
Self-Configuring Capsule Networks for Brain Image Segmentation

Authors

Arman Avesta, MD,1,2,3 Sajid Hossain, BS,2,3 Mariam Aboian, MD, PhD,1 Harlan M. Krumholz,

MD, MS,3,4 Sanjay Aneja, MD.2,3,5

1 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT

06510

2 Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510

3 Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, CT

06510

4 Division of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510

5 Department of Biomedical Engineering, Yale University, New Haven, CT 06510

Corresponding author:

Sanjay Aneja, MD
Assistant Professor, Department of Therapeutic Radiology
Yale School of Medicine
Center for Outcomes Research and Evaluation
195 Church St 6th Floor
New Haven, CT 06510
Email: sanjay.aneja@yale.edu
Tel: Tel: 203-200-2100
Fax: 203-737-1467

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Abstract:

When an auto-segmentation model needs to be applied to a new segmentation task,

multiple decisions should be made about the pre-processing steps and training

hyperparameters. These decisions are cumbersome and require a high level of expertise. To

remedy this problem, I developed self-configuring CapsNets (scCapsNets) that can scan the

training data as well as the computational resources that are available, and then self-configure

most of their design options. In this study, we developed a self-configuring capsule network

that can configure its design options with minimal user input. We showed that our self-

configuring capsule netwrok can segment brain tumor components, namely edema and

enhancing core of brain tumors, with high accuracy. Out model outperforms UNet-based

models in the absence of data augmentation, is faster to train, and is computationally more

efficient compared to UNet-based models.

Introduction

Despite the increasing popularity of deep-learning auto-segmentation methods, their

implementation into clinical practice has been hindered by the need to configure their design

options, which require a high level of expertise.
1,2

 If the design options of a deep-learning

method are not optimally chosen for a particular task, the performance of the model drops

significantly.
3
 This makes the process of adapting and training a deep-learning auto-

segmentation model quite challenging, particularly in auto-segmenting 3D biomedical images

where the image properties vary drastically.
3
 Examples of image properties that vary from one

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

dataset to another include the image size, voxel spacing, voxel anisotropy, and the

segmentation class ratios. An additional layer of complexity is posed by varying computational

resources that are available for model training and deployment. Examples of these

computational resources include the number of CPU cores, the amount of RAM, and the

amount of GPU memory.

The properties of the input images and the computational resources that are available

vary from one clinical setting to another, affecting the optimal design options that should be

chosen for the training and deployment of an auto-segmentation model. Examples of the

design options that should be chosen for each particular task, which depend on the input

images and the computational resources that are available, include pre-processing steps such

as image resampling and resizing strategy, patch size, class sampling strategy, batch size, and

learning rate scheduling.
2

Using empirical methods to choose the design options of deep-learning auto-

segmentation models often leads to suboptimal design choices.
4
 Examples of the design

options that should be chosen for each particular task, which depend on the input images and

the computational resources that are available, include pre-processing steps such as image

resampling and resizing strategy, data augmentation strategy, patch size, class sampling

strategy, batch size, and learning rate scheduling strategy. Optimization methods proposed by

previous studies in automatic machine learning (AutoML) are often not feasible due to the high-

dimensional nature of the combinations of all design options.
4
 Therefore, these design options

are often chosen by experts using an iterative trial-and-error process, which often leads to

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

suboptimal auto-segmentation pipelines. Small errors in choosing the design options often

leads to large drops in model performance.
1,2,4

 The problem of choosing the optimal design options for a model becomes even more

cumbersome in the presence of real-world heterogeneous data. While most publicly available

biomedical imaging datasets contain highly curated, high-resolution images with minimal

imaging artifacts, the images in our clinical practice often have vastly different image

resolution, image quality, varying degrees of voxel anisotropy, and imaging artifacts. In this

setting, choosing the optimal design options for an auto-segmentation model would be difficult

even for an experienced operator.
2,4

In this study, I aim at automating the process of choosing these design options by

developing a capsule network model that can scan the training data as well as the

computational resources that are available, and then self-configure most of its design options. I

propose that a self-configuring capsule network (scCapsNet) that does not need a human

expert to optimize its design options would facilitate clinical implementation.

