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Abstract 1 

Background: Patients exposed to trauma often experience high rates of adverse post-traumatic 2 

neuropsychiatric sequelae (APNS). The biologic mechanisms promoting APNS are currently 3 

unknown, but the microbiota-gut-brain axis offers an avenue to understanding mechanisms as 4 

well as possibilities for intervention. Microbiome composition at the time of trauma exposure has 5 

been poorly examined regarding neuropsychiatric outcomes. We aimed to determine whether 6 

baseline the gut microbiomes of trauma-exposed emergency department patients who later 7 

develop APNS have dysfunctional gut microbiome profiles and discover potential associated 8 

mechanisms.  9 

Methods: We performed metagenomic analysis on stool samples (n=51) from a subset of 10 

adults enrolled in the Advancing Understanding of RecOvery afteR traumA (AURORA) study. 11 

Twelve-week post-trauma outcomes for post-traumatic stress disorder (PTSD) (PTSD checklist 12 

for DSM-5), normalized depression scores (PROMIS Depression Short Form 8b) and somatic 13 

symptom counts were collected. Generalized linear models were created for each outcome 14 

using microbial abundances and relevant demographics. Mixed-effect random forest machine 15 

learning models were used to identify associations between APNS outcomes and microbial 16 

features and metabolic pathways.   17 

Results: Microbial species, including Flavonifactor plautti and Ruminococcus gnavus, which are 18 

associated with inflammation and poor health outcomes, were found to be important in 19 

predicting worse APNS outcomes. Notably, worse APNS outcomes were highly predicted by 20 

decreased L-arginine related pathway genes and increased citrulline and ornithine pathways.  21 

Conclusions: Pro-inflammatory microbes that are enriched in individuals who develop APNS. 22 

More notably, we identified a biological mechanism through which the gut microbiome reduces 23 

global arginine bioavailability, which also has been demonstrated in patients with PTSD.  24 

  25 
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Introduction 26 

Adverse posttraumatic neuropsychiatric sequelae (APNS) such as posttraumatic stress 27 

disorder (PTSD), depression, and somatic symptoms are common after traumatic stress 28 

exposure (1–6). Contemporary limitations in understanding the pathogenesis of APNS are a 29 

barrier to developing effective primary and secondary preventive interventions(1,7). Novel 30 

multidisciplinary approaches applying methodologic advances from other areas of neuroscience 31 

to the early post-trauma period may advance understanding of APNS pathogenesis. 32 

One such area is the study of the microbiome-gut-brain axis. The microbiome-gut-brain 33 

axis has been demonstrated to have an important influence on brain function in neuropsychiatric 34 

disorders(8–10), and has been hypothesized to play an important role in trauma-related 35 

neuropsychiatric disorders(11). Gut microbes affect central nervous system function through the 36 

production of metabolites and neurochemicals(10). For example, short-chain fatty acids such as 37 

butyrate support gut homeostasis by maintaining gut barrier integrity and inducing anti-38 

inflammatory factors which cross the blood-brain barrier (12,13). In contrast, Enterobacteriaceae 39 

expansion can augment neuroinflammatory processes through the lipopolysaccharide (LPS) 40 

endotoxin-mediated activation of the Toll-like receptor 4 (TLR4) pathway, leading to the 41 

production of pro-inflammatory cytokines(14).  42 

While specific mechanisms responsible for it remain incompletely understood, 43 

dysregulated immunity and elevated inflammation are risk factors for PTSD(15). Given the 44 

above known influence of the gut-brain axis on neuroinflammation, these data support the 45 

hypothesis that variations in microbiome characteristics could influence APNS pathogenesis. 46 

This hypothesis is also supported by several small studies which identified broad phylum-level 47 

differences in microbiome characteristics among individuals with PTSD (n=18) as compared to 48 

those without PTSD (n=12) (16), and a study in veterans with cirrhosis which found associations 49 

between lower microbial diversity and a higher abundance of opportunistic microbes with PTSD 50 

symptoms and impaired cognition(17). This hypothesis is also supported by animal studies in 51 

which trauma was found to cause alterations in the microbiome and lead to increased local and 52 

systemic inflammation(8).  53 

In this nested study, we explored the association between the gut microbiome and 54 

APNS development in a subsample of individuals recruited from emergency departments (ED) 55 

in the immediate aftermath of trauma as part of the AURORA study (n=74) and who also 56 

provided stool samples(1). We employed shotgun metagenomic sequencing of stool samples 57 

from patients evaluated and discharged from the ED and machine learning (ML) predictive 58 
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analytics to test the hypothesis that variability in microbiome species and pro- and anti-59 

inflammatory metabolic pathways is associated with APNS outcomes.  60 

 61 

Methods 62 

Study Population and Sample Collection 63 

 The AURORA study began in September 2017; we started enrollment into this nested 64 

study from November 2020 until February 2021. AURORA participants who completed their first 65 

outpatient remote assessment and had not received antibiotics within the previous 6 months 66 

were approached for enrollment into this nested study. Participants also could not have had any 67 

other influences that could cause major microbiome perturbations (e.g., infections, significant 68 

dietary changes). Of the 2,097 AURORA participants subjects approached, 106 agreed to 69 

participate, and we received stool samples from n=74 of these individuals (69.8%) for this 70 

nested study. Stool samples were self-collected at home by participants using OMNIgene•GUT 71 

collection kits (DNAgenotek, catalog no. OMR-200) and sent to the study laboratory. As we 72 

were recruiting for this study and collecting samples during the initial phases of the COVID-19 73 

pandemic, immediate sample collection soon after the traumatic event that was the primary 74 

inclusion criterion for AURORA was not possible. All stool samples were self-collected at least 75 

five days after the initial ED presentation and up to 182 days. Upon receipt, samples were 76 

stored at -80°C until DNA extraction and sequencing were performed. This study was approved 77 

by the University of North Carolina’s institutional review board (IRB protocol #17-0703) and 78 

approved by the UMass Chan Medical School’s institutional review board. 79 

 80 

Outcome Measurements 81 

 After receiving written informed consent from eligible patients, study coordinators from 82 

each participating ED performed data collection for ED-based assessments, including baseline 83 

questionnaires. Follow-up evaluations were internet-based at the two, eight, and twelve-week 84 

intervals. We assessed posttraumatic stress symptoms using the Post Traumatic Stress 85 

