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Introduc)on 
The incidence of gastroesophageal junc5on (GEJ) 
adenocarcinomas has rapidly increased over the last 
30 years, especially in Europe, North America, and 
Australia.1–3 Although the prognosis has improved 

over 5me, it remains unfavourable with only 20% of 
pa5ents in Western popula5ons surviving 5 
years.1,4–6  

In locally advanced GEJ, periopera5ve 
chemotherapy (e.g., FLOT47) and neoadjuvant 

Abstract 
Background: Quan5fying treatment response to gastroesophageal junc5on (GEJ) adenocarcinomas is crucial 
to provide op5mal therapeu5c strategy. Rou5nely taken 5ssue samples provide an opportunity to enhance 
exis5ng PET/CT-based therapy response evalua5on. Our objec5ve was to inves5gate if deep learning 
algorithms are capable to predict the therapy response of GEJ pa5ents to neoadjuvant chemotherapy based 
on histological 5ssue samples. 
Methods: This diagnos5c study recruited 67 pa5ents with GEJ I-III from the mul5centric non-randomized 
MEMORI trial including 3 German university hospitals TUM (Munich), LMU (Munich), and UME (Essen). All 
pa5ents underwent baseline PET/CT scans and esophageal biopsy before and 14-21 days a\er treatment 
ini5a5on. Treatment response was defined as a ≥ 35% decrease in SUVmax from baseline. Several deep 
learning algorithms were developed to predict PET/CT-based responders and non-responders to neoadjuvant 
chemotherapy using digi5zed histopathological whole slide images. 
Results: The resul5ng models were trained on TUM (n=25 pre-therapy, n=47 on-therapy) pa5ents and 
evaluated on our internal valida5on cohort from LMU and UME (n=17 pre-therapy, n=15 on-therapy). 
Compared with mul5ple architectures, the best pre-therapy network achieves an area under the precision-
recall curve (AUPRC) of 0.81 (95% confidence interval (CI), 0.61-1.00), area under the precision-recall curve 
(AUPRC) of 0.82 (95% CI, 0.61-1.00), balanced accuracy of 0.78 (95% CI, 0.60-0.94), and a Madhews correla5on 
coefficient (MCC) of 0.55 (95% CI, 0.18-0.88). The best on-therapy network achieves an AUROC of 0.84 (95% 
CI, 0.64-1.00), AUPRC of 0.82 (95% CI, 0.56-1.00), balanced accuracy of 0.80 (95% CI, 0.63-1.00), and MCC of 
0.71 (95% CI, 0.38-1.00), solving a task beyond the pathologists’ capabili5es. 
Conclusions: The findings suggest that the networks can predict treatment response using WSI with high 
accuracy even pre-therapy, sugges5ng morphological 5ssue biomarkers. Subject to further valida5on, this 
could lead to earlier therapy intensifica5on compared to current PET/CT diagnos5c system for non-responder. 
pa5ents. 
Key words: Digital Pathology, Oncology, Machine Learning, Treatment Response Predic5on, GEJ 
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radiochemotherapy (e.g., CROSS8) strategies have 
successfully improved survival. However, they have 
not been compared to each other, thus leaving the 
best treatment modality unknown so far. Several 
trials have inves5gated early PET imaging for 
therapy response predic5on. We recently 
performed the MEMORI trial (NCT02287129) which 
evaluated PET-directed neoadjuvant chemotherapy 
(CTX) or salvage chemoradiotherapy (CRT). 
Importantly, we assembled sequen5al, high-quality 
tumor biopsies at FDG-PET/CT imaging 5me points 
pre-therapy and during therapy for GEJ.9 This trial 
demonstrated an improved rate of nega5ve surgical 
margins and pathologic complete remission when 
pa5ents underwent salvage intensified CRT a\er 
not responding to standard neoadjuvant CTX 
determined by PET response 14-21 days a\er 
chemotherapy ini5a5on.9 Thus, early treatment 
response assessment can inform and improve 
pa5ent care in this sekng.9,10 

However, acquiring PET/CT images pre- and 
during therapy is logis5cally demanding, cost-
intensive, and the pa5ent is exposed to radioac5ve 
tracers twice early during treatment. Furthermore, 
at least 14 days are needed to determine responder 
status based on metabolic uptake. On the contrary, 
biopsy samples are rou5nely taken for diagnosis 
prior to therapy. Nonetheless, trying to determine 
the effect of neoadjuvant CTX solely based on 
hematoxylin and eosin (H&E) stained biopsy 
samples s5ll needs to be solved, as no predic5ve 
biomarkers nor histological paderns for this are 
known. In this study, we analyzed tumor features of 
GEJ carcinomas in digi5zed histology images pre- 
and during treatment by u5lizing deep learning (DL) 
approaches to predict the treatment response to 
neoadjuvant CTX, focusing on the rou5nely sampled 
pre-therapy biopsy slides.  