The Yale Glioma Dataset

I used the images of 755 patients in the Yale Glioma Dataset that were scanned across

several healthcare facilities within the Yale New Haven Health system. This dataset contains a

wide variety of brain tumors (Table 5.1) that span benign grade 1 tumors to malignant grade 4

glioblastomas (Table 5.2). The images in this dataset are highly heterogeneous because they are

scanned using 14 distinct MR scanners, dissimilar MR acquisition parameters, various scanning

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

orientations (axial, sagittal, coronal, and 3D acquisitions), different voxel spacings, and various

degrees of voxel anisotropy (Figure 5.1). I randomly split the patients in this dataset into

training (603 MRI patients, 80% of data), validation (75 patients, 10% of data), and test (75

patients, 10% of data) sets. Table 5.2 provides patient demographics. This study was approved

by the Institutional Review Board of Yale School of Medicine (IRB number 2000027592).

Segmentation Targets: Components of Brain Tumors

 I aimed at developing scCapsNet models that can segment two tumor components: 1)

the tumor edema/gliosis on the fluid-attenuated inversion recovery (FLAIR) images; and 2) the

tumor enhancing core on post-contrast T1-weighted images. Segmenting these two tumor

components are clinically important for radiation therapy, neurosurgery, and treatment

response monitoring.
5–7

 The tumors in this dataset were manually segmented within the picture archiving and

communication system (PACS) of Yale New Haven Hospital. Five medical students, who were

trained to manually segment the tumor components, manually segmented the images for 1,001

patients. Of these, the segmentations of 755 patients were checked, manually edited, and

finalized by a board-certified attending neuroradiologist (Mariam S. Aboian, MD, PhD). I used

this subgroup of 755 patients for training and testing my models.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5.1: the Yale Glioma Dataset contains a large variety of MR images that were acquired using 16

MRI scanners with dissimilar MR acquisition parameters. For instance, the FLAIR images in this dataset

include high-quality, high-resolution images with isotropic voxel spacing of 1×1×1 mm (A), axial MR

acquisitions with high resolution in the axial plane but thick axial slices with voxel spacing of 0.4×0.4×7

mm (B), and coronal MR acquisitions with high resolution in the coronal plane but thick coronal slices with

voxel spacing of 0.5×0.5×14 mm (C).

16

et

R

×7

ith

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Table 5.1: Brain tumor types that are represented within the Yale Glioma Dataset.

Diagnosis Percentage

Glioblastoma 50.6%

Anaplastic astrocytoma 6.4%

Oligodendroglioma 6.3%

Glioma, not otherwise specified 4.1%

 Pilocytic astrocytoma 3.9%

Anaplastic oligodendroglioma 2.4%

Astrocytoma 2.2%

Diffuse astrocytoma 1.7%

Oligoastrocytoma 1.6%

Gliosarcoma 0.3%

Pilomyxoid astrocytoma 0.2%

Subependymal giant cell astrocytoma 0.2%

Pleomorphic xanthoastrocytoma
0.2%

Low grade glial neoplasm 0.1%

Tectal glioma 0.1%

Ganglioglioma 0.1%

Pilomyxoid astrocytoma WHO Grade 2 0.1%

Pylomyxoid astrocytoma 0.1%

Desmoplastic infantile ganglioma/astrocytoma 0.1%

Gliosarcoma 0.1%

Anaplastic ependymal tumor 0.1%

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Table 5.2: Study participants tabulated by the training, validation, and test sets.

Data

Partitions

Number

of

Patients

Age

mean ±

SD

Gender† Tumor Grade††

Training set 603 53 ± 20
41% F, 59%

M
8% I, 11% II, 12% III, 69% IV

Validation

set
76 50 ± 19

41% F, 59%

M
5% I, 9% II, 11% III, 75% IV

Test set 76 53 ± 23
40% F, 60%

M
5% I, 15% II, 8% III, 72% IV

† F: female; M: male.