Disorder (PTSD) checklist for DSM-5 (PCL-5)(18–21). Per this instrument’s guidelines, a PTSD 86 

diagnosis can be made by summing the self-reported responses to the PCL-5. We used total 87 

sum of 31 for a positive diagnosis of PTSD(22). A normalized t-score for depression severity 88 

and the diagnosis was assessed using the PROMIS Depression Short Form 8b (23). A t-score 89 

of 60 is one standard deviation lower than average and was used to designate a depression 90 

diagnosis. The Rivermead Post-concussive questionnaire (RPQ) was used to obtain a count of 91 

somatic symptoms. The twelve post-traumatic somatic symptoms included in the RPQ are 92 
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headache, dizziness, nausea, noise sensitivity, fatigue, insomnia, poor concentration, taking 93 

longer to think, blurred vision, light sensitivity, double vision, and restlessness (24). For each 94 

symptom, a yes/no variable was created. A positive response to a symptom would be counted 95 

as YES=1 that it does exist, while a NO=0 indicates that the symptom does not exist. The 96 

yes/no responses were summed to provide a simple count of somatic symptoms.  97 

 98 

Sample Processing and DNA Sequencing 99 

 Prior to extraction, stool samples were heat inactivated at 65°C-70°C for 1 hour and 100 

stored at -80°C. Approximately 250 mg of resulting sample was extracted using the QIAGEN 101 

DNeasy PowerSoil Pro Kits (QIAGEN, catalog no. 47016). Sequencing libraries were prepped 102 

using the Nextera XT DNA library prep kit and sequenced on a NextSeq 500 sequencer with 103 

2x150 bp paired-end reads. Of the 74 stool samples received, 69 (93.2%) were successfully 104 

sequenced. Samples with a percentage of reads identified greater than 0.5%, and complete 105 

metadata were used for analysis (n=51). 106 

 Shotgun metagenomic reads were trimmed and filtered for host contamination using the 107 

KneadData pipeline (https://github.com/biobakery/kneaddata). The resulting metagenomic data 108 

was profiled for microbial abundance and metabolic pathways using the MetaPhlAn3(25) and 109 

HUMAnN3 databases and tools(26). The resulting relative microbial species abundance was 110 

used for downstream analysis in R.  111 

 112 

Microbiome Analysis and Statistics 113 

Linear mixed model-based analysis to determine the relative contribution of the microbiome. 114 

 To determine how much of the variability in post-trauma APNS outcomes is explained by 115 

the gut microbiome, we first constructed linear mixed models (LMM) using the lme4 R 116 

package(27) for each of the three APNS outcomes of interest (PTSD, Depression Scores and 117 

Somatic Symptoms) as a function of relevant clinical covariates (sex, age, body mass index, 118 

Race/ethnicity)(28), and also of the arcsine square root-transformed abundance (29) of each 119 

microbial species independently. Features identified as significant (FDR corrected p-value <= 120 

0.05) were combined and used to fit a global LMM. The contribution of each feature to the 121 

regression line fit by the model was determined by running analysis of variance (ANOVA) and 122 

examining the total sum of squares for the fixed effects. The resulting sum of squares ratio for 123 

each feature was graphed using WebR (https://github.com/cardiomoon/webr).  124 

 125 
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Mixed-effect random forest analysis of microbiome permutated importance to outcomes at 126 

twelve weeks post-trauma.  127 

 Microbiome data is non-linear and not normally distributed(30,31). Additionally, such 128 

data are characterized by many predictors, which, if combined in the same model (without 129 

prefiltering), can prohibit a traditional regression model to converge(32). We have previously 130 

demonstrated that tree-based machine learning (ML) approaches such as random forest, which 131 

are non-parametric and perform intrinsic feature selection, are very powerful in finding a signal 132 

from static and time-resolved microbiome data(33–36). To fully utilize the longitudinal clinical 133 

data collected by the AURORA (parent) study for this nested study(1), we assumed, barring 134 

perturbation, the gut microbiome is stable over time. Several high-resolution gut microbiome 135 

temporal studies have demonstrated that the microbiome is rather stable and displays only 136 

small random fluctuations(37–40). We built a mixed-effect random forest (MERF) regression 137 

model to predict either PTSD raw score, Depression t-score, or somatic symptoms count at 138 

twelve weeks post-trauma. We use either microbial abundance or metabolic pathway 139 

abundance and relevant clinical covariates (e.g., BMI, age, sex, and race) as variables in this 140 

modeling. The first step of our pipeline split our data into a training and test set. To predict 141 

twelve-week post-trauma outcomes, two-week and eight-week post-trauma outcomes were 142 

used to train the MERF model. The unseen twelve-week data was used for testing the model. 143 

For each APNS outcome, the pipeline was run ten times with ten different random seeds, and 144 

model performance, statistics, and outcomes were calculated for each seed. Model 145 

performance was evaluated by Root Mean Square Error (RMSE) and correlation of true versus 146 

predicted values, which illustrates the model’s accuracy and fit for predicting outcome 147 

measurements at twelve weeks post-trauma (Supplementary figure 1). Permuted variable 148 

importance calculated and used to evaluate models.  Plots summarizing results were generated 149 

in R using the ggplot2. 150 

 151 

Results 152 

Characteristics of Study Subjects 153 

Among 2,097 individuals who were approached in the ED regarding this nested study, 154 

106/2,097 (5.1%) agreed to participate, and 74/106 (69.8%) provided a stool sample. Of the 155 

stool samples received, 51(68.9%) passed all quality and metadata checks (see methods) and 156 

were profiled for microbial abundance and metabolic pathways. From these 51 participants 157 

