cells; 405 

2) number of atypical urothelial cells as determined using the atypia score; 3) number of 406 

atypical urothelial cells as determined using the NC ratio; 4) number of urothelial cells; 407 

and 5) center and spread of various morphometric measures. 408 

2. Cluster cell subscores: Derived from Cluster-Cell-RIF. Similar to isolated cell subscores, 409 

only considering cells which were associated with / identified within clusters. 410 

3. All cell subscores: Combines isolated and cluster cell subscores, considering all cells, 411 

irrespective of whether there was a cluster assignment. 412 

4. Cluster subscores, representing aggregate Cluster-RIF statistics, including: 1) number of 413 

urothelial clusters (defined by a minimum threshold of urothelial cells); 2) number of 414 
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atypical urothelial clusters (defined by either NC ratio or atypia score); 3) number of 415 

dense clusters; and 4) number urothelial clusters that are both atypical and dense. Unlike 416 

the previous three scores which focus on individual urothelial cells, identified urothelial 417 

cell clusters represent the principal unit of analysis. 418 

 419 

Using AutoParis-X, RIF-SIF scores were calculated across the slide-level training and 420 

validation cohorts. We added the following patient-level characteristics to the RIF-SIF scores: 1) 421 

age; 2) sex; 3) history of hematuria; and 4) specimen source 82,83. We also noted where slides 422 

contained significant blood, high cellularity, acellularity, neobladders (abundant degenerated 423 

enterocytes) and scanning artifacts. 424 

 425 

Table 3: Cell/Cluster/Slide-Level Features and their descriptions 426 
Level Predictor Algorithm Description 

Cell Urothelial cell 
score 

UroNet Predicted probability of urothelial cell from convolutional neural network, used to 
dynamically isolate urothelial cells in specimen 

Atypia score  AtyNet Predicted probability of presence of atypical features in urothelial cell (e.g., 
hyperchromasia, irregular nuclear membrane, etc.), determined using convolutional 
neural network 

NC Ratio UroSeg Nuclear to cytoplasm area ratio derived from pixelwise segmentation of nucleus and 
cytoplasm using segmentatio neural network 

Morphometric 
measures 

Custom Complements binning of urothelial cells and assignment of atypia score, features: 1) 
area; 2) convex area; 3) eccentricity; 4) equivalent diameter; 5) extent; 6) Feret’s 
diameter; 7) maximum diameter; 8) filled area; 9) major axis length; 10) minor axis 
length; 11) perimeter; and 12) solidity 

Cluster Dense Area BorderDet Whether cluster contains dense architecture of overlapping and indistinguishable 
cytoplasmic borders 

Number 
urothelial cells 

BorderDet/U
roNet 

Whether cluster contained  urothelial cells, determined by counting cells with high 
urothelial cell score 

Number atypical 
urothelial cells 
(atypia score) 

BorderDet/U
roNet/AtyNe
t 

Whether cluster contained abnormal urothelial cells, determined by counting cells 
with high atypia score 

Number atypical 
urothelial cells 
(NC ratio) 

BorderDet/U
roNet/UroSe
g 

Whether cluster contained abnormal urothelial cells, determined by counting cells 
with high NC ratio 

Dense & 
Atypical 

BorderDet/U
roNet/AtyNe
t/UroSeg 

Whether cluster contained both dense architecture and atypical cellular features 

Slide Patient 
characteristics 

Supplied Includes age, sex, history of hematuria, specimen source (e.g., voided), presence of 
specimen artifact 

Isolated Cell-
SIF Scores 

Bayesian 
Optimization 

Counting the number of cells with the following features from cells not associated 
with clusters: 1) cellularity (urothelial score), 2) atypia (atypia score), 3) atypia (NC 
ratio), 4) other morphometric measures 
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Cluster Cell-SIF 
Scores 

Bayesian 
Optimization 

Counting the number of cells with the following features from cells associated with 
clusters: 1) cellularity (urothelial score), 2) atypia (atypia score), 3) atypia (NC 
ratio), 4) other morphometric measures 

All Cell-SIF 
Scores 

Bayesian 
Optimization 

Combines Isolated Cell-SIF Scores and Cluster Cell-SIF Scores 

Cluster-SIF Bayesian 
Optimization 

Counting the number of clusters with the following features: 1) number of urothelial 
clusters, 2) atypical urothelial clusters (atypia score), 3) atypical clusters (NC ratio), 
4) dense clusters, 5) dense and atypical clusters 

Atypia Burden 
Score 

Mixed 
effects 
machine 
learning 

Integrates all slide-level predictors using machine learning model to calculate a score 
between 0-1 reflecting overall specimen atypia, correlated with UC diagnostic 
category 