For the computa5onal assessment, 5ssue slides 
are scanned at high resolu5on resul5ng in whole 
slide images (WSI). Some challenges associated with 
WSI are the large image size, high morphological 
variance, inconsistent staining, and informa5on at 
different magnifica5ons (local vs. global 
structure).11,12 Despite these challenges, DL 
approaches have been successfully applied to 
various low-level image analysis tasks, including 
image preprocessing13–15, disease classifica5on16, 
cell detec5on17–19, and segmenta5on20,21, as well as 
higher-level tasks such as predic5ng disease 
prognosis and diagnosis22, pa5ent survival 
analysis23, treatment prognosis24,25, or iden5fica5on 
of complex biomarkers like microsatellite instability 
detec5on26.  Especially for high-level tasks, the 
mapping between 5ssue morphology and the global 
label is o\en unknown, notably, if pathologists have 
no prior knowledge and iden5fying the underlying 
rela5onship itself is part of the research.27  

Thus, to predict the treatment response to 
neoadjuvant CTX, we used algorithms relying on 
weak supervision without any 5ssue annota5ons. 
All algorithms were validated on an internal 
valida5on cohort. 
 
Materials and Methods 
 
The MEMORI study was approved by the Ethics 
Commidee of University Hospital Rechts der Isar, 
Munich, Germany, and has been reported 
previously9. This study was carried out in 
accordance with the Declara5on of Helsinki. We 
followed the Transparent Repor5ng of a 
Mul5variable Predic5on Model for Individual 
Prognosis or Diagnosis (TRIPOD) repor5ng 
guideline.28  
 
PaNents and Dataset 
A pa5ent cohort from the non-randomized MEMORI 
trial with histologically confirmed GEJ I-III according 
to Siewert classifica5on29 from three German 
university hospitals (Munich, TUM; Munich, LMU; 
Essen, UME), treated between December 1, 2014 
and December 31, 2018, was used in this study. 
Pa5ents were excluded if they had previous 
radiotherapy targeted at the thorax, exis5ng distant 
metastases (M1b), or tumor infiltra5on into the 
tracheobronchial system (see supplementary Table 
S1 for all criteria). 

All pa5ents ini5ally underwent baseline 18F-FDG 
PET/CT and tumor biopsy followed by one cycle of 
chemotherapy (pre-therapy, d1). PET/CT and 
endoscopic esophageal biopsies were repeated on 
days 14-21 (on-therapy, d14-21) a\er the first 
PET/CT scan. Based on metabolic tumor ac5vity 
quan5fied by the PET standardized uptake value 
(SUV), pa5ents with a ≥ 35 % decrease in d14-21 
SUVmax compared to d1 baseline were defined as 
responders (R), otherwise as non-responders (NR), 
similar to the previous MUNICON I+II trials10,30–32. 
Responder pa5ents con5nued with CTX prior to 
surgery, non-responders switched to salvage 
chemoradiotherapy. Interven5ons conducted a\er 
the second PET/CT scan to determine the treatment 
response of the first CTX cycle on d14-d21 were not 
considered in this inves5ga5on. A flowchart 
depic5ng the process of pa5ent enrollment and 
subgroup forma5on with interven5on events is 
provided in Figure 1.  

In total, 67 (TUM = 49, LMU = 39, UME = 9) 
pa5ents were iden5fied to have 22 per protocol 
treated non-responders with up to 4 tumor WSI per 
biopsy sampling. A trained board-cer5fied 
pathologist reviewed all slides to ensure sufficient 
slide quality and annotated tumor areas. Subject to 
pathological review, 42 pa5ents (TUM = 25, LMU = 
8, UME = 9) with 152 WSI were included in the d1 
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analysis and 62 pa5ents (TUM = 47, LMU = 6, UME 
= 9) with 204 WSI in the d14-21 analysis. Clinical 
characteris5cs, including age, sex, BMI, tumor 
grading, and TNM staging are listed in the 
Supplement (see Table S2). 