(mean age 52 years; 26 (51%) female) stool samples were received a median of 45 days (range 158 

5 to 182 days) after ED visit for trauma evaluation that conferred entry to the AURORA (parent) 159 
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study (Table 1). The most common types of trauma were motor vehicle collision (55%, n=28), 160 

fall from height (n=9, 18%), and other accidental or targeted/involuntary events (9.8%, n=5). 161 

Stool samples originated primarily from White (61%, n=31) and Black (25%, n=13) participants.  162 

Of the 31 white participants, 29 (94%) were non-Hispanic White. Microbiome diversity measures 163 

show that individuals do not stratify based on standard diversity measures.  164 

  165 

Gut Microbiome Features associated with APNS 166 

Linear mixed effect models and ANOVA adjusting for sociodemographic characteristics were 167 

used to assess for associations between microbiome characteristics and APNS symptom 168 

severity (As noted above, analyses were accounted for sociodemographic factors because of 169 

the known association between socioeconomic status and diet (36)). Gut microbiome 170 

characteristics accounted for 48%, 26%, and 44% of the variation in PTSD, depressive, and 171 

somatic symptoms after trauma, respectively (Figure 1). The abundance of Firmicutes 172 

bacterium CAG:555, Bifidobacterium adolescentis, and the pro-inflammatory Streptococcus 173 

infantis were associated with PTSD symptom severity. The abundance of B. adolescentis was 174 

associated with depressive symptom severity (Figure 1B). Ruminococcus gnavus and 175 

Streptococcus parasanguinus were associated with somatic symptom severity (Figure 1C).  176 

 177 

Post-Trauma Neuropsychiatric Outcomes are Predicted by Microbial Abundance  178 

While the above LMM approach is useful to assess total variance accounted for by microbiome 179 

characteristics and is common in the field, it has several limitations, including the inability to 180 

evaluate microbial abundances in the context of the entire microbiome and the limited ability to 181 

account for inter-individual microbiome differences(32). Therefore, we used a complementary 182 

machine learning approach to train and test models examining associations between gut 183 

microbiome characteristics and posttraumatic outcomes. We have previously used this 184 

approach and have determined its optimality for inferring biologically relevant host-microbe 185 

interactions from cross-sectional and longitudinal microbiome data (see methods sections for 186 

further justification)(33–36,41–43).  187 

A Mixed-Effect Random Forest (MERF) regression model was used to identify 188 

microbiome features associated with PTSD, depression, and somatic symptom burden at twelve 189 

weeks post-trauma. Our findings using this approach confirmed and expanded on findings from 190 

the linear mixed-effect models. Bacterial species identified in linear mixed effects modeling, 191 

specific species of the Alistipes, Bifidobacterium, and Ruminococcus genera were also found as 192 

important predictors by the MERF model (Figure 2). The models also identified more species as 193 
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contributors to each outcome, with many similar species in the top 15 predictors identified by the 194 

three models. B. adolescentis, B. longum, and Flavonifractor plautii were among the top five 195 

predictors for all three APNS outcomes (Figure 2). Across our models, both Bifidobacterium 196 

species and F. plautii showed similar trends of increased abundance being informative of higher 197 

scores (Supplemental figure 3). Ruminococcus gnavus was found to be among the top 15 198 

predictors only for PTSD (ranked 7th) and depression (ranked 14th), with increases in abundance 199 

correlating with disease outcomes (Figure 2). Decreases in certain species were noted to 200 

cluster by individual outcomes for the most part (Figure 2D). 201 

 202 

Metabolic Pathway Profiling Identifies Novel Gut-Brain-Axis Interface with APNS 203 

Outcomes 204 

Species abundance, although informative of outcomes, does not directly provide context for the 205 

functional roles of associated microbes. By analyzing metabolic pathway abundances encoded 206 

in the metagenomic data, we can gain insight into the microbial products, metabolites, and 207 

functions that may associate with each outcome of interest, thus shedding light on possible 208 

mechanistic links. To this end, we employed the same MERF-based pipeline to examine 209 

associations between the abundance of microbially-encoded metabolic pathways and PTSD, 210 

depressive, and somatic symptom severity twelve weeks after trauma. The Calvin-Benson-211 

Bassham cycle, a common CO2 fixation pathway in autotrophic bacteria, was identified as one 212 

of the top three predictors of PTSD and depressive symptom severity (i.e., cycle was reduced in 213 

samples with higher scores (Figures 3A and 3B)). Amino acid biosynthesis pathways were a 214 

leading predictor for all three APNS outcomes, with the L-citrulline biosynthesis pathway 215 

identified as one of the top two predictors for all APNS outcomes. The super pathway of 216 

arginine and polyamine biosynthesis was identified as the top predictor for the PTSD model and 217 

as the third most important pathway for the depression model, correlating negatively with PTSD 218 

and depression scores. Furthermore, all three models identified pathways involving arginine, 219 

ornithine, and citrulline, three amino acids that are often interconverted (Figure 3). De novo 220 

biosynthesis of L-ornithine, which can be interconverted from ornithine and urea to arginine and 221 

water, was identified by all models and appeared increased in patients with higher scores. 222 

Increased abundance of L-citrulline biosynthesis was also associated with higher scores of 223 

PTSD, depression, and somatic symptoms count.     224 

 Given the strength of findings around pathways affecting global arginine levels, we next 225 

sought to identify microbes responsible for changes in these pathways. Focusing on ornithine, 226 

citrulline, and arginine, we examined the contribution of individual genera to each pathway 227 
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(Tables 4-6) to PTSD and depression. Somatic symptoms were not further analyzed as the 228 

simple count nature of the variable was not appropriate for this analysis. We observed that in 229 

individuals with PTSD or depression, Escherichia had an increased contribution to all pathways 230 

involving arginine and ornithine biosynthesis. However, the contribution of E. coli to L-citrulline 231 

biosynthesis was decreased in those with PTSD and increased in those with depression. In 232 

patients with PTSD or depression, the Ruminococcus genus had a decreased contribution to L-233 

arginine biosynthesis via both L-ornithine and the acetyl cycle. Alistipes, Flavonifactor and 234 