 427 
Estimating Specimen Atypia with Machine Learning  428 

Specimen atypia was reported through dichotomization of TPS categories into the following 429 

classes: 1) negative, atypical and 2) suspicious, positive. The Atypia Burden Score (ABS) reflects 430 

the predicted probability of a specimen being atypical as assessed by AutoParis-X. We 431 

implemented several machine learning and statistical modeling approaches to predict specimen 432 

atypia, including: 1) generalized linear mixed effects modeling (hierarchical logistic regression; 433 

GLMM; brms package, R v4.1), accounting for patient- and pathologist-level random intercepts, 434 

2) Random Forest, which does not account for clustering by patient, 3) Gaussian Process Tree 435 

Boosting (GPBoost), and 4) Bayesian Additive Regression Trees (BART) 58–61,64. GPBoost and 436 

BART account for clustering by patient by fitting patient- and pathologist-level random 437 

intercepts while capturing interactions and nonlinear associations between SIF predictors using 438 

ensemble tree models, 	𝑓%(𝑥⃗):  439 

𝑦& ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝&) 440 
𝑙𝑜𝑔𝑖𝑡(𝑝&) = 𝛽' + 	𝑓%(𝑥⃗) + 𝛽(𝑎𝑔𝑒& + 𝛽)𝑠𝑒𝑥& + 𝛽*ℎ𝑒𝑚𝑎𝑡𝑢𝑟𝑖𝑎& + 𝑏+,-&./-[&] + 𝑏+,-23435&6-[&] 441 

𝑏+,-&./-[&] ∼ 𝑁(0, 𝜏()) 442 
𝑏+,-23435&6-[&] ∼ 𝑁(0, 𝜏))) 443 

𝛽 ∼ 𝑁(0, 𝜈)) 444 
 445 
Overall model performance was communicated using fivefold cross-validation, which randomly 446 

partitions the data into a training and validation set and reports the overall performance (using 447 

the AUC) over the validation folds. Specimens belonging to the same patient were partitioned 448 
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into the same training/validation fold for each cross-validation split to avoid potential inflation of 449 

test statistics. Confidence intervals (CI) were reported using 1000-sample nonparametric 450 

bootstrapping of each fold to yield 1000 samples of cross-validation statistics. Cell and cluster-451 

level thresholds (e.g., atypical cell if NC>0.7; atypical cluster if at least 3 urothelial cells are 452 

atypical), which are used to generate RIF-SIF scores, were optimally aligned with specimen 453 

atypia through a Bayesian Optimization routine 57. 454 

 455 

Interpretation 456 

We identified significant ABS predictors by extracting salient interactions from the tree ensemble 457 

models and reporting odds ratios (OR) from univariable and multivariable Bayesian GLMM 458 

models: 𝑙𝑜𝑔𝑖𝑡(𝑝&) = 𝛽⃗ ⋅ 𝑥⃗ 	+ 𝑏+,-&./-[&] + 𝑏+,-23435&6-[&]. As many of the ABS predictors were 459 

highly multicollinear, variance inflation factors and horseshoe lasso priors were used to select 460 

predictors 84,85. Univariable associations adjusting for age, sex and hematuria were reported to 461 

give credence to omitted collinear predictors in the multivariable statistical modeling. 462 

Hierarchical Bayesian cumulative link models (i.e., ordinal regression) in a similar specification 463 

were also used to report associations between the predictors and specimen atypia, treating the 464 

urine cytology assignment as an ordinal variable 86,87. Statistical significance was reported using 465 

the p-value, as derived from the probability of direction (pd): 𝑝 ≈ 2 ∗ (1 − 𝑝𝑑). A p-value less 466 

than 0.05 indicates a significant atypia predictor. Credible intervals, similar to confidence 467 

intervals, communicated uncertainty in the effect estimates. 468 

 469 

Web Application and Software Availability 470 
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We also developed an interactive web application which allows for rapid assessment of cytology 471 

slides. In brief, users first select a slide to examine. An ABS score is returned for the specimen as 472 

assessed using AutoParis-X. The Cell-RIF is converted into a 2D scatter plot of the NC ratio and 473 

atypia score– each point represents a cell. Using a “lasso tool”, users select cells within this 474 

scatterplot. The urothelial cells are highlighted on a zoomable WSI viewer (openseadragon) and 475 

additionally made available through an image gallery for additional examination (Figure 2) 88. 476 