†† I, II, III and IV respectively represent grade 1, 2, 3, and 4 gliomas.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Automated Paradigm for Determining Computational Resources

 The available computational resources determine key design options for image pre-

processing and model training. For instance, a larger GPU memory allows for larger batch and

patch sizes. To develop a self-configuring model, I used the following packages to automatically

determine the computational resources that are available:

1) Number of CPU cores: I used the multiprocessing package in Python to read the number of

available CPU cores.8 I set aside one CPU core for the operating system and used the

remaining CPU cores for parallel image processing. Using this technique, I parallelized time-

consuming pre-processing steps including bias field correction and image resampling, as well

as time-consuming data loading steps during model training.

2) Available RAM: I used the psutil (process and system utilities) package in Python to read the

amount of free RAM that is available for computing.9 To accelerate model training, I

implemented a data loader that prepares a queue of input/output pairs using the CPU and

stores this queue in RAM, ready to be used by the GPU to train the model. The length of this

input/output queue is automatically determined by the amount of available RAM.

3) Available GPU memory: I used the NVIDIA Management Library’s pynvml package in

Python to read the amount of free GPU memory that is available for computing.10 I defined

configurations in my code that automatically increases the batch size and patch size if more

GPU memory is available.

I have provided a sample code in Appendix 5 that shows how to use these three packages to

read the available computational resources.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Automated Paradigm for MRI Pre-Processing

 I designed an automated pre-processing paradigm that can pre-process MRIs with

different MR sequences, acquisition parameters, voxel spacings, and voxel anisotropies while

requiring minimal user input. The steps of pre-processing include:

1) I used HD-BET for brain extraction, which a deep-learning method that can extract the brain

from images that contain space-occupying lesions.
11

 To ensure that HD-BET correctly extracts

the brain from images in the Yale Glioma Dataset, I randomly selected 100 MRIs and checked

the brain-extracted images. All randomly-selected images showed correct brain extraction

without major issues.

2) I used the Simple ITK package for bias field correction.
12

 Because bias field correction using

this method is a time-consuming step, I parallelized this step by simultaneously processing

multiple images using multiple CPU cores. The number of parallel processes is automatically

determined by the model, depending on the available CPU cores and the amount of available

RAM.

3) Each image and its accompanying ground-truth segmentation image are then cropped

around the brain confines, thereby reducing their size.

4) The voxel intensities of the images are then normalized using Z-normalization.
13

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

5) Label remapping is done if the segmentation labels are not encoded by consecutive numbers

starting from 0. In label remapping, the segmentation labels are automatically remapped so

that the background is encoded by 0 and the foreground labels are encoded by consecutive

numbers starting from 1.
13

6) Resampling is done to transform all images into the same voxel spacing. first, all images in

the training set are scanned for their voxel spacing. Then, the median voxel spacing of all

images is computed. Finally, all images in the dataset are resampled onto this median voxel

spacing. For voxels that are isotropic or near-isotropic, third-order cubic interpolation is used

for resampling. For voxels that are highly anisotropic, resampling in the direction that has the

largest voxel spacing is done using linear interpolation (to prevent ghosting artifacts caused by

thick-slice resampling). Segmentations are resampled using zero-order interpolation after one-

hot-encoding. Zero-order interpolation for segmentation labels is necessary to prevent

generation of non-integer numbers that do not represent any segmentation label.
13

7) Finally, the quality of all pre-processing steps was checked for each image to ensure that the

shape, voxel spacing, coordinate system, and the affine transform from the image space to the

scanner space is consistent between each raw image and its accompanying ground-truth

segmentation image. Finally, the preprocessed images and segmentation masks are saved as

NIfTI files.
14

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Accelerated Data Loading

To make the model training faster, I implemented a data loading method that loads the

input image and the accompanying segmentation, randomly samples patches from them, forms

data batches, and finally forms a queue of input/output batches that are ready to be used by

the GPU for model training. These computations are done using the CPU and RAM while the

model is trained on the GPU in parallel. Because the CPU and RAM prepare input/output pairs

at the same time that the GPU trains the model, the two processes do not wait for each other,

resulting in accelerated training that is about twice faster.
13

 Additionally, several CPU cores are

recruited to prepare the input/output pairs in parallel. The length of the inputs/outputs queue

is automatically choses depending on the batch size, patch size, and the amount of available

RAM.