 
Development of the Deep Learning Model 
Our proposed DL pipeline has three steps, as shown 
in Figure 2. The first step is to preprocess each 
scanned 5ssue specimen (WSI) to generate non-
overlapping, quadra5c patches of size 256	px and 
4096	px, respec5vely, at 20 × magnifica5on. For 
patch genera5on, 5ssue detec5on (Otsu33) is first 
performed, followed by Macenko stain 
normaliza5on15,34. The second step is to extract 
histological image features out of the patches by 
using a deep learning based encoder network. 
Finally, all image features are aggregated by a 
decoder network into a pa5ent feature vector for 
final treatment response predic5on. Mul5ple neural 
networks for the encoder and decoder were 
combined to find the best possible predic5on 
model. Rather than modeling temporal progression, 
the networks consider only WSI from a single 
sampling 5me (d1 vs. d14-21).  

To extract image features from the patches, we 
examined two different state-of-the-art feature 
extrac5on methods: Convolu5onal neural networks 
(CNNs) and Vision Transformers35 (ViTs). Specifically, 
we used a modified ResNet5036,37 network as a CNN 
encoder network. Although high performance for 
histopathologic feature extrac5on was already 
achieved using ImageNet-based network 

weights37,38, we trained an addi5onal ResNet50 
encoder by u5lizing the self-supervised 
representa5on learning algorithm SimTriplet39 on 
histopathological images to yield domain-specific 
features (e.g., morphological 5ssue features, cell 
features). As an alterna5ve encoder structure, we 
used two recently published ViT architectures 
designed explicitly for histopathological feature 
extrac5on, called ViT-256 and ViT-4096, trained on 
33 different cancer cases from The Cancer Genome 
Atlas (TCGA).40,41 The ViT-256 network computes 
features of local cell clusters, that are combined by 
ViT-4096 into organiza5onal units describing a 5ssue 
microenvironment.40  

To aggregate the patch-wise feature vectors, we 
used two weakly-supervised approaches 
compromising mul5ple instance learning (MIL)37,42 
and graph neural networks (GNNs)38,43,44. In the case 
of MIL, all patch features of one pa5ent are 
aggregated by permuta5on invariant pooling 
opera5ons, such as simple baseline mean and max 
pooling. To cover flexible patch contribu5on, we 
also used the clustering-constrained aden5on MIL 
(CLAM)37 network based on an interpretable 
aden5on mechanism. For each patch, an adap5ve 
weight score is calculated depending on the patch 
informa5on and the comparison to all remaining 
patches of a WSI. The score takes the rela5ve patch 
importance for the models’ predic5on into account. 
By using aden5on mechanisms in this way, we hope 
to improve the accuracy and interpretability of our 
results. In par5cular, various visualiza5on 
techniques can be used to highlight the areas of the 

160 registered 
patients   

67 identified with PET/CT 
derived therapy response    

42 patients with 
d1 data

62 patients with 
d14-d21 data

Pathologic Review:
• Slide quality check
• Tumor slide available

Study design B

FDG-PET/CT
Tissue 

Sampling

FDG-PET/CT
Tissue 

Sampling

d1 d14-21 dx

Neoadjuvant 
CTX

NR: <35% 
decrease

Surgery

R: >35% 
decrease

Complete perioperative CTX (n=45)

Salvage neoadjuvant CRT (n=22)

Investigated Not investigated, but part of 
initial MEMORI trial

A MEMORI Patient Flow

Exclusion due to distant 
metastases, low FDG uptake 
and missing data

67 
patients

Figure 1. Study Design and PaNent Flow  
Study design for our retrospecXve recruited MEMORI cohort (A). The paXents underwent neoadjuvant chemotherapy for 14-21 days, then 
being straXfied in responder (R) and non-responder (NR) paXents. We just consider the first cycle of CTX unXl paXents had been straXfied 
for our analysis (B). The complete MEMORI trial protocol also encompasses the analysis of therapy adapXon based on FDG-PET/CT 
responder status in CTX or salvage chemoradiotherapy (CRT), which is not part of this invesXgaXon. 
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WSI that are most important for predic5ng therapy 
response. The authors of CLAM published weights 
for a network that was trained on TCGA data for 
non-small-cell-lung-cancer (NSCLC) subtyping, 
which we used for network ini5aliza5on.  

One drawback of the aden5on mechanism is the 
inability to deal with spa5al context, due to the 
permuta5on invariant pooling operator. To 
overcome this limita5on, we also tested a graph-
based neural network, specifically Patch Graph 
Convolu5onal Network (PatchGCN)38. For this 
purpose, adjacent patch-wise feature vectors are 
connected via edges to build up a neighborhood 
graph. The edge weights between the individual 
feature vectors (modeling graph nodes) are again 
calculated via the aden5on mechanism. The feature 
vectors are successively aggregated by a neural 
network to a single pa5ent vector, considering 
spa5al paderns. In total, we used the following 
networks architectures: 

• Encoder: ResNet50 (ImageNet), ResNet50 
(SimSiam), ViT-256, ViT-4096 

• Decoder: Max (MIL), Mean (MIL), CLAM 
(MIL), PatchGCN (GNN) 

Further architectural details and training setups are 
given in the supplementary method sec5on S1. 
 