The WSI viewer will highlight cells based on their relative degree of atypia as assessed 477 

algorithmically, focusing the end-user on a small subset of potentially malignant cells. A demo 478 

of this interactive web application can be found at the following URL: 479 

http://edit.autoparis.demo.levylab.host.dartmouth.edu/ (user: edit_user, password: qdp_2022; 480 

full-screen display is encouraged for optimal viewing experience). The web application also 481 

features a tutorial video for operating the application. The AutoParis-X software is also open-482 

source, available to download on GitHub (https://github.com/jlevy44/AutoParisX) and installable 483 

using the following PyPI package: autoparis. Users aiming to run AutoParis-X will need to train 484 

compatible neural networks as neural networks were only trained on data from a single 485 

institution and would need additional finetuning to generalize. 486 
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 487 
Figure 2: AutoParis-X Web Application: A) Cytopathologist selects patient/specimen scanned 488 
and processed the previous day, which outputs Atypia Burden Score; B) Urothelial cells are 489 
identified based on a cutoff probability selected by the user; C) Individual cells are plotted using 490 
scatter plot, which depicts each cell’s NC ratio and atypia score; user selects most atypical cells 491 
for viewing via the WSI viewer and gallery using the “Lasso” tool; D) WSI viewer– red points 492 
are sized by degree of atypia and identify important urothelial cells to assess/zoom in; E) gallery 493 
view enables rapid examination of individual cells, sorting them by their degree of atypia 494 
 495 
Results 496 

Performance of UroNet 497 

UroNet demonstrated remarkable performance in the task of delineating among 6 different 498 

classes of cell types / objects to determine which cells are urothelial (Figure 2; Table 4). Figure 499 

3A demonstrates a nearly perfect ROC curve (AUC=0.997 macro-averaged) for all 6 cell types 500 

across the validation set, indicating high classification accuracy. In addition, raw imaging 501 

features interpreted using IntegratedGradients corroborated with known histomorphology for 502 

specific cell types (e.g., highlighting dense chromatin to depict urothelial cells, surrounding 503 

membrane for squamous cells, etc.; Figure 3B). Many morphometric features were found to be 504 

important– for instance: 1) eccentricity as a defining feature of urothelial cells versus other cell 505 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.23286639doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286639


 24 

types, 2) solidity for RBCs, 3) convex area as an important predictor for leukocyte clusters which 506 

have highly irregular formations, and 4) both convex area and solidity for squamous cells, which 507 

are larger than the other cell types and typically solid shapes without any notable deformations 508 

(Supplementary Figure 1). These findings suggest that UroNet can accurately identifying 509 

urothelial cells, important for establishing assessment of urothelial cells as the basis for 510 

AutoParis-X’s automated assessment. 511 

 512 

 513 
Figure 3: Performance of UroNet/UroSeg/AtyNet: A) Receiver operating characteristic curves 514 
for each cell type from the internal validation set (UroNet) and for delineating atypical versus 515 
benign urothelial cells (AtyNet); B) Integrated Gradients heatmap localizing important features 516 
identified using UroNet for urothelial cells, squamous cells and leukocyte clusters; C) Integrated 517 
Gradients heatmap localizing important features identified using AtyNet for one benign 518 
urothelial cell / cell cluster, followed by two atypical cell images; D) Example ground truth 519 
segmentation masks (left; background- black, cytoplasm- red, nucleus- yellow), original images 520 
(center) and segmentation masks predicted using UroSeg (right); E) Receiver operating 521 
characteristic curves for background, cytoplasm and nucleus (pixelwise assessments) from the 522 
internal validation set (UroSeg); F) Ground truth versus UroSeg predicted NC ratios, derived 523 
from the segmentation results 524 
 525 
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Table 4: Performance Statistics for UroNet, UroSeg, and AtyNet; 95% confidence intervals 526 
estimated using 1000-sample non-parametric bootstrapping 527 

Algorithm Quantity Measure Estimate 2.5% CI 97.5% CI 
UroNet Urothelial AUC 0.994 0.993 0.995 

Polyomavirus AUC 0.996 0.995 0.996 
Debris, 

Crystals, RBCs 
AUC 0.998 0.998 0.998 

Leukocytes AUC 0.997 0.996 0.998 
Leukocyte 

Clusters 
AUC 0.997 0.996 0.997 

Squamous Cells AUC 0.998 0.998 0.999 
AtyNet Atypia Score AUC 0.917 0.905 0.929 
UroSeg Background AUC 0.993 0.993 0.993 

Cytoplasm AUC 0.977 0.977 0.977 
Nucleus AUC 0.944 0.944 0.944 

NC Ratio Spearman 0.965 0.954 0.973 
Mean Absolute Error 0.015 0.014 0.017 

 528 
 529 
Performance of UroSeg 530 

UroSeg, a neural network segmentation tool, demonstrated excellent performance on our internal 531 

validation set in predicting the pixelwise presence of the nucleus and cytoplasm (AUC=0.971 532 

macro-averaged) in order to calculate nuclear to cytoplasm (NC) ratio (Figures 2-3; Table 4). 533 

Figure 3F also shows nearly perfect receiver operating characteristic curves for both the nucleus 534 

and cytoplasm, indicating the high accuracy of UroSeg in predicting these structures. 535 

Additionally, we found that the NC ratios calculated from the segmentation masks produced by 536 