Comparing Self-Configuring Capsule Networks with nnUNets and UNets

In addition to training the self-configuring capsule network, I also trained nnUNet and

UNet models using the same training data,
15–18

 followed by comparing their segmentation

accuracy and computational efficiency using the same test data. Because the nnUNet has its

own pre-processing pipeline, I fed the nnUNet with raw images and accompanying

segmentation.

Because I wanted to compare the performance of scCapsNet with UNet-based models in

the absence of data augmentation and because the nnUNet does data augmentation

automatically, I also trained and tested a UNet using the data that was pre-processed by the

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

scCapsNet pre-processing pipeline. The architecture and training hyperparameters of the UNet

are provided in Chapter 3 and Appendix 3.

Auto-Segmentation Performance Metrics

I compared the segmentation accuracy of the scCapsNet with nnUNet in auto-

segmenting the tumor edema/gliosis on FLAIR images as well as the tumor enhancing core on

post-contrast T1-weighted images. Segmentation accuracy was quantified using Dice scores. To

compare the segmentation accuracy of scCapsNet with UNet-based models in the absence of

data augmentation, I trained and tested a UNet using the pre-processed data that was used to

train the scCapsNet without data augmentation. To compare the computational speed during

training, I compared the time that the scCapsNet and nnUNet would need to converge to the

Dice score of 80% over the validation set. To compare the computational speed during

deployment, I compared the time that the scCapsNet and nnUNet would need to pre-process

and segment a brain MRI. Finally, I compared the GPU memory that is required by the

scCapsNet and nnUNet models.

Software and Hardware used for Model Implementation

Image pre-processing was done using Python (version 3.10), SimpleITK (version 2.2.0),
12

TorchIO (version 0.18.78),
13

 NiBabel (version 5.0.0),
19

 and HD-BET.
11

 PyTorch (version 1.13.1)

was used for model development and testing. SciPy (version 1.6.0) was used for statistical

testing. Training and testing of the models were run on GPU-equipped servers (4 vCPUs, 16 GB

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

RAM, 16 GB NVIDIA GPU). The code used to train and test our models is available on our lab’s

GitHub page:

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-scCapsNet.

Auto-Segmentation Performance Results

 The nnUNet slightly outperformed the scCapsNet model in auto-segmented the tumor

edema/gliosis on FLAIR images, with average Dice scores of 86% and 89% for the two models,

respectively. The scCapsNet slightly outperformed the nnUNet in auto-segmenting the tumor

enhancing core on post-contrast T1-weighted images, with average Dice scores of 89% and

88%, respectively. However, none of the differences between the two models were statistically

significant (Table 5.3).

In the absence of data augmentation, there was a drop in the performance of the UNet-

based models. The UNet auto-segmented the FLAIR and post-contrast T1-weighted images with

Dice scores of 84% and 85%, respectively. The scCapsNet outperformed the UNet-based models

in the absence of data augmentation (Table 5.4).

The scCapsNet converges faster during training compared to nnUNet. During training,

the scCapsNet and nnUNet models reached the Dice score of 80% over the validation set after

13 and 38 hours, respectively (Figure 5.3). During deployment, the scCapsNet and nnUNet

respectively require 4 and 3 minutes to pre-process and segment a brain MRI. Out of the 4

minutes, the scCapsNet spends more than 3 minutes on two pre-processing steps: brain

extraction and bias field correction.

The scCapsNet is computationally more efficient compared to nnUNet. The scCapsNet

and nnUNet respectively have 7,400 and 90,300 trainable parameters, which respectively

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

occupy 28 and 345 megabytes on the GPU memory. The total sizes of the scCapsNet and

nnUNet are respectively 5 and 31 gigabytes (Figure 5.4).