Faecalibacterium genera contributed more to the L-arginine biosynthesis via ornithine in 235 

individuals with diagnosed PTSD or depression.   236 

  237 
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Discussion 238 

 We have demonstrated here that gut microbiome characteristics of trauma survivors 239 

were associated with the development of APNS, in this pilot longitudinal study of individuals 240 

enrolled in the ED after trauma exposure. Our analysis first suggested that overall inter-241 

individual differences in gut microbiome taxonomy accounts for a substantial fraction (20-48%) 242 

of the differences in APNS outcomes. This finding is similar to what is attributable to known 243 

APNS outcome-associated clinical and demographic covariates (e.g., sex and 244 

race/ethnicity)(44). We leveraged ML modeling to identify specific bacterial species and 245 

encoded metabolic pathways with previously established pro- and anti-inflammatory properties 246 

that are predictive of APNS development. Our analysis highlights the most prevalent APNS 247 

outcome-associated gut microbiome-encoded pathways are those leading to the biosynthesis of 248 

arginine, ornithine, and citrulline. These pathways can possibly affect global arginine levels in 249 

the body, a biomarker that has been previously associated with PTSD(45). To our knowledge, 250 

ours is the first study to longitudinally evaluate the link between the gut microbiome and APNS 251 

outcomes while providing mechanistic links along the microbiome-gut-brain axis. 252 

Our initial analyses by simple linear mixed-effect models demonstrated the significant 253 

contribution of microbiota to APNS outcomes in comparison to clinical covariates and 254 

demographic characteristics. The proportion of the gut microbiome accounting for variability in 255 

each APNS outcome (26-48%) is of the same order of magnitude as demographic 256 

characteristics (10-56%) that are already known to associate with each outcome(44). However, 257 

this analysis required transformation of microbiome abundance variables and the use of a two-258 

tiered approach to select outcome-associated features, which is suboptimal. Although common, 259 

this approach neither accounts for the inter-personal variation of the microbiome nor evaluates 260 

the effect of microbial species together(46).  261 

While there is evidence for dramatic changes in the gut microbiome after trauma within 262 

72 hours(16), almost no research describing long-term changes in gut microbiota after acute 263 

trauma currently exists. One study on PTSD in frontline healthcare workers suggests that long-264 

term gut microbiome dysbiosis induced by stress is sustained for months and predisposes 265 

individuals to recurring PTSD(47).  Thus, we built our pipeline assuming the microbiome at our 266 

sampling point is representative of the patient’s microbiome at the longitudinal post-trauma 267 

outcome measurement points, which we hypothesize associates with target outcomes of 268 

developing APNS in prolonged periods after trauma.  269 

ML models such as Mixed-Effect Random Forest (MERF) models are capable of 270 

accounting for interpersonal variation, evaluating microbial abundances in the context of the 271 
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entire microbiome, and, importantly, because no scaling is required, it can be used with different 272 

data types (e.g., categorical, numerical, proportion, etc.)(32)Our MERF models identified more 273 

species as significant contributors to our outcomes than the linear models and microbes 274 

previously associated with neuropsychiatric disorders, specifically Bifidobacterium, Alistipes, 275 

and Flavonifractor species. Further, the model identified F. plauti, E. eligens, E. ramulus, R. 276 

homins, C. sybiosum, and Blautia species which are members of the Clostridium Cluster IV and 277 

XIVa, two clusters of known beneficial bacteria for inflammatory bowel disease and gut 278 

health(56–58). Several of these are short-chain fatty acid producers and have been associated 279 

with reduced inflammation in humans (59,60). Additionally, they are known to promote several 280 

anti-inflammatory immune signatures, such as regulatory T-cell expansion in vivo (61,62). 281 

 Our models based on species abundance identified Bifidobacterium species and 282 

Flavonifractor plautii as the most important factors for predicting all three APNS outcomes. 283 

Specifically, we found higher abundances of B. adolescentis, B. longum, and B. bifidum were 284 

associated with higher PTSD and depression scores, which contradicts some literature 285 

regarding positive relationships between Bifidobacterium spp and neuropsychiatric 286 

outcomes(48–50). Contrary to this, many other microbiome-based studies of neuropsychiatric 287 

disorders, including major depressive disorder (MDD), schizophrenia, and anxiety, have failed to 288 

find similar associations(51–53). Indeed, for MDD, various investigators have found both 289 

increased and decreased abundances of Bifidobacterium spp to be associated with clinical 290 

disease(53–55). Our analysis identifying increased abundances of Bifidobacterium spp as being 291 

associated with APNS outcomes adds more contradiction to the literature but highlights the 292 

importance of looking beyond species abundances in microbiome studies.  293 

 Alone, species-based associative studies can be confounding and limit clearer 294 

investigations into biological mechanisms. We have previously shown that also analyzing 295 

microbial metabolic pathways can reveal valuable insight into possible biologic impacts of the 296 

gut microbiome on clinical outcomes(34,41). As with our previous work, our combined analysis 297 

approach here, leveraging metagenomic sequencing and ML-based pipelines on both species’ 298 

abundance and metabolic pathways, identified a unique microbially-based mechanism with the 299 

biosynthesis of arginine/citrulline/ornithine as highly informative of the development of all three 300 

APNS outcomes. This is the first described biologic link in APNS attributable directly to the 301 

microbiome-gut-brain axis and microbially produced metabolites. 302 

PTSD patients have been shown to have decreased levels of arginine and increased 303 

levels of ornithine and citrulline in peripheral blood(45). The ratio of arginine to its two main 304 

catabolic products, ornithine, and citrulline, is used as a readout of nitric oxide (NO) capacity 305 
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and is referred to as the global arginine bioavailability ratio (GABR)(56). Bersani et. al. sought to 306 

examine NO production in PTSD patients via the GABR as arginine is the sole nitrogen source 307 

of NO synthesis. They found that GABR was negatively correlated with PTSD, which they 308 

reasoned was indicative of dysfunctional NO synthase. The directionality observed by Bersani 309 

and authors mirrors the directionality of arginine-related metabolic pathways in our analysis. 310 