UroSeg correlated nearly perfectly with the ground truth NC ratios (r=0.965; MAE=0.015) 537 

annotated by the cytopathologists (Figure 3G). Figure 3E demonstrates the alignment of the 538 

true and predicted nuclear and cytoplasmic segmentation masks, further highlighting the 539 

accuracy of UroSeg.  540 

 541 
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UroSeg was similarly effective when used in conjunction with BorderDet, our previously 542 

established urothelial cluster border separation tool. Cells extracted from urothelial clusters using 543 

BorderDet and confirmed to be urothelial via UroNet were assessed using UroSeg. We compared 544 

the NC ratios, averaged across each urothelial cluster, in our internal validation set with what 545 

was accomplished using watershedding techniques (which divided the clusters after seeding the 546 

watershed based on the location of the nuclei). Watershedding was not sensitive to the cell type 547 

as it did not leverage BorderDet and UroNet. In addition, for clusters containing urothelial cells 548 

and background debris or other confounding cell types, watershed heavily underestimated the 549 

NC ratio (Figure 4). This was universal across all of the urothelial clusters in the internal 550 

validation set. Through visual examination, it is clear that by precisely demarcating cytoplasmic 551 

borders between immediately adjacent and overlapping cells, BorderDet and UroNet allow for 552 

precise estimation of the NC ratio. Opting for alternative assessment approaches (e.g., 553 

watershedding) could reduce the predictive capacity of slides containing abundance of urothelial 554 

cell clusters by removing or unnecessarily skewing the reported statistics for these cells as 555 

compared to isolated cells. 556 

 557 
 558 
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 559 
Figure 4: Performance of BorderDet and UroSeg on estimating NC ratios for cells in 560 
clusters: A) Estimates derived using watershedding underestimate the NC ratio, whereas 561 
detecting the urothelial cytoplasmic borders then using UroSeg (segmentation masks plotted over 562 
detected urothelial cells) to estimate the NC ratio leads to a higher and more accurate NC ratio; 563 
final cluster contains dense region of significantly overlapping and indistinguishable cytoplasmic 564 
borders, dense area used as a predictor for AutoParis-X; B) Scatterplot comparing watershed-565 
derived and BorderDet derived NC ratios; C) Shift plot indicating BorderDet NC ratios are 566 
higher than that achieved using watershedding  567 
 568 
Performance of AtyNet 569 

Performance for AtyNet, the neural network which provides an atypia score estimate for each 570 

urothelial cell, was equally promising (Figure 2; Table 4). The algorithm achieved an area under 571 

the receiver operating characteristic curve of 0.917 on the internal validation set, indicating a 572 

strong ability to distinguish between atypical and normal cells. Model interpretation using 573 

integrated gradients revealed that the algorithm placed a high emphasis on irregularities in the 574 

nuclear membrane as a key feature in determining cytological atypia (Figure 2B) 56. 575 

 576 

ABS Classifier Performance 577 
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Individual cell and cluster level features were cross tabulated across the slide and assessed using 578 

multiple statistical and machine learning algorithms. Many cellular and cluster level features 579 

correlated closely with specimen atypia (Supplementary Figures 2-4). Atypical urothelial cells 580 

as defined by both the NC ratio and atypia score, which were contained within clusters were, in 581 

some cases, more predictive of specimen atypia than assessment of isolated cells alone (e.g., 582 

cells with high NC ratio in clusters were more predictive than isolated cells with high NC ratio), 583 

further suggesting the importance of employing BorderDet for separating cells. The number of 584 

urothelial cells and cell clusters correlated directly with potential for malignancy. Urothelial cell 585 

clusters which were both atypical and contained dense regions were the third most predictive 586 

variable when assessed using univariable regression. 587 

 588 

As part of the AutoParis-X framework, each machine learning model outputs the Atypia Burden 589 

Score (ABS)– the probability of assigning suspicious or positive UC exam as judged using 590 

AutoParis-X. Across all algorithms, ABS correlated closely with specimen atypia. The machine 591 

learning models which accounted for patient and pathologist-level variation, GPBoost and 592 

BART, outperformed all other approaches with AUCs of 0.89 and 0.88 respectively (Figure 5A; 593 

Table 5). The generalized linear mixed effects models also performed well. Across all models, 594 

ABS scores preserved the ordering of the UC categories 595 

(Negative<Atypical<Suspicious<Positive; Figure 5B). We fit an ordinal regression model to this 596 

data, which demonstrated a strong positive association with atypia (UC categories; 𝛽 =597 