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5.2: Comparing scCapsNet and nnUNet in auto-segmenting tumor components in a patient with

glioblastoma. The top row shows auto-segmentation of the tumor edema/gliosis on the FLAIR image, and

the bottom row shows auto-segmentation of the tumor enhancing core on the post-contrast T1-weighted

(T1C+) image.

ith

nd

ed

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Table 5.3: Comparing the performance of scCapsNet and nnUNet in segmenting tumor

edema/gliosis on FLAIR images, and the enhancing core of the tumor on post-contrast T1-

weighted images.

MRI Sequence scCapsNet Dice
(95% CI)

nnUNet Dice
(95% CI)

scCapsNet vs nnUNet
P-value†

FLAIR 86% (84 to 88) 89% (87 to 91) 0.09

Post-contrast
T1 89% (87 to 91) 88% (86 to 90) 0.27

† paired-samples t-test, degrees of freedom = 75 - 1 = 74

Table 5.4: Comparing the performance of scCapsNet and UNet without data augmentation.

MRI Sequence scCapsNet Dice
(95% CI)

UNet Dice
(95% CI)

scCapsNet vs UNet
P-value†

FLAIR 86% (84 to 88) 84% (82 to
86) 0.15

Post-contrast
T1 89% (88 to 91) 85% (83 to

87) 0.02

† paired-samples t-test, degrees of freedom = 75 - 1 = 74

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5.3: Comparing the computational speed between the scCapsNet and nnUNet models. The

scCapsNet converges faster during training and reaches the Dice score of 80% after 13 hours, while the

nnUNet reaches this Dice score after 38 hours. During deployment, the scCapsNet and nnUNet

respectively require 4 and 3 minutes to pre-process and segment a brain MRI. The scCapsNet is slower

during deployment because two pre-processing steps, namely skull stripping and bias field correction, are

slow processes that take more than 3 minutes to complete. Notably, the nnUNet does not perform these

two pre-processing steps.

he

he

et

er

re

se

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Figure 5.4: Comparing the GPU memory required by the scCapsNet and nnUNet models. The bars

represent the computational memory required to accommodate the total size of each model, including the

parameters plus the cumulative size of the forward- and backward-pass feature volumes. The total sizes

of the scCapsNet and nnUNet models are respectively 5 and 31 gigabytes.

rs

he

es

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

Brain MRI Auto-Segmentation using Self-Configuring Capsule Networks

 In this chapter, I aimed at developing a self-configuring capsule network (scCapsNet)

that is feasible for clinical implementation. The scCapsNet can self-configure its design options

by considering the images that should be auto-segmented as well as the computational

resources that are available. I showed that the scCapsNet can segment brain tumor

components with high accuracy. Additionally, I showed that the scCapsNet outperforms UNet-

based models in the absence of data augmentation, is faster to train, and is computationally

more efficient compared to UNet-based models.

My results extend the prior literature in key ways. I developed the first self-configuring

capsule network and comprehensively benchmarked its segmentation accuracy and

computational efficiency. To train and test my models, I used a large dataset of clinical MRIs

that more closely represent real-life MRIs in our clinical practice, with the presence of

suboptimal image qualities and MRI artifacts. Using this dataset, I compared the performance

of the scCapsNet against the most successful auto-segmentation model that is currently used,

namely nnUNet.
2
 Therefore, my results provide practical benchmarking between the two

methods on real-life clinical MRI.

My results corroborate previous studies showing that self-configuring auto-

segmentation models are highly valuable for clinical implementation.
1,2,20–29

 Isensee et al

developed the nnUNet model, which is a self-configuring model based on UNets.
2
 While the

nnUNet also self-configures its design options by considering the data and the computational

resources, the processes by which the nnUNet chooses its design options are different from my

approach. The nnUNet model runs a few experiments at the start of the training, changing the

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

patch size, batch size, and model depth until the GPU memory runs out. These experiments

determine the largest patch size, batch size, and model depth that the GPU memory can

accommodate.