Altered arginine metabolism has also been implicated in other neuropsychiatric disorders, such 311 

as schizophrenia and MDD(57,58). The influence of altered arginine metabolism is likely 312 

multidimensional and spans multiple mechanisms of action, including through arginine 313 

vasopressin or NO(59,60). Identifying microbial sources of these potential mechanisms in 314 

specific neuropsychiatric conditions is an important first step towards enabling research on 315 

interventions or therapies. 316 

In our species trained MERF pipeline, Flavonifactor plautii, a flavonoid-degrading 317 

bacterium often found in the human gut microbiome, was the only species among the top 5 318 

contributors to all three APNS outcomes that affect GABR. This genus contributes to the L-319 

arginine biosynthesis pathway via ornithine in those with PTSD and via acetyl in those with 320 

PTSD or depression. From our metabolic pathway models, the contribution of Ruminococcus, 321 

Alistipes and Flavonifactor genera to L-arginine biosynthesis via ornithine was identified as 322 

increased in individuals with PTSD or depression. Although the contribution of these three 323 

species were not ranked as highly as Bifidobacterium spp in our species trained MERF model, 324 

by analyzing microbial metabolic pathways, we see that their roles in PTSD and depression may 325 

be far more significant.  326 

Our findings also provide an added layer of contextual insight into seemingly 327 

contradictory findings from prior research on this topic. In addition to being increased in Crohn’s 328 

disease, the Ruminococcus genera have been identified as decreased in those with MDD in 329 

multiple studies(50,61). Although we find R. gnavus abundance increases with depression 330 

score, the contribution of the Ruminococcus genera to arginine biosynthesis through the acetyl 331 

cycle (ARGSYNBSUB-PWY) and via ornithine (ARGSYN-PWY) was lower in those with 332 

depression compared to those without, implying species specific effects may also be at work. 333 

Likewise, Alistipes have been found to be both increased(61) and decreased in patients with 334 

MDD(50,62) as compared to healthy controls, suggesting genus-based examination of Alistipes 335 

may not be sufficient. A. finegoldii and A. indistinctus, were both identified by our microbial 336 

model as informative of PTSD score yet with opposite directions. Furthermore, A. finegoldii 337 

abundance was positively associated with PTSD scores and specifically had a higher 338 

contribution to L-citrulline biosynthesis in those with PTSD or depression. We also found that 339 
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the Alistipes genera contributed more to ornithine-related pathways in those with PTSD and 340 

depression. Thus, by combining analyses of species abundance with microbial metabolic 341 

pathways, we can better dissect the functional contributions of the microbiota.  342 

 The emerging role of polyamines in neuropsychiatric disorders opens a door to a better 343 

understanding of the complex pathophysiology of these disorders. The ability of microbiota to 344 

produce polyamines and known associations between polyamine-producing microbes and 345 

neuropsychiatric disorders highlight the importance of the microbiome-gut-brain axis in human 346 

health. Our novel finding of the gut microbiome contributing to alterations in GABR pathways in 347 

our studied outcomes is the first direct mechanistic link between the gut microbiome and APNS. 348 

This result may provide some indirect evidence of a biological link for APNS along the 349 

microbiome-gut-brain axis via microbially generated metabolites. 350 

 351 

Strengths and Limitations 352 

 We are the first to delve into the predictiveness of the microbiome to the core 353 

components of APNS. Although the sample size of our study was limited, our employment of ML 354 

methods and metagenomic profiling enabled us to maximize the utility and richness of data from 355 

the samples we had. Furthermore, the AURORA (parent) study ensured a comprehensive, 356 

thorough, and standardized system of scoring APNS outcomes. We acknowledge that single 357 

time point collections are less ideal for investigating mechanisms driving potentially prolonged 358 

and dynamic outcomes. Additionally, we encountered logistical difficulties with recruitment and 359 

sample collection due to COVID-19 restrictions. Future work will aim to expand on our 360 

preliminary findings with a larger cohort and more sampling time points, including sampling 361 

closer to time of trauma. Lastly, although we approached these APNS diagnoses as discrete 362 

outcomes, it is well known that there is much overlap between them. Traditional APNS 363 

classification evolved from the realms of specific medical specialties and thus are not indexed to 364 

specific biological processes or basis(1). This biologic overlap may be responsible for the 365 

overlap in some features identified by our modeling. A study with a larger sample size may be 366 

able to tease apart the overlap of these outcomes.  367 

 368 

Conclusions 369 

APNS can have devastating long-term consequences for patients who have already suffered 370 

trauma, but APNS may be preventable. Our nested study, using a subset of the AURORA 371 

cohort, demonstrated the importance of the microbiome in influencing APNS development. 372 

While more work is needed, we are the first to describe a possible biologic link between the gut 373 
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microbiome and post-trauma outcomes through arginine metabolism and global arginine 374 

pathways, which have already been associated with PTSD and other neuropsychiatric 375 

disorders. This discovery opens avenues for investigating prevention and treatment strategies 376 

through both targeted therapies and microbiome-based interventions. Our findings provide 377 

some evidence of a biological link for APNS along the microbiome-gut-brain axis via microbially 378 

generated metabolites.   379 

 380 

Data and code availability 381 

Microbiome sequencing data is deposited in the Short Read Archive (SRA) under accession no. 382 

XXXXX. Processed data and code to reproduce the results are available at XXXXXX. All data 383 

produced in the present study are also available upon reasonable request to the authors. 384 
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 455 
Table 1: Patient Characteristics by APNS outcome category 456 

  Depression  PTSD   

Patient Characteristics Overall, N = 
51 

n (%) 

Depression-
, N = 35  

n (%) 

Depression+, 
N = 16 
n (%) 

q-value 
(adjusted p-

value) 

PTSD-,  
N = 31 
n (%) 