Model SelecNon and Performance EvaluaNon 
Among all encoder and decoder networks, we first 
needed to find the best combina5on for pa5ent 
classifica5on. We performed stra5fied Monte Carlo 
cross valida5on (MCCV, 75% train, 25% test set) on 
the pa5ent level for each combina5on with 20 non-
overlapping folds to es5mate the models' 
performance.45 

As our models were designed to include just one 
5mepoint, we performed model selec5on 
separately on d1 (pre-therapy) and d14-21 (on-
therapy) samples. Given the best classifica5on 
model structures retrieved by MCCV, models got 
trained and tested on data from TUM hospital and 
internally validated on data from UME and LMU 
hospitals. Besides internal valida5on, cross-
5mepoint evalua5on was carried out on each final 

pre- and on-therapy classifica5on model to examine 
if detected morphological features for treatment 
response are consistent. 

Performance was assessed using four common 
metrics: the area under the receiver opera5ng 
characteris5c curve (AUROC), the area under the 
precision-recall curve retrieved by average precision 
(AUPRC), the balanced accuracy (B. Acc.) and 
Madhews correla5on coefficient (MCC)46.  

Qualita5ve heatmap visualiza5ons based on the 
aden5on scores were created for aden5on-based 
networks. We selected the 250 highest adending 
patches of each pa5ent in our valida5on set, 
clustered them with Density-Based Spa5al 
Clustering (DBSCAN)47 (see supplementary Methods 
S2), and calculated two-dimensional 
representa5ons using Uniform Manifold 
Approxima5on and Projec5on for Dimension 
Reduc5on (UMAP)48. The resul5ng clusters were 
analyzed by a trained board-cer5fied pathologist to 
iden5fy and interpret predic5ve regions and 
structures. 

 
Model Training 
The ImageNet ResNet50 was used with default 
weights. In addi5on, we trained the ResNet50 with 
patches from the MEMORI dataset (d1 and d14-21) 
by using SimTriplet39. The pre-trained pan-cancer 
ViT-256 and ViT-4096 networks were not finetuned, 
as they already have been trained on 104 million 
cell-level images (ViT-256) and 408,218 5ssue 
microenvironments (ViT-4096), sugges5ng sufficient 
feature extrac5on capabili5es for histological 
images.  

All decoder networks were op5mized using 
Adam op5mizer (Methods S2 in the Supplement). 
Training of the aggrega5on networks was 
performed at the WSI level with the pa5ent label. 
The evalua5on was always performed at the pa5ent 
level including all available WSI.  

For model selec5on with MCCV, we retrieved a 
dataset of 42 (27 R, 15 NR) pa5ents with a total of 
152 WSIs (105 R, 47 NR) for d1 and 62 (42 R, 20 NR) 
pa5ents with a total of 204 WSIs (145 R, 59 NR) for 
d14-21. For internal d1 valida5on, 25 pa5ents (17 R, 

1. Tissue     Detection2. Patching3. Stain     Normalization

Encoder Decoder
Aggregation and Classifier

PatchEmbeddings PET/CTResponderStatus

Preprocessing PatchesWSISlide Scan Histolog
ical  Feature Calculat
ion

Figure 2. Deep learning pipeline for digiNzed Nssue specimens to predict the treatment response determined 
by PET/CT. The WSI are first preprocessed to generate patches and then provided to the network. For each patch, image features are 
calculated, which are subsequently aggregated to predict the treatment response. 
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8 NR) with 90 WSI (67 R, 23 NR) were available from 
the TUM hospital for training and tes5ng and a total 
of 17 pa5ents (10 R, 7 NR) with 62 WSI (38 R, 24 NR) 
were available from the UME and LMU for final 
valida5on. For the internal d14-21 valida5on, the 
distribu5on is as follows: TUM 47 training and 
tes5ng pa5ents (32 R, 15 NR) with 147 WSI (106 R, 
41 NR), UME and LMU 15 valida5on pa5ents (10 R, 
5 NR) with 47 WSI (29 R, 18 NR). 
 