The scCapsNet, unlike the nnUNet, directly reads the computational resources through

Python modules, without the need to run any experiments. The computational resources that

are read are the GPU memory, RAM capacity, and the number of CPU cores. Then, the model

assigns the appropriate patch size, batch size, length of the inputs/outputs queue that are

prepared by the CPU during training, and the number of parallel CPU cores that are recruited,

given the computational resources that are available. Notably, the nnUNet model requires user

input to determine the number of CPU cores that should be recruited. I propose that my

approach is computationally more efficient. Additionally, the nnUNet does not perform skull

stripping and bias field correction during pre-processing.
2

The scCapsNet converges faster during training because it has fewer trainable

parameters and because of the accelerated data loading methods that are implemented into

the scCapsNet model. The accelerated data loading paradigm decreases the training time by a

factor of two. However, the scCapsNet is slightly slower than the nnUNet during deployment,

since it requires four minutes to pre-process and segment a brain MRI. Of these four minutes,

more than three minutes are spent on two pre-processing steps: skull stripping and bias field

correction. Notably, the nnUNet model does not perform these two steps during pre-

processing. I am currently studying the necessity of brain extraction and bias field correction

during pre-processing. As I will discuss in Chapter 6, I am also studying the use of data

augmentation techniques to simulate bias field inhomogeneities so that we can feed the

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

scCapsNet model with images that contain bias field inhomogeneities without the need for

correcting them.

My experiments have several notable limitations. First, I only compared the

performance of scCapsNet and nnUNet models in segmenting brain tumors on MR images. The

results of my experiments may not generalize to other brain pathologies, imaging modalities, or

other body organs. Second, I used the Yale Glioma Dataset benchmark the performance of my

models. My results may not generalize to other healthcare facilities with different patient

populations, dissimilar distributions of brain tumors, or different MR scanners. Nonetheless, the

images in the Yale Glioma Dataset represent a wide range of brain gliomas, MR scanners, and

MR acquisition parameters. Finally, the comparisons between the computational speed of

scCapsNet and nnUNet models depend on the computational resources that are available.

These comparisons may not generalize to other computational settings. However, I used

computational resources that are commonplace in the deep learning computing units.

Conclusion

 In this chapter, I developed a self-configuring capsule network that can auto-segment

brain MRIs with minimal, if any, user input. I showed that this model can segment the

components of brain tumors with high accuracy and is computationally more efficient that

currently used auto-segmentation models. In the next chapter, I will explore how this model, or

any auto-segmentation model, can be brought to the bedside to help our patients.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

References

1. Heidenreich JF, Gassenmaier T, Ankenbrand MJ, et al. Self-configuring nnU-net pipeline

enables fully automatic infarct segmentation in late enhancement MRI after myocardial

infarction. Eur J Radiol 2021;141:109817.

2. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-

based biomedical image segmentation. Nat Methods 2021;18:203–11.

3. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis.

Med Image Anal 2017;42:60–88.

4. Hutter F, Kotthoff L, Vanschoren J, eds. Automated Machine Learning: Methods, Systems,

Challenges. Cham: Springer International Publishing; 2019.

5. Mendel JT, Jaster AW, Yu FF, et al. Fundamentals of Radiation Oncology for Neurologic

Imaging. RadioGraphics 2020;40:827–58.

6. Dundar TT, Yurtsever I, Pehlivanoglu MK, et al. Machine Learning-Based Surgical Planning

for Neurosurgery: Artificial Intelligent Approaches to the Cranium. Front Surg

2022;9:863633.

7. Bennett EE, Angelov L, Vogelbaum MA, et al. The Prognostic Role of Tumor Volume in the

Outcome of Patients with Single Brain Metastasis After Stereotactic Radiosurgery. World

Neurosurg 2017;104:229–38.

8. Multiprocessing: process-based parallelism. URL:

https://docs.python.org/3/library/multiprocessing.html. Accessed 2023-02-15. Python

Doc.

9. Rodola G. Psutil: a cross-platform library for process and system monitoring in Python.

URL: https://github.com/giampaolo/psutil. Accessed 2023-02-15.

10. Pynvml: Python Bindings for the NVIDIA Management Library. URL:

https://pypi.org/project/pynvml. Accessed 2023-02-15.

11. Isensee F, Schell M, Pflueger I, et al. Automated brain extraction of multisequence MRI

using artificial neural networks. Hum Brain Mapp 2019;40:4952–64.