3.61; 95%𝐶𝐼: [3.12 − 4.11]; 𝑝 < 0.0001). This information is corroborated by density heatmaps 598 

depicting the NC Ratio and Atypia score for individual urothelial cells across the entire cohort, 599 

after being filtered using UroNet. This yielded more than 6 million cells, which were separated 600 
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based on their UC class. Figure 5D demonstrates the progression in cellular atypia across the 601 

categories– negative cases typically do not contain cells that have both high NC ratio and atypia, 602 

while these cells can be increasingly found at higher UC categories. Positive cases contain many 603 

cells that are both highly atypical with high NC ratio. 604 

 605 

 606 
Figure 5: ABS Classifier Performance: A) Receiver operating characteristic curves illustrating 607 
performance of ABS classifiers; B) Boxplot of raw ABS scores predicted by GPBoost and 608 
Random Forest by UC class; C) Point estimates and 95% credible intervals for predictors 609 
uncovered from final multivariable Bayesian hierarchical model; D) Density plot of NC Ratios 610 
and Atypia scores cross tabulated across over 6 million cells from the retrospective cohort, 611 
divided by UC classes, demonstrating progression of cells to take on higher NC ratios and Atypia 612 
scores at higher UC classes 613 
 614 
Table 5: Performance statistics for ABS Classifiers; 95% confidence intervals estimated using 615 
1000-sample non-parametric bootstrapping 616  

AUC 2.5% CI 97.5% CI 
RF 0.873 0.846 0.897 
GPBoost 0.889 0.866 0.913 
BART 0.876 0.847 0.901 
BGLMM 0.833 0.788 0.873 
BGLMM-Int 0.843 0.808 0.874 

 617 
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Table 6: Effect estimates, 95% credible intervals and p-values for multivariable regression 618 
model 619 

Parameter OR 2.5% CI 97.5% CI p-value 
Number of Clusters 1.31 1.06 1.68 0.016 
Age 1.57 1.07 2.39 0.029 
History of Hematuria 1.40 1.17 1.69 0.003 
Dense/Atypical Clusters 1.84 1.41 2.39 <0.001 
Number Isolated Atypical Cells 1.81 1.32 2.44 <0.001 
Age:Number Isolated Atypical Cells 0.80 0.65 0.99 0.050 

 620 
Univariable and Multivariable associations with Specimen Atypia 621 

Table 6 demonstrates the importance of the individual slide level predictors through both 622 

univariable and multivariable regression modeling. A few predictors remained in the unpenalized 623 

statistical model after applying the horseshoe lasso (Figure 5C). This included positive 624 

associations with number of clusters, number of both atypical and dense clusters, number of 625 

isolated atypical cells and an interaction between age and atypia. The interaction demonstrates 626 

that overall specimen atypia younger individuals more greatly impacted by number of atypical 627 

urothelial cells as compared to older individuals.   628 

 629 

Web Application Example 630 

As a demonstration of Autoparis-X’s ability to facilitate rapid examination of UC specimens, we 631 

examined four specimens with the web application (see Supplementary Figures 5-7 for 632 

screenshots). Among thousands of specimens examined using this web tool, select cases 633 

(negative, atypical, suspicious, positive) can be further inspected using the demo application (see 634 

Web Application and Software Availability). The first case (Supplementary Figure 5) 635 

yielded an Atypia Burden Score of 0.14. Urothelial cells were selected with high atypia and were 636 

plotted on the WSI, revealing their locations. Zooming in on the WSI confirmed the reported 637 

cell-level statistics. We also used the table as means to rapidly examine all atypical cells in order 638 
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of decreasing atypia as a faster method to examine cells versus zooming in using the web 639 

application. These examinations confirmed that this was in fact an atypical specimen. The 640 

second case produced an atypia burden score of 0.6– a similar examination revealed specimen 641 

atypia on par with that of a suspicious assignment. The final case was a positive patient with an 642 

atypia burden score of 0.76. We focused on only a few cells which demonstrated the highest 643 

potential for malignancy in order to focus our examination given the high cellularity of the 644 

specimen. Many of these cells were nested in urothelial cell clusters. This search identified cells 645 

which were indeed highly malignant morphologically, allowing for rapid assignment of a 646 

positive finding. In Supplementary Figure 8, we used the WSI viewer to zoom in on a few 647 

malignant cells identified using the AutoParis-X web application. 648 

 649 

Discussion 650 

Advances in urine examination from ancient times to the information age have been 651 

accompanied by improvements in both specimen preparation and rigorous quantitative bladder 652 

cancer screening criteria 4. Urine cytology (UC) examination for specimen atypia has emerged as 653 

the staple of modern-day bladder cancer screening and is often accompanied by more invasive 654 

methods for cases demonstrating suspicious or positive classifications. For example, TPS is a 655 

widely used grading system in urine cytology screening for bladder cancer, which assigns four 656 

main categories based on the presence of high-grade urothelial carcinoma cells and specific 657 

cellular features. Yet, despite advances in manual examination methods, there is often poor inter-658 

rater variability in the interpretation of atypical or suspicious specimens, and TPS does not 659 

include rigorous criteria for evaluating urothelial cell clusters 11,17,89–94. Automation in 660 

cytopathology can improve the reliability of cytological assessments and help clinicians address 661 
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growing numbers of tests and avoid diagnostic errors, as has been demonstrated in the 662 

gynecologic cytology market with the adoption of systems such as ThinPrep® Imaging System 663 

and FocalPoint™ GS Imaging system 24. Existing systems for semi-autonomous UC examination 664 

have addressed many existing challenges, though have yet to adequately account for many 665 

additional complexities which can confound assessment (e.g., clusters, polyomavirus, etc.) 20,21. 666 