StaNsNcal Analysis 
Data were analyzed between January and October 
2022. Bootstrap resampling with 1000 repe55ons 
was used to determine the 95% CIs of the test 
results. Sta5s5cal significance of clinical parameters 
was determined by Spearman’s rank correla5on and 
T-test, both 2-sided, with a 𝑃 < .05 significance 
level. Sta5s5cal analysis was carried out in Python 
(3.9.7) with SciPy49 (1.7.1), Pandas50 (1.3.4), and 
scikit-learn51 (1.1.2).  

Results 
 

Clinical CharacterisNcs 
The clinical parameters of the pa5ents are 
presented in Table S2 and S3 in the supplementary 
material. We found no significant correla5on 
between clinical parameters and treatment 
response to neoadjuvant CTX.  

 
PredicNon Performance for Model SelecNon with 
MCCV 
The MCCV classifica5on results are summarized in 
Table 1. For pre-therapy (d1) experiments, both 
mean and max baseline pooling operators obtained 
random behavior (Table S4 in the Supplement), 
except for mean pooling in combina5on with the 
ViT-4096 encoder network with a mean AUROC of 
0.72 (SD, 0.12). The three best-performing model 
combina5ons based on mean AUROC are the pre-
trained CLAM network in combina5on with 

160 registered 
patients   

67 identified with PET/CT 
derived therapy response    

42 patients with 
d1 data

62 patients with 
d14-d21 data

Pathologic Review:
• Slide quality check
• Tumor slide available

Study design B

FDG-PET/CT
Tissue 

Sampling

FDG-PET/CT
Tissue 

Sampling

d1 d14-21 dx

Neoadjuvant 
CTX

NR: <35% 
decrease

Surgery

R: >35% 
decrease

Complete perioperative CTX (n=45)

Salvage neoadjuvant CRT (n=22)

Investigated Not investigated, but part of 
initial MEMORI trial

A MEMORI Patient Flow

Exclusion due to distant 
metastases, low FDG uptake 
and missing data

67 
patients

Table 1. MCCV Results for model selecNon. Result format: Mean (SD). 
AbbreviaXons: AUROC, area under the receiver operaXng characterisXc curve; AUPRC, area under the precision-recall curve; B. Acc., balanced 
accuracy; MCC, Mabhews correlaXon coefficient; CLAM pre-trained, CLAM network pre-trained on TCGA NSCLC and finetuned on MEMORI 
data. 

 

Decoder Encoder AUROC AUPRC B. Acc. MCC 

Pre-Therapy (d1) MCCV Results 

Mean ViT-4096 0.72 (0.12) 0.67 (0.17) 0.55 (0.10) 0.00 (0.00) 

CLAM 
Pre-trained 

ResNet50 ImageNet 0.80 (0.14) 0.76 (0.14) 0.72 (0.09) 0.44 (0.18) 

ResNet50 SimTriplet 0.75 (0.15) 0.69 (0.16) 0.64 (0.15) 0.28 (0.30) 

PatchGCN 

ResNet50 ImageNet 0.72 (0.20) 0.66 (0.18) 0.50 (0.00) 0.00 (0.00) 

ResNet50 SimTriplet 0.74 (0.18) 0.68 (0.16) 0.50 (0.00) 0.00 (0.00) 

ViT-256 0.58 (0.20) 0.58 (0.19) 0.56 (0.09) 0.14 (0.21) 

On-Therapy (d14-d21) MCCV Results 

Max 

ResNet50 ImageNet 0.49 (0.09) 0.35 (0.06) 0.50 (0.00) 0.00 (0.00) 

ResNet50 SimTriplet 0.54 (0.17) 0.41 (0.12) 0.50 (0.00) 0.00 (0.00) 

ViT-256 0.59 (0.08) 0.39 (0.08) 0.56 (0.08) 0.15 (0.19) 

ViT-4096 0.74 (0.13) 0.59 (0.16) 0.64 (0.12) 0.28 (0.27) 

Mean 

ResNet50 ImageNet 0.69 (0.12) 0.65 (0.12) 0.63 (0.09) 0.36 (0.21) 

ResNet50 SimTriplet 0.81 (0.09) 0.73 (0.12) 0.69 (0.11) 0.43 (0.21) 

ViT-256 0.82 (0.09) 0.75 (0.12) 0.70 (0.09) 0.46 (0.25) 

ViT-4096 0.89 (0.08) 0.83 (0.12) 0.79 (0.10) 0.61 (0.17) 

CLAM 
ResNet50 ImageNet 0.72 (0.12) 0.68 (0.12) 0.58 (0.07) 0.19 (0.19) 
ViT-256 0.80 (0.10) 0.74 (0.12) 0.71 (0.11) 0.48 (0.21) 