PTSD+,  
N = 20 
n (%) 

q-value 
(adjusted 
p-value) 

Demographics        

 Age in years (at 
enrollment) 

52 (36, 60) 52 (36, 59) 52 (37, 60) >0.9 52 (36, 58) 50 (34, 61) >0.9 

 Sex (Female) 26 (51%) 19 (54%) 7 (44%) >0.9 19 (61%) 7 (35%) 0.7 

 BMI 29 (24, 33) 27 (24, 30) 33 (29, 40) 0.11 27 (23, 30) 31 (29, 36) 0.083 

 White 31 (61%) 21 (60%) 10 (62%) >0.9 18 (58%) 13 (65%) >0.9 

 Black 13 (25%) 11 (31%) 2 (12%) >0.9 9 (29%) 4 (20%) >0.9 

 Asian 1 (2.0%) 1 (2.9%) 0 (0%) >0.9 1 (3.2%) 0 (0%) >0.9 

 other 6 (12%) 2 (5.7%) 4 (25%) 0.8 3 (9.7%) 3 (15%) >0.9 

 Hispanic 7 (14%) 4 (11%) 3 (19%) >0.9 4 (13%) 3 (15%) >0.9 

U.S. Geographic Region    >0.9   >0.9 

 Midwest Region 10 (20%) 5 (14%) 5 (31%)  5 (16%) 5 (25%)  

 Northeast Region 38 (75%) 27 (77%) 11 (69%)  24 (77%) 14 (70%)  

 Southern Region 3 (5.9%) 3 (8.6%) 0 (0%)  2 (6.5%) 1 (5.0%)  

Trauma Event Type (Broad)    >0.9   >0.9 

 Animal-related 1 (2.0%) 1 (2.9%) 0 (0%)  1 (3.2%) 0 (0%)  

 Fall < 10 feet or from 
unknown height 

9 (18%) 7 (20%) 2 (12%)  6 (19%) 3 (15%)  

 Fall >= 10 feet 4 (7.8%) 2 (5.7%) 2 (12%)  2 (6.5%) 2 (10%)  

 Incident causing 
traumatic stress 
exposure to many people 

1 (2.0%) 1 (2.9%) 0 (0%)  1 (3.2%) 0 (0%)  
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 Motor Vehicle Collision 28 (55%) 19 (54%) 9 (56%)  17 (55%) 11 (55%)  

 Non-motorized Collision 3 (5.9%) 2 (5.7%) 1 (6.2%)  2 (6.5%) 1 (5.0%)  

 other 5 (9.8%) 3 (8.6%) 2 (12%)  2 (6.5%) 3 (15%)  

Self-Reported Perceived Chance of 
Dying 

6.0 (1.0, 
8.5) 

6.0 (1.0, 
8.5) 

5.5 (1.8, 8.2) >0.9 6.0 (0.5, 
8.5) 

5.5 (1.8, 8.5) >0.9 

 457 
 458 
 459 

 460 
  461 
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Table 2: Spearman’s Correlation of Important Microbes with APNS Outcomes 462 

Predictors PTSD Depression Somatic 
Symptoms Notes 

Bifidobacterium adolescentis 0.286 0.216 0.0704 

• Produces GABA in the gut (63) 
• Induction of Th17 cells in mice(64) 
• Decreased in Chron’s Disease (65) 
• Lower abundance in children with autism spectrum disorder (66) 

Bifidobacterium longum 0.34 0.259 0.251 

• GABA production in vivo (67) 
• Anxiolytic effect through the vagus nerve in mice (48) 
• Lower abundance in children with autism spectrum disorder (66) 
• Subspecies longum… (68) 

Bifidobacterium bifidum 0.185   NA   NA • Th17 inducing profile(69) 
• Lower abundance in children with autism spectrum disorder (66) 

Parabacteroides merdae 0.176 0.226   NA 

• Indole negative (70) 
• Rarely associated with infections(71) 
• Branched-chain amino acid catabolism by P. merdae reduces 

atherosclerotic lesions (72) 

Flavonifractor plautii 0.207 0.177 0.173 

• In mice, suppresses Th2 immune response (73) 
• (74) 
• Genera found to be enriched in those with active major depressive disorder 

(MDD) (61) 

Adlercreutzia equolifaciens 0.0195   NA   NA • Strain specific equol production(75) 

Ruminococcus gnavus 0.441 0.335   NA • Increased in Chron’s Disease(65) 
• Depleted genera level in active MDD (61) 
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Predictors PTSD Depression Somatic 
Symptoms Notes 

Alistipes finegoldii 0.198   NA   NA 

• Can hydrolyze tryptophan to indole; Succinic acid producer in vitro with 
minor acetic and propionic acid; bile-resistant, esculin-negative; catalase-
negative; nitrogen-reductase negative (76,77) 

• Enriched in colorectal cancer (78) 
• Main cellular fatty acid 13-metyltetradecanoic acid (iso-C15:0) 
• Genera Increased abundance in active MDD patients compared to healthy 

controls (61) 

Eubacterium eligens -0.216   NA -0.14 • Decreased in COVID-19 HCW with higher stress scores (47) 
• Anti-inflammatory related (79) 

Firmicutes bacterium CAG 110 -0.182   NA   NA • Identified in livestock(80) 

Alistipes indistinctus -0.0339   NA   NA 

• Unable to hydrolyze tryptophan to indole; susceptible to bile; catalase-
positive; urease and nitrogen reductase-negative; Succinic and acetic acid 
producer in vitro(77) 

• Main cellular fatty acid 13-metyltetradecanoic acid (iso-C15:0) 
• Genera Increased abundance in active MDD patients compared to healthy 

controls (61) 

Bacteroides massiliensis -0.0271   NA   NA 
• Phocaeicola massiliensis 
• Genera increased in health controls vs. active MDD patients (61) 

Slackia isoflavoniconvertens -0.221   NA   NA • Capable of equol production (81) 

Desulfovibrio piger   NA   NA -0.183 • Sulfur-reducing bacteria associated with IBD (82) 