In this study, we detailed the development of an artificial intelligence tool, AutoParis-X, which 667 

improves upon its previous incarnation, to allow for the rapid and nuanced examination of UC 668 

specimens; validation on a large-scale retrospective cohort illustrated the maturity and technical 669 

sophistication of this tool. For instance, challenges associated with calculation of NC ratios and 670 

overall cellular atypia within dense, overlapping urothelial cell clusters were addressed with 671 

remarkably good performance 44. The importance of many previously understudied predictors 672 

were evaluated (e.g., number of atypical and dense urothelial clusters). Finally, the featured 673 

interactive web application was designed for ease-of-use for semi-autonomous diagnostic 674 

decision making. 675 

 676 

All of these innovations suggest AutoParis-X’s potential to greatly facilitate the process of 677 

bladder cancer screening, potentially resulting in a significant increase in diagnostic accuracy 678 

and a subsequent decrease in potential avenues for error (similar to what occurred with wide 679 

adoption of FocalPoint for Pap tests) 31,95. For instance, results suggest that UroSeg can be used 680 

to accurately calculate NC ratios in a high-throughput manner. AutoParis-X can be used to 681 

examine hundreds to thousands of cytology specimens overnight, permitting semi-autonomous 682 

evaluation from the cytopathologist via the web application the following day (or in real time as 683 

results are generated). This is expected to increase the number and throughput of cytology exams 684 
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that can be performed by any given institution while accounting for the necessary safeguards 685 

(i.e., secondary manual review of random cohort of cases as is now done with Pap tests). Cases 686 

unable to be assessed using this web-based platform could be shunted to the classical manual 687 

interpretation pathway. With any newly introduced technology, rigorous real-world clinical trials 688 

will be required to evaluate the potential impact of adopting this system. As there are only 689 

limited applications of AI technologies in digital pathology that have been approved by the FDA 690 

for clinical usage, several existing practicalities are worth addressing before AutoParis-X can be 691 

safely employed in the clinic. Social barriers for adoption can be identified through surveys on 692 

attitudes and beliefs about the tool, which will allow for iterative refinement of the output display 693 

and additional algorithmic finetuning. AutoParis-X will also need to demonstrate non-inferiority 694 

in a clinical trial (i.e., random assignment of individuals to assessment via manual and semi-695 

autonomous examination). As non-inferiority is evaluated with respect to a ground-truth 696 

measurement, it will be difficult to prove the utility of AutoParis-X to assign specimen atypia 697 

based on alignment to cytopathologist ratings alone given the high inter-observer variation (e.g. 698 

there is no universal, quantitative ground truth in urine cytology) 12,17,93. Additional validation 699 

will likely require assessment of its capacity to predict more objective outcomes, such as disease 700 

recurrence or death 96–99. Additionally, its cost-effectiveness over traditional methods will also 701 

need to be proven (e.g., CPT codes, RVUs, number of specimens per day, technologist and 702 

pathologist time spent), which will communicate revenue to be expected / workforce needed 703 

when operating the device 100–103. A clearer understanding of how these tools can impact clinical 704 

decision making is needed before implementation (e.g., what conditions/thresholds are necessary 705 

to flag the case for manual review under a microscope) 104. 706 

 707 
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There are several limitations worth noting that will require future improvements and 708 

developments. We observed potential scanning artifacts (e.g., pixelation of cells), deficiencies in 709 

specimen preparation, high cellular density, and blood in the samples, which complicate the 710 

assessment. However, we have not yet developed methods to address these challenges. In 711 

addition to surveying attitudes, beliefs and adoption barriers, cytopathologists unfamiliar with 712 

digital technologies may favor assessment through analog means (e.g., microscope)– this will 713 

either require additional training and education on how to operate these nascent technologies or 714 

may require further subspecialization / training of cytopathologists to perform a digital 715 

assessment 105–109. AutoParis-X does not account for Z-stacking of cytology slides which can be 716 

accounted for in future iterations to model cells in 3D 73,110. Annotation of individual cells and 717 

clusters were performed by a small group of cytopathologists. Some of these annotations (e.g., 718 

nucleus, delineation of cytoplasmic borders in clusters, cell type) may differ between 719 

cytopathologists. In addition, data was only collected and validated at a single institution which 720 

may limit generalization of these approaches as other institutions may have heterogenous patient 721 