CLAM 
Pre-trained 

ResNet50 ImageNet 0.73 (0.14) 0.64 (0.16) 0.63 (0.14) 0.29 (0.32) 

ResNet50 SimTriplet 0.86 (0.07) 0.76 (0.12) 0.68 (0.13) 0.40 (0.28) 

PatchGCN 

ResNet50 ImageNet 0.70 (0.14) 0.59 (0.19) 0.51 (0.02) 0.02 (0.08) 

ResNet50 SimTriplet 0.84 (0.08) 0.76 (0.10) 0.70 (0.13) 0.46 (0.25) 

ViT-256 0.82 (0.11) 0.73 (0.14) 0.70 (0.14) 0.43 (0.27) 
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ResNet50 ImageNet (0.80, SD 0.14) and our 
ResNet50 SimTriplet encoder network (0.75, SD 
0.15), respec5vely, and the graph-based PatchGCN 
network again with the ResNet50 SimTriplet 
encoder (0.74, SD 0.18).  

Overall, on-therapy (d14-21) networks showed 
superior predic5ve performance compared to d1 
networks. Especially, the ViT-4096 encoder network 
in combina5on with mean pooling outperformed 
any other network combina5on for on-therapy 
biopsy samples with a mean AUROC of 0.89 (SD, 
0.08). The pre-trained CLAM network with our 
ResNet50 SimTriplet encoder also achieved good 
results with an AUROC of 0.86 (SD, 0.07). Compared 
to d1 MCCV results, PatchGCN with ResNet50 
SimTriplet encoder achieved a performance 
increase of 13% to 0.84 AUROC (SD, 0.10). In 
par5cular, the balanced classifica5on performance 
for this setup improved from random guessing to 
0.70 (SD, 0.13). AUROC distribu5ons for the best 
networks are illustrated in supplementary Figure S4.  
 
 
PredicNon Performance on ValidaNon Cohort 
Based on the MCCV test results, we selected the 
following four networks for internal valida5on: ViT-
4096 with mean pooling, pre-trained CLAM network 
with ResNet50 (ImageNet, SimTriplet), and 
PatchGCN with ResNet50 SimTriplet encoder. The 
valida5on results are presented in Table 2. As 
previously reported for MCCV, the pre-trained 
CLAM network with ImageNet ResNet50 was the 
best-performing network for predic5ng the 
treatment response of neoadjuvant CTX based on 
pre-therapy biopsy samples. The network achieved 
a valida5on AUROC of 0.81 (95% CI, 0.61-1.00), 

AUPRC of 0.82 (95% CI, 0.61-1.00), balanced 
accuracy of 0.78 (95% CI, 0.60-0.94), and an MCC of 
0.55 (95% CI, 0.18-0.88) on our internal valida5on 
cohort. Likewise, the combina5on of the ViT-4096 
encoder and mean pooling achieved the best 
valida5on performance on the on-therapy biopsy 
samples, with an AUROC of 0.84 (95% CI, 0.64-1.00), 
AUPRC of 0.82 (95% CI, 0.56-1.00), balanced 
accuracy of 0.80 (95% CI, 0.63-1.00), and MCC of 
0.71 (95% CI, 0.38-1.00).  
 
 
QualitaNve Performance on ValidaNon Cohort  
To interpret the DL model performance, we created 
representa5ve aden5on heatmaps (Figure 3) for the 
CLAM network with ResNet50 ImageNet encoder 
for internal valida5on. For some pa5ents, the 
aden5on heatmaps correlate strongly with the 
tumor regions. For others, high scores have also 
been assigned to peripheral tumor areas and 
surrounding 5ssue. Comparing the d1 heatmaps 
with the d14-21 heatmaps reveals that for d1 there 
is a more robust delinea5on between tumor regions 
and normal 5ssue. To further analyze the 
performance, we illustrated UMAP embeddings of 
the highest-adending patches along with DBSCAN 
clusters (Figure 3). For each cluster, representa5ve 
5ssue patches are shown in addi5on to exemplar 
low-adending patches. Regardless of the sample 
5me, patches with low aden5on scores are mainly 
without important 5ssue informa5on, e.g., 
corrupted/blurred patches, blood, detritus, and cell 
ar5facts. Iden5fied clusters in the d1 samples are 
one cluster with healthy squamous epithelium, two 
clusters with tumor, and one cluster consis5ng of 
macrophages and single tumor cells. In the d14-21 

Decoder Encoder AUROC AUPRC B. Acc. MCC 

Pre-Therapy (d1) ValidaDon Results on UME and LMU Hospital data (n=17) 

