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Abstract 

Introduction 

Brain age prediction is used to quantify the pathological and cognitive changes 

associated with brain aging. However, the predicted age derived from certain models can result 

in biased estimation and the concealment of inherent aged brain function. 

Methods 

We constructed a brain age prediction model for the East Asian elderly brain using the 

brain volume and cortical thickness features from cognitively normal (CN) brains. Furthermore, 

our model was used to estimate different diagnoses and to construct a classification model of mild 

cognitive impairment (MCI) conversion and Alzheimer’s disease (AD) conversion. 

Results 

Our model showed a strong association of the brain age difference (BAD) with three 

diagnosis groups. In addition, the classification models of MCI conversion and AD conversion 

showed acceptable and robust performances, respectively (area under the curve [AUC] = 0.66, 

AUC = 0.76). 

Discussion 

We believe that our model can be used to estimate the predicted status of an East Asian 

elderly brain. Moreover, the MCI conversion model has the potential to prevent severe cognitive 

impairment and can be used for the early detection of AD. 

 

Keywords 

Brain age prediction / brain age difference / neurodegenerative diseases / East Asian elderly 

cohort / cortical thickness / brain volume / mild cognitive impairment / Alzheimer’s disease / 
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Introduction 

 Biological age represents the individual age-related biological changes that are crucial 

for the evaluation of age-associated diseases that occur throughout life [1,2]. Age has been 

robustly studied because it is significantly related to mortality risk in humans [3]. However, 

biological changes cannot be linked to a single factor. In fact, biological changes are associated 

with multiple individual factors, such as genes, health, environment, and lifestyle. It can be 

estimated by the robustness of genetic changes, such as DNA methylation state [4,5] and 

individual lifestyle choices, such as eating style, sleep quality, and physical pattern [6]. Many 

age-related factors have been used to evaluate individual biological changes; therefore, various 

scientific approaches in diverse fields have been attempted. Among these approaches, one of the 

representative biological aging studies has focused on brain age. Brain age represents not only 
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the current brain aging status but also the acceleration of brain aging [7,8] by using the difference 

between chronological age and predicted age [9]. These differences have been associated with a 

number of neurodevelopmental [10] and neurodegenerative diseases, such as Alzheimer’s disease 

(AD) and Parkinson’s disease [11]. 

Aging of the brain, including cognitive decline, is strongly associated with structural 

changes [12,13]. Magnetic resonance imaging (MRI) has been widely used to evaluate structural 

changes in the brain because it provides multiple contrasts between brain tissues and subcortical 

imaging in a noninvasive manner [14,15]. Atrophy of the cortical regions is one of the most robust 

age-related brain changes and leads to changes in the frontal and temporal regions of gray matter 

[16] and white matter [17] in elderly brains. In contrast to the normal brain aging process, the 

brain atrophy rate can also be slower according to cognitive abilities, such as in SuperAgers [12]. 

Several brain regions, such as the amygdala and hippocampus [18,19] do not fully support normal 

aging processing in the brain; rather, they are more closely related to neurodegenerative diseases, 

such as mild cognitive impairment (MCI) or Alzheimer’s disease (AD). 

Most previous studies have focused on brain atrophy with respect to the cortical volume 

and thickness. These measurements represent brain atrophy and are comparable to each other, but 

show slightly different structural aspects [20,21]. Volume estimation can be conducted in both 

the cortical and subcortical regions, whereas thickness estimation is not possible in subcortical 

regions, such as the amygdala and hippocampus [22]. In addition, volume measures are 

commonly used as normalized values corrected by intracranial volume (ICV) due to the different 

brain sizes of subjects; however, cortical thickness should be used as absolute values (mm) [23]. 

Different genetic contributions to cortical volume and thickness can also support discrete 

structural aspects [24]. In age-related volume studies, ventricular volume changes were strongly 

associated with age [19]. Decreased posterior cortical volume resulting from visual dysfunction 

may not be directly associated with AD [25]. In age-related thickness studies, age-related 

decreases in the ratios of cortical thickness in the occipital and temporal lobes [26] and large 

subject variability in frontal and temporal areas were identified [27]. Thus, both cortical volume 

and thickness measurements may contribute to brain age estimations. 