characteristics/demographics and different specimen preparation methods 111. Additional data 722 

collection from multiple institutions can ameliorate these potential challenges by improving the 723 

diversity of the dataset, allowing additional flexibility. There is also room for improvement for 724 

deriving slide level features. While we utilized Bayesian Optimization to decide which 725 

cells/clusters were atypical, dense, clusters, etc., consideration of additional thresholds or forms 726 

to summarize this information could improve the model accuracy. There exists a plethora of 727 

modeling approaches which can be utilized to predict specimen atypia. For instance, attention 728 

and graph-based neural network architectures can take as input the entire WSI broken into 729 

constituent cells, each of which has stored attribute/morphological information. and perform 730 
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what amounts to a weighted average across the cells to derive a final summary statistic 112,113. 731 

The ordinal nature of UC class assignment was not explicitly taken into account for most of the 732 

results in this study and can be incorporated into these machine learning models using the 733 

appropriate model likelihoods 114. Institutions aiming to adopt these digital technologies will also 734 

require significant computing infrastructure. This requires the purchase and utilization of GPU 735 

enabled compute nodes (cloud computing services such as AWS and Google Cloud present 736 

viable alternatives to in-house purchases), adoption of containerized workflows, which 737 

standardize and scale analyses, and hosting of front-facing applications with appropriate 738 

databasing, security and credentialling.  739 

 740 

Conclusion 741 

Bladder cancer screening through urine cytology exams is a tedious and fatigable process as 742 

cytopathologists assess tens to hundreds of thousands of cells per specimen. Algorithmic 743 

techniques to emulate these assessments are beginning to address the incredibly nuanced nature 744 

of these assessments. This study featured the design and large-scale validation of a digital 745 

diagnostic decision aid, AutoParis-X, which iterates on previous incarnations of urine cytology 746 

assessment algorithms to address many remaining complexities associated with challenging 747 

examination; further, it features a web application that allows for accurate and rapid examination 748 

of specimens. We encourage interested parties to utilize the AutoParis-X workflow and consider 749 

validating and finetuning the algorithm for other practice settings to enhance its wider 750 

generalizability. The current study demonstrated that quantitative digital urine cytology 751 

assessment methods have come of age and are prepared for further rigorous prospective 752 

evaluation to investigate its future role in augmenting clinical diagnostic decision making.  753 
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Appendix 1026 

 1027 
Supplementary Figure 1: Important morphometric measures: A) Urothelial cells with high 1028 
eccentricity; B) RBCs and crystals with high solidity; C) Leukocyte clusters with high convex 1029 
area; D) Squamous cell with high convex area; E) Squamous cell with high solidity; F) 1030 
Important morphometric features as determined using IntegratedGradients to accompany raw 1031 
image features 1032 
 1033 

 1034 
Supplementary Figure 2: Correlation Each Slide Feature and UC Atypia, ordered by 1035 
predictiveness of each feature (spearman correlation / ordinal regression) 1036 
 1037 
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 1038 
Supplementary Figure 3: Correlation Each Slide Feature and ABS, ordered by 1039 
predictiveness of each feature for UC diagnostic category (spearman correlation / ordinal 1040 
regression) 1041 
 1042 
Supplementary Table 1: Spearman correlation between imaging predictors, ABS and original 1043 
UC Class 1044  

ABS Original Diagnosis 
Predictor r 2.5% CI 97.5% CI p-value r 2.5% CI 97.5% CI p-value 
Overall number atypical cells 0.78 0.76 0.8 <0.001 0.38 0.33 0.42 <0.001 
Overall number cells with high NC 0.53 0.48 0.56 <0.001 0.27 0.22 0.32 <0.001 
Number of cells 0.63 0.6 0.67 <0.001 0.29 0.24 0.34 <0.001 
Number of isolated atypical cells 0.73 0.7 0.75 <0.001 0.37 0.32 0.42 <0.001 
Number of isolated cells with high NC 0.44 0.39 0.48 <0.001 0.24 0.19 0.29 <0.001 
Number of atypical cells in clusters 0.75 0.73 0.78 <0.001 0.36 0.31 0.41 <0.001 
Number of cells in clusters with high NC 0.57 0.53 0.61 <0.001 0.3 0.25 0.35 <0.001 
Number of dense clusters 0.45 0.4 0.49 <0.001 0.14 0.09 0.2 <0.001 
Number of clusters 0.53 0.49 0.57 <0.001 0.21 0.15 0.26 <0.001 
Number of dense/atypical clusters 0.68 0.65 0.71 <0.001 0.37 0.32 0.41 <0.001 
Number of atypical clusters 0.77 0.75 0.79 <0.001 0.36 0.31 0.41 <0.001 
Age 0.21 0.16 0.26 <0.001 0.11 0.06 0.16 <0.001 

 1045 
Supplementary Table 2: Summary statistics (median, interquartile range) for each slide level 1046 
feature and UC Class 1047  