12. N4 Bias Field Correction — SimpleITK 2.0rc2 documentation. URL:

https://simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html.

Accessed 2023-02-15.

13. Pérez-García F, Sparks R, Ourselin S. TorchIO: A Python library for efficient loading,

preprocessing, augmentation and patch-based sampling of medical images in deep

learning. Comput Methods Programs Biomed 2021;208:106236.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

14. Li X, Morgan PS, Ashburner J, et al. The first step for neuroimaging data analysis: DICOM to

NIfTI conversion. J Neurosci Methods 2016;264:47–56.

15. Cardenas CE, Yang J, Anderson BM, et al. Advances in Auto-Segmentation. Semin Radiat

Oncol 2019;29:185–97.

16. Rudie JD, Weiss DA, Colby JB, et al. Three-dimensional U-Net Convolutional Neural

Network for Detection and Segmentation of Intracranial Metastases. Radiol Artif Intell

2021;3:e200204.

17. Rauschecker AM, Gleason TJ, Nedelec P, et al. Interinstitutional Portability of a Deep

Learning Brain MRI Lesion Segmentation Algorithm. Radiol Artif Intell 2022;4:e200152.

18. Weiss DA, Saluja R, Xie L, et al. Automated multiclass tissue segmentation of clinical brain

MRIs with lesions. NeuroImage Clin 2021;31:102769.

19. NiBabel: Neuroimaging in Python. URL: https://nipy.org/nibabel/. Accessed 2023-02-16.

20. Alqaoud M, Plemmons J, Feliberti E, et al. nnUNet-based Multi-modality Breast MRI

Segmentation and Tissue-Delineating Phantom for Robotic Tumor Surgery Planning. Annu

Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf 2022;2022:3495–501.

21. Pettit RW, Marlatt BB, Corr SJ, et al. nnU-Net Deep Learning Method for Segmenting

Parenchyma and Determining Liver Volume From Computed Tomography Images. Ann

Surg Open Perspect Surg Hist Educ Clin Approaches 2022;3:e155.

22. Zhu Y, Chen L, Lu W, et al. The application of the nnU-Net-based automatic segmentation

model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation.

Front Physiol 2022;13:1057800.

23. Li F, Sun L, Lam K-Y, et al. Segmentation of human aorta using 3D nnU-net-oriented deep

learning. Rev Sci Instrum 2022;93:114103.

24. El-Hariri H, Souto Maior Neto LA, Cimflova P, et al. Evaluating nnU-Net for early ischemic

change segmentation on non-contrast computed tomography in patients with Acute

Ischemic Stroke. Comput Biol Med 2022;141:105033.

25. Ferrante M, Rinaldi L, Botta F, et al. Application of nnU-Net for Automatic Segmentation of

Lung Lesions on CT Images and Its Implication for Radiomic Models. J Clin Med

2022;11:7334.

26. Zhu H, Yu H, Zhang F, et al. Automatic segmentation and detection of ectopic eruption of

first permanent molars on panoramic radiographs based on nnU-Net. Int J Paediatr Dent

2022;32:785–92.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

27. Zhang J, Li Z, Yan S, et al. An Algorithm for Automatic Rib Fracture Recognition Combined

with nnU-Net and DenseNet. Evid-Based Complement Altern Med ECAM

2022;2022:5841451.

28. Dot G, Schouman T, Dubois G, et al. Fully automatic segmentation of craniomaxillofacial CT

scans for computer-assisted orthognathic surgery planning using the nnU-Net framework.

Eur Radiol 2022;32:3639–48.

29. Huo L, Hu X, Xiao Q, et al. Segmentation of whole breast and fibroglandular tissue using

nnU-Net in dynamic contrast enhanced MR images. Magn Reson Imaging 2021;82:31–41.

 . CC-BY-NC 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2023. ; https://doi.org/10.1101/2023.02.28.23286596doi: medRxiv preprint

https://doi.org/10.1101/2023.02.28.23286596
http://creativecommons.org/licenses/by-nc/4.0/