Mean ViT-4096 0.70 (0.46-0.94) 0.61 (0.39-0.93) 0.69 (0.48-0.88) 0.38 (-0.04-0.75) 

CLAM  
Pre-trained 

ResNet50 ImageNet 0.81 (0.61-1.00) 0.82 (0.61-1.00) 0.78 (0.60-0.94) 0.55 (0.18-0.88) 

ResNet50 SimTriplet 0.54 (0.30-0.79) 0.48 (0.28-0.81) 0.50 (0.50-0.50) 0.00 (0.00-0.00) 

PatchGCN ResNet50 SimTriplet 0.49 (0.32-0.67) 0.43 (0.25-0.70) 0.50 (0.50-0.50) 0.00 (0.00-0.00) 

On-Therapy (d14-d21) ValidaDon Results on UME and LMU Hospital data (n=15) 

Mean ViT-4096 0.84 (0.64-1.00) 0.82 (0.56-1.00) 0.80 (0.63-1.00) 0.71 (0.38-1.00) 

CLAM 
Pre-trained 

ResNet50 ImageNet 0.76 (0.50-1.00) 0.67 (0.37-1.00) 0.60 (0.50-0.80) 0.38 (0.00-0.71) 

ResNet50 SimTriplet 0.74 (0.43-1.00) 0.69 (0.33-1.00) 0.55 (0.40-0.75) 0.14 (-0.26-0.56) 

PatchGCN ResNet50 SimTriplet 0.80 (0.56-1.00) 0.80 (0.52-1.00) 0.50 (0.50-0.50) 0.00 (0.00-0.00) 
 

Table 2. Validation Results on internal UME and LMU patient cohort. Result format: Mean (SD). 
AbbreviaXons: AUROC, area under the receiver operaXng characterisXc curve; AUPRC, area under the precision-recall curve; B. Acc., balanced 
accuracy; MCC, Mabhews correlaXon coefficient; CLAM pre-trained, CLAM network pre-trained on TCGA NSCLC and finetuned on MEMORI data. 
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samples, we were again able to iden5fy clusters of 
squamous epithelium and tumor areas. However, 
the clusters are not as well differen5ated as in the 
d1 samples (e.g., cluster 3), and one cluster contains 
dysplas5c columnar 5ssue. Addi5onal visualiza5ons 
using the ViT-256 and ViT-4096 encoders are 
provided in Figures S5 and S6 (Supplement). 

 
PredicNon Performance on Cross-Timepoint Data 
Tes5ng the best-performing models from our 
internal valida5on sets on cross-5mepoint data, we 
obtained a random AUROC classifica5on 
performance of 0.48 (95% CI, 0.34-0.62) using d14-
21 therapy biopsy samples on the best d1 model 
and 0.51 (95% CI, 0.35-0.65) vice versa.  
 
Discussion  

 
This diagnos5c study based on the prospec5ve 
MEMORI trial is the first to evaluate the treatment 
response of GEJ cancer pa5ents with histological 
slides using DL. We were able to select and train two 
networks achieving high accuracy on an internal 
valida5on cohort while maintaining high AUPRC 
values. These results suggest that H&E biopsy 
samples contain 5ssue morphologies indica5ng 
treatment response. The high accuracy with pre-
therapy biopsy samples is of par5cular interest, 
which may support early pa5ent stra5fica5on for 
therapy adjustment and jus5fies further 5ssue 
analysis in collabora5on with pathologists. So far, 
pathologists have not been able to predict 
treatment response based on biopsy specimens 
alone. Also, besides PET/CT-based diagnos5cs, no 
known clinical parameters (e.g., TNM staging, tumor 
grading) show a significant correla5on with 
treatment response. 

Our work demonstrates that pre-trained models 
on WSI achieve superior performance. On the one 
hand, CLAM network pre-trained on TCGA NSCLC 
WSI achieves the best performance on the pre-
therapy 5ssue samples and yields good results for 
the therapy 5ssue samples. The untreated GEJ 
tumor samples have morphologically similar 
structures to NSCLC 5ssue samples; Thus, the 
network generalizes. On the other hand, the 
combina5on of the pan-cancer TCGA pre-trained 
ViT-4096 encoder and mean-pooling achieves the 
best results for the on-therapy evalua5on. Due to 
CTX, the treated samples have highly altered 5ssue, 
whereby pan-cancer pre-training generates more 
predic5ve features (see Figure S5 and S6 in the 
Supplement). 