Blautia wexlerae   NA   NA 0.0584 • Inversely correlated with obesity and type 2 diabetes mellitus(83) 
• Decreased abundance in progressive multiple sclerosis (84) 

Intestinimonas butyriciproducens   NA   NA -0.155 • Butyrate production(85) 

Bacteroides thetaiotaomicron   NA   NA -0.172 • Genera increased in health controls vs. active MDD patients (61) 
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Predictors PTSD Depression Somatic 
Symptoms Notes 

Parabacteroides goldsteinii   NA   NA -0.155 
• Anti-inflammatory and decreased in chronic inflammatory diseases 

including chronic obstructive pulmonary disease (COPD; negatively 
associates with severity) (86) and chronic kidney disease (87) 

Pseudoflavonifractor sp An184   NA   NA -0.215 • Positively associated with weight loss (88) 

Streptococcus thermophilus   NA   NA 0.0866  

Clostridium symbiosum   NA 0.204 0.163 • Increased abundance in early colorectal cancer (89) 

Lactobacillus acidophilus   NA   NA -0.21  

Bacteroides vulgatus   NA 0.115   NA • Genera increased in health controls vs. active MDD patients (61) 

Anaerostipes hadrus   NA -0.0635   NA  

Dialister invisus   NA 0.0954   NA • (74) 
• Genera increased in health controls vs. active MDD patients (61) 

Bacteroides ovatus   NA 0.194   NA  

Bilophila wadsworthia   NA 0.274   NA  

Eubacterium ramulus   NA -0.096   NA  

Roseburia hominis   NA 0.102   NA  

Lawsonibacter asaccharolyticus   NA -0.0814   NA  

 463 
 464 
 465 
 466 
 467 
 468 
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Table 3: Spearman’s Correlation of Important Metabolic Pathways with Outcomes 471 

Predictors PTSD Depression Somatic 
Symptoms Notes 

ARG-POLYAMINE-SYN: superpathway of arginine 
and polyamine biosynthesis 

-0.251 -0.229   NA • Enriched patients with CD in remission (90) 

CITRULBIO-PWY: L-citrulline biosynthesis 0.346 0.298 0.261 • Enriched patients with CD in remission (90) 

CALVIN-PWY: Calvin Benson Bassham cycle -0.269 -0.315   NA • Enriched patients with CD in remission (90) 

ARGININE-SYN4-PWY: L-ornithine de novo 
biosynthesis 

0.201 0.165 0.139  

CENTFERM-PWY: pyruvate fermentation to 
butanoate 

-0.322 -0.26 -0.168  

BIOTIN-BIOSYNTHESIS-PWY: biotin biosynthesis I 0.181 0.127   NA  

BRANCHED-CHAIN AA-SYN-PWY: superpathway of 
branched amino acid biosynthesis 

-0.127 -0.00818   NA  

ANAEROFRUCAT-PWY: homolactic fermentation -0.0199   NA   NA  

ASPASN-PWY: superpathway of L-aspartate and L-
asparagine biosynthesis 

-0.0404 0.0571 0.037  

COA-PWY-1: coenzyme A biosynthesis II   -0.0454   NA -0.053  

ARGSYNBSUB-PWY: L-arginine biosynthesis II 
(acetyl cycle) 

-0.0768 -0.131   NA  

ARGSYN-PWY: L-arginine biosynthesis I (via L-
ornithine) 

-0.0579 -0.105   NA  

1CMET2-PWY: N10 formyl tetrahydrofolate 
biosynthesis 

  NA -0.0885   NA • Depleted in UC in remission (90) 
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Predictors PTSD Depression Somatic 
Symptoms Notes 

ANAGLYCOLYSIS-PWY: glycolysis III (from glucose)   NA -0.048   NA  

ARGORNPROST-PWY: arginine, ornithine and 
proline interconversion   NA 0.0264   NA  

 472 
 473 
 474 
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Table 4: Microbial genus contribution to arginine-related metabolic pathways stratified by PTSD and depression diagnoses 476 
  477 

Pathway Genus PTSD Raw 
Score < 31 

PTSD Raw 
Score ≥ 31 

Depression t-
score < 60 

Depression t-
score ≥ 60 

ARG-POLYAMINE-SYN: 
Superpathway of 

arginine and polyamine 
biosynthesis 

Escherichia 53.64 69.95 42.86 100.00 

Klebsiella 46.36 30.05 57.14 0.00 

ARGSYNBSUB-PWY: L-
arginine biosynthesis II 

(acetyl cycle) 

Akkermansia 7.72 2.36 7.61 1.20 

Anaerostipes 2.49 0.67 2.29 0.68 

Anaerotignum 0.36 1.14 0.48 1.03 

Bifidobacterium 1.07 1.47 1.01 1.72 

Bilophila 0.52 1.61 0.58 1.75 

Blautia 4.12 4.00 4.46 3.11 

Escherichia 0.97 3.81 1.04 4.37 

Faecalibacterium 33.79 41.04 32.37 46.62 

Flavonifractor 0.79 3.32 1.55 2.06 

Fusicatenibacter 8.76 4.57 8.00 5.40 

Gemmiger 10.68 7.95 10.19 8.46 

Klebsiella 0.96 1.74 1.73 0.00 

Lachnospiraceae 
unclassified 9.40 8.91 9.14 9.46 

Roseburia 1.42 1.15 1.58 0.68 

Ruminococcaceae 
unclassified 2.43 1.16 2.55 0.50 

Ruminococcus 4.14 3.45 4.09 3.39 
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Tyzzerella 0.00 1.40 0.33 0.94 

  478 
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Table 5: Microbial genus contribution to ornithine-related metabolic pathways stratified by PTSD and depression diagnoses 479 