Here, we calculated both the brain structural volume and cortical thickness from 1,690 

elderly East Asian brains and constructed a brain age prediction model based on the calculated 

measurements. We measured the brain age difference (BAD) from the prediction model and 

applied BADs to investigate the association with different diagnosed groups and the classification 

of conversion groups (MCI conversion and AD conversion) with our longitudinal dataset.  
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Methods 

Subjects for brain age prediction model training 

This study was approved by the Institutional Review Board of Chosun University 

Hospital, and all participants provided written informed consent. A total of 2,381 participants 

were recruited from Gwangju, Republic of Korea, and participated in this study. The study group 

consisted of 1,690 cognitively normal (CN), 476 MCI, and 215 AD subjects. All subjects were 

screened using several neuropsychological tests, including the Korean version of the Mini-Mental 

State Examination (K-MMSE) [28], the Seoul Neuropsychological Screening Battery (SNSB) 

[29], and the Clinical Dementia Rating (CDR) [30]. It was confirmed that the CN subjects had no 

history of neurological or psychiatric disorders, or impairments in daily activities.  

 

Subjects for classification model of conversion groups 

In our dataset, different conversion groups were recruited from Gwangju, Republic of 

Korea, to participate in this study. A total of 364 and 239 participants who were diagnosed as CN 

and MCI at baseline, respectively, had at least one follow-up (mean follow-up duration 

(years):3.0/2.5 (CN/MCI)). During the follow-up period, 84 CN and 47 MCI subjects were 

converted to MCI and AD, respectively, based on a physician’s final decision. We divided the 

subjects into conversion (CNc, converted CN; MCIc, converted MCI) and non-conversion groups 

(CNs, stable CN; MCIs, stable MCI). 

 

MRI acquisitions 

All structural MRI images of the Asian cohort data were acquired using 3.0 T (Skyra, 

Siemens). The T1-MPRAGE sequence was acquired with the following parameters: TR = 2300 

ms, TE = 2.143 ms, TI = 900 ms, FOV = 256 × 256, matrix size = 320 × 320, thickness = 0.8 mm. 

The T2-SPACE sequence was acquired with the following parameters: TR = 2300 ms, TE = 2.143 

ms, TI = 900 ms, FOV = 256 × 256, matrix size = 320 × 320, thickness = 0.8 mm. 

Calculation of structural brain volumes and cortical thickness 

 All T1 images were analyzed using Neuro I (V.1.3; http://neurozen.ai/), which is a 

commercial software for neuroimaging analysis. The software package calculated structural brain 

volumes and cortical thickness as follows: (1) T1 structural images were corrected for bias field 

inhomogeneity using N4 [31]. (2) The corrected images were skull-stripped using a deep learning 

model based on a 3D convolution neural network. (3) The extracted brain images were parcellated 

into 107 regions of interest (ROIs) based on the Desikan-Killiany-Tourville (DKT) atlas using a 

3D CNN deep learning model. The cortical and subcortical volumes were measured by 
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normalizing the voxel numbers of the parcellated ROIs by the intracranial volume (ICV). The 

cortical thickness of parcellated ROIs was calculated using a project-based thickness (PBT) 

algorithm [32]. 

 

Brain age prediction model of CN group using linear regression 

 We constructed a brain age prediction model with linear Elastic Net Regression using 

1,690 CN subjects. With regards to the predictor, the calculated cortical thickness and subcortical 

volume measures from all parcellated ROIs and sex were considered. We optimized several 

hyperparameters of the prediction model by maximizing the prediction accuracy using the grid 

search method. 

The performance of the model was evaluated in two ways. First, five-fold cross-

validation (CV) was adopted by splitting the folds in such a way that each fold contained a similar 

distribution for the age bin. CV accuracy was calculated by averaging the five-fold validation 

accuracy. The metrics used were the mean absolute error (MAE) and Pearson correlation (𝑟) 

between chronological age and predicted age. Second, 476 MCI subjects and 215 AD subjects 

were adjusted to the final brain age model, and their predicted ages were compared with those of 

the CN subjects. All statistical analyses were conducted using the Scikit-learn package (version 

1.2.0) in Python (version 3.7). 