The aden5on heatmaps in Figure 3 aim to refuse 
shortcut learning and spurious adractors (e.g., 
staining differences) and to reveal key regions of the 
model. Both d1 and d14-d21 predic5on models 
facilitate tumor regions and the surrounding 5ssue 

(tumor microenvironment). The clusters (Figure 3) 
confirm the visual heatmaps interpreta5on that 
mainly tumor areas are responsible for treatment 
response, but also healthy squamous epithelium 
has an influence. Low-adending patches, 
conversely, are patches without any meaningful 
5ssue. The par5ally clear demarca5on of the 
clusters in the pre-therapy specimens is remarkable, 
although esophageal adenocarcinoma is a very 
heterogeneous tumor, in which variability in the 
clusters would have been quite expected. 

The inferior performance of the baseline 
models, together with the CLAM aden5on 
heatmaps and clusters (Figure 3), indicate that not a 
single small 5ssue sec5on or the whole sample are 
equally important for predic5on, but a complex 
interac5on of the tumor with its microenvironment 
and the surrounding squamous epithelium is 
relevant. 

In evalua5ng the best networks on image data 
from the other 5me, classifica5on performance 
dropped drama5cally. These performance drops are 
pathologically plausible since CTX does not 
selec5vely alter the tumor 5ssue. Instead, the 
tumor and surrounding 5ssue heterogeneity 
increase due to therapy, explaining the different 
paderns found. Thus, we showed that 
computa5onally accessible 5ssue changes result 
from the treatment.  

The implica5ons of our results are wide-ranging. 
Being able to detect non-responder pa5ents based 
on pre-therapy WSI could significantly improve 
pa5ent care and apply targeted therapy at an early 
therapy course. Nonetheless, we have only shown 
that pa5ent stra5fica5on on digi5zed 5ssue samples 
is possible. The histopathological paderns that have 
led to this classifica5on s5ll need to be revealed and 
further research is crucial. In future work, it could be 
interes5ng to incorporate mul5ple imaging 
modali5es (H&E, PET/CT) combined with blood and 
gene5c tes5ng in one mul5modal model52 to test if 
predic5on accuracy can be further enhanced to 
build one encompassing pre-screening test. 

 
LimitaNons 
There are several limita5ons in this study. First, we 
just performed internal valida5on on a dataset 
acquired from two different German hospitals from 
pa5ents of the MEMORI trial. In addi5on, our 
pa5ent cohort is reasonably small, needing more 
extensive follow-up cohorts for external valida5on. 
All valida5on results must therefore be interpreted 
with cau5on. Second, our training label is based on 
the PET/CT SUVmax cut-off value. Thus, because no 
other method of determining treatment response is 
known, no conclusive comparison between the 
predic5ve performance of H&E biopsy images with 
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Figure 3. AVenNon-Score analysis using heatmaps and clustering for best-performing validaNon networks.  
The best network combinaXon shown here is the pre-trained CLAM in combinaXon with ResNet50 ImageNet, each for pre-therapy (A) and 
on-therapy (B) data. Exemplary abenXon heatmaps using relaXve abenXon scores are given along with tumor region of interest, drawn by a 
board-cerXfied pathologist. The abenXon scores indicate the relaXve predicXve importance of the Xssue area. Highest abending patches (red 
heatmap regions) were used to generate cluster plots using the U-Map embedding algorithm. On the right, representaXve patches for 
idenXfied clusters of high-abending patches are shown. Low-Abending patches (C) with no predicXve importance are similar for both 
intervenXon Xmes (pre-therapy vs. on-therapy). 
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our networks and PET/CT-guided treatment 
decisions53 is possible. Third, the qualita5ve 
interpretability of our approach is limited. Although 
we were able to show that our network does not 
perform shortcut learning, we can only interpret the 
learned features using our clustering. We were not 
able to iden5fy new interpretable biomarkers. 
Fourth, we are currently limited to either using d1 
or d14-21 images, not incorpora5ng all available 
informa5on in one network. Mul5modal networks 
integra5ng different sources of informa5on (H&E, 
PET/CT, blood test, genomic) may provide improved 
classifica5on results with increased interpretability. 

 
Conclusions 
 
In this diagnos5c study, we developed two DL 
models to predict PET/CT treatment response status 
with high-resolu5on H&E biopsy sample images and 
achieved high accuracy even on the pre-therapy 
data on our internal valida5on set. This classifier 
could help with pa5ent stra5fica5on for treatment 
adjustment at an early stage, if validated in 
prospec5ve studies. We believe that this work 
provides an essen5al founda5on to establish a new 
histological diagnos5c system. 
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