Pathway Genus PTSD Raw 
Score < 31 

PTSD Raw 
Score ≥ 31 

Depression t-
score < 60 

Depression t-
score ≥ 60 

ARGININE-SYN4-PWY: L-
ornithine de novo 

biosynthesis 

Bacteroides 38.78 29.26 37.40 28.63 

Catenibacterium 13.22 0.14 7.15 4.90 

Escherichia 12.28 25.78 12.20 29.42 

Klebsiella 5.21 4.50 8.41 0.00 

Parabacteroides 28.82 35.58 33.49 31.06 

Paraprevotella 1.68 4.75 1.35 5.99 

ARGSYN-PWY: L-arginine 
biosynthesis I (via L-ornithine) 

Alistipes 3.21 16.69 3.92 18.18 

Anaerostipes 2.60 0.38 2.40 0.31 

Bifidobacterium 1.28 1.47 1.21 1.65 

Blautia 3.95 3.29 4.29 2.46 

Escherichia 1.36 3.40 1.45 3.65 

Faecalibacterium 38.95 39.19 37.33 42.50 

Flavonifractor 0.72 2.79 1.56 1.56 

Fusicatenibacter 9.18 3.56 8.30 4.12 

Gemmiger 11.38 7.32 10.89 7.41 

Klebsiella 0.55 0.77 0.96 0.00 

Lachnospiraceae 
unclassified 9.42 7.48 9.13 7.64 

Roseburia 2.06 1.20 2.30 0.55 

Ruminococcaceae 
unclassified 2.32 1.02 2.49 0.41 

Ruminococcus 4.51 3.05 4.43 2.89 
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Table 6: Microbial genus contribution to citrulline-related metabolic pathways stratified by PTSD and depression diagnoses 481 

Pathway Species PTSD Raw 
Score < 31 

PTSD Raw 
Score ≥ 31 

Depression t-
score < 60 

Depression t-
score ≥ 60 

CITRULBIO-PWY: L-

citrulline biosynthesis 

Alistipes finegoldii 61.07 70.93 54.58 76.92 

Coprococcus catus 2.81 0.00 1.92 0.00 

Escherichia coli 17.97 15.87 15.87 16.77 

Flavonifractor plautii 11.61 11.18 19.29 6.31 

Klebsiella pneumoniae 6.53 2.02 8.34 0.00 

 482 
 483 
 484 
  485 
Figure Legends and Tables  486 

 487 

 488 

Figure 1. Contribution of microbiome features significantly associated with neuropsychiatric outcomes. After metagenomic 489 

sequencing, microbial specie abundance were combined with demographics and select clinical variables (other) in linear mixed effect 490 

models for the APNS outcomes at two-, eight-, and twelve weeks post trauma (A) PTSD raw score as determined by the DSM-5 491 
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PTSD checklist, (B) depression score as determined by the PROMIS Depression Short Form 8b and (C) somatic symptoms count 492 

(Yes/No) based on the Rivermead Post-Concussive Questionnaire. Individual microbial species, demographics, and clinical variables 493 

found as significant are displayed in the outer wheels. PTSD time point reflects the time at which the modeled score was taken 494 

(either two weeks, eight weeks, or twelve weeks). The length of time between trauma exposure and stool sample collection was 495 

included as days since trauma in all models.  496 

 497 
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Figure 2. Mixed-Effect Random Forest (MERF) Regression Models Using Microbial Abundance and Clinical Covariates to Predict 498 

Neuropsychiatric Outcomes. MERF models combining microbial abundance data with clinical and demographic features demonstrate499 

the importance of microbial features in predicting outcomes. Permutated importance analysis of model outcomes shows the top 15 500 

features contributing to predictions of (A) PTSD raw score, (B) depression normalized score, and (C) somatic symptoms count 501 

(yes/no) are mostly microbial species. (D) Heat map showing correlation coefficients of the top 30 contributing species show common502 

species that contribute to all 3 outcomes (increased abundance) and species which associate with individual outcomes (mostly 503 

decreased abundance). 504 

 505 

 506 

Figure 3. Mixed-Effect Random Forest (MERF) Regression Models Using Microbial Metabolic Pathways and Clinical Covariates to 507 

Predict Neuropsychiatric Outcomes. MERF models combining microbial metabolic pathway abundance data with clinical and 508 

demographic features demonstrate the importance of microbial pathways in predicting outcomes for (A) PTSD raw score, (B) 509 

depression normalized score, and (C) somatic symptoms count (yes/no). The top 15 features from analysis of permutated 510 

importance on model outcomes are displayed for PTSD and depression. Our model found only 7 significant features for somatic 511 

symptoms.  512 

te 
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 513 

 514 
Figure 4. Important metabolic pathways for PTSD and depression involve arginine, citrulline and ornithine. Heat map (A) of 515 

correlation coefficients for the top 15 metabolic pathways contributing to PTSD, depression, and somatic symptoms from MERF 516 

analysis show significant contributions by amino acid and polyamine biosynthesis pathways. (B) Violin plots showing differences in 517 

contributions of arginine, citrulline, and ornithine biosynthesis pathways for depression (top graphs) and PTSD (bottom graphs). Blue 518 e 
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violins indicate no diagnosis (PTSD raw score ≤ 31; Depression T-Score < 60 indicating none to mild depression) red indicates PTSD519 

or depression diagnosis (PTSD RS > 31; Depression T-Score ≥ 60 indicating moderate to severe depression). 520 

 521 

Figure 5. Arginine is converted into citrulline and ornithine commonly in the host and the microbiome. The ratio of arginine to 522 

citrulline and ornithine in PTSD patients has previously been found to negatively correlated with PTSD. We find that this negative 523 

correlation in the metabolic pathways encoded for in the microbiome of trauma survivors. 524 

 525 

Supplemental Figures 526 

SD 
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 527 

Supplemental Figure 1. RMSE and correlation graphs for MERF models trained with microbial abundance data. 528 
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 530 

 531 

Supplemental Figure 2. RMSE and correlation graphs for MERF models trained with microbial metabolic pathway data. 532 
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 533 

Supplemental Figure 3. Relative abundance of MERF identified important microbes across PTSD, depressive symptoms, and 534 

somatic symptoms severity.  535 
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