Overall Negative Atypical Suspicious Positive p 
N 1252 810 296 98 48 

 

Overall number 
atypical cells 
(median [IQR]) 

111.00 [24.00, 
374.50] 

59.00 [16.00, 
240.50] 

145.50 [46.75, 
469.00] 

424.50 [151.50, 
1018.50] 

2029.50 [795.50, 
4322.00] 

<0.001 

Overall number 
cells with high NC 
(median [IQR]) 

39.00 [6.00, 
170.50] 

24.00 [3.00, 
120.75] 

68.00 [10.00, 
197.75] 

96.00 [36.00, 
279.25] 

436.00 [160.50, 
1995.75] 

<0.001 

Number of cells 
(median [IQR]) 

2046.50 
[590.25, 
5856.25] 

1480.00 
[370.25, 
4604.25] 

2345.50 
[933.50, 
5629.50] 

5734.00 
[2165.50, 
10514.00] 

12178.00 
[6810.00, 
22094.75] 

<0.001 
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Number of isolated 
atypical cells 
(median [IQR]) 

57.50 [14.75, 
212.25] 

36.00 [9.00, 
130.25] 

94.50 [25.00, 
252.75] 

220.50 [84.50, 
652.00] 

1308.50 [565.25, 
3127.50] 

<0.001 

Number of isolated 
cells with high NC 
(median [IQR]) 

11.00 [1.00, 
53.00] 

7.00 [1.00, 
38.00] 

17.00 [3.00, 
60.00] 

28.00 [6.25, 
89.75] 

194.00 [51.00, 
821.00] 

<0.001 

Number of atypical 
cells in clusters 
(median [IQR]) 

24.00 [5.00, 
110.25] 

15.00 [3.00, 
65.00] 

36.00 [10.00, 
123.75] 

110.50 [34.25, 
306.75] 

631.50 [236.75, 
1578.50] 

<0.001 

Number of cells in 
clusters with high 
NC (median [IQR]) 

16.00 [2.00, 
94.25] 

9.00 [1.00, 
53.00] 

29.00 [5.00, 
118.25] 

59.00 [23.25, 
122.00] 

155.00 [92.25, 
1159.25] 

<0.001 

Number of dense 
clusters (median 
[IQR]) 

14.00 [4.00, 
50.00] 

11.00 [3.00, 
45.75] 

15.00 [4.75, 
40.25] 

22.50 [9.25, 
59.00] 

51.00 [16.50, 
157.00] 

<0.001 

Number of clusters 
(median [IQR]) 

1838.50 
[674.75, 
5228.50] 

1455.50 
[486.25, 
4579.75] 

1974.00 
[807.50, 
4744.25] 

3255.00 
[1574.25, 
6367.25] 

7917.50 
[3695.50, 
11501.00] 

<0.001 

% clusters 
dense/atypical 
(median [IQR]) 

0.01 [0.00, 
0.02] 

0.01 [0.00, 
0.01] 

0.01 [0.01, 
0.02] 

0.02 [0.01, 0.03] 0.03 [0.02, 0.07] <0.001 

Number of atypical 
clusters (median 
[IQR]) 

14.50 [3.00, 
54.25] 

9.00 [2.00, 
36.00] 

20.00 [6.00, 
62.25] 

57.50 [21.25, 
180.75] 

283.50 [105.50, 
530.50] 

<0.001 

ABS (median 
[IQR]) 

0.05 [0.02, 
0.15] 

0.03 [0.01, 
0.08] 

0.07 [0.03, 
0.18] 

0.24 [0.15, 0.40] 0.42 [0.29, 0.57] <0.001 

 1048 

 1049 
Supplementary Figure 4: Additional associations with specimen atypia: A) Boxplots 1050 
depicting correlation between the percentage of urothelial cells with high atypia and UC Class; 1051 
B) Scatterplot demonstrating correlation between slide level atypia via number of cells with high 1052 
atypia and high NC ratio 1053 
 1054 
 1055 
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 1056 
Supplementary Figure 5: Example of identifying malignant cells in atypical slide 1057 
 1058 

 1059 
Supplementary Figure 6: Example of identifying malignant cells in suspicious slide 1060 
 1061 
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 1062 
Supplementary Figure 7: Example of identifying malignant cells in positive slide, only 1063 
focusing on those with high atypia 1064 
 1065 

 1066 
Supplementary Figure 8: Example of atypical cells identified using Autoparis-X web 1067 
application within demonstration on example atypical/positive slides: A) Isolated cell, B) 1068 
Two cells with differing atypia; cell with larger red dot has higher atypia, C-D) Focusing on 1069 
specific cells identified using BorderDet in hard-to-separate clusters; E) Example table of 1070 
malignant cells with reported atypia scores from suspicious case 1071 
 1072 
 1073 
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