 

Brain Age Difference (BAD) calculation 

 To evaluate the acceleration of brain aging, we calculated the differences between 

chronological age and the predicted age derived from our prediction model, which was referred 

to as brain age differences (BADs). The chronological age, predicted age, and BAD for the 𝑖th 

subject was denoted as 𝑦𝑖, �̂�𝑖 and 𝐵𝐴𝐷𝑖, respectively. Thus, the BAD for the 𝑖th subject can be 

represented as follows: 

𝐵𝐴𝐷𝑖 = �̂�𝑖 − 𝑦𝑖 . 
 

Association of BAD with different diagnosis groups 

 To determine whether BADs differed by group (CN vs. MCI vs. AD), we conducted 

Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA) adjusting for sex and 

age as covariates in order to confirm the differences in BADs by conversion groups (CNs vs. CNc 

and MCIs vs. MCIc). 

 

The classification model of conversion groups (MCI and AD) 
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 To prepare accurate conversion group data for the training of the classification model, we 

selected conversion-type data at the restricted time point that was robustly represented. Among 

the follow-up data of the conversion groups (CNc and MCIc), the data at the time point right 

before conversion to MCI or AD were considered, and the data of the non-conversion groups 

(CNs and MCIs) at the time point right before the last follow-up time were selected for a fair 

comparison with the conversion groups. Using these data, we developed three classification 

models. First, the baseline model was built using chronological age, sex, and years of education. 

Second, the MMSE scores were added to the baseline model. Third, we considered demographic 

characteristics (age and sex) and BAD as covariates. All combinations of covariates were adjusted 

to predict the conversion of MCI and AD, and all models were built using logistic regression. 

To evaluate the performance of the models, a five-fold CV was adopted, and the metrics 

used were the area under the ROC curve (AUC), sensitivity, and specificity. To compare the 

AUCs for different covariates, we conducted the Mann–Whitney U-test [33,34]. We conducted 

all analyses with Scikit-learn package (V.1.2.0) and Scipy (V.1.9.3) in Python (V.3.7). 

 

Results 

Descriptive statistics of study subjects 

Table 1 shows the demographic characteristics of the study sample. First, 2,381 subjects 

were used to develop and evaluate the brain age models. The subjects were allocated to one of 

three groups (1,680 CN subjects, 476 MCI subjects, and 215 AD subjects) (Table 1A). The 

average ages were 71.3 (± 6.9) years, 73.2 (±6.8) years and 75.4 (±7.2) years for CN, MCI and 

AD, respectively. The education levels were similar between CN (10.2±4.5) and MCI (10.4±4.6), 

while AD subjects had significantly lower education levels (p < 0.01). The MMSE scores differed 

significantly among the groups and the lowest means were observed for subjects with AD (CN: 

27.1±2.3; MCI: 25.3±2.9; AD: 19.4±5.5). The demographic information for the conversion 

groups is shown in Table 1B. Among the 364 CN subjects at baseline, 84 subjects were converted 

to MCI subjects (CNc), while 280 subjects remained (CNs). The mean follow-up period was 

3.1±1.9 years and 2.5±1.9 years for CNs and CNc, respectively. Approximately 239 MCI subjects 

at baseline consisted of 47 subjects who were converted to AD (MCIc) and 192 subjects who 

were still diagnosed as CN (MCIs). The mean follow-up period was 2.5±1.5 years and 2.4±2.1 

years for MCIs and MCIc, respectively. The mean ages of the conversion groups were higher than 

those of the non-conversion groups in both CN and MCI (CNs:71.0±5.1 years; CNc:73.3±5.7 

years; MCIs:72.1±5.3 years; 75.2±6.4 years). There was no significant difference in the education 
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levels and MMSE scores between CNs and CNc; however, the education levels and MMSE scores 

for MCIs and MCIs differed significantly (p < 0.01). 

 

Brain age prediction model of CN group using linear regression 

 We adopted the linear ElasticNet regression algorithm to acquire the best baseline 

performance and optimized hyperparameters for the final model. Our model exhibited 

outperformance (r = 0.803, MAE = 3.25 years) when compared with previous models [35,36] 

(Fig. 1A). The BADs for our age prediction model exhibited a negative correlation (r = -0.06), as 

reported in previous studies [37,38]. 

 

Association of BAD with different diagnosis group  

 We evaluated three different groups (CN, MCI, and AD) using the BAD measurements. 

All groups presented significantly different BADs (p < 0.001, ANCOVA). The AD group 

represented the highest intercept (43 years) and the lowest slope (r = 0.43) among all three groups 

(r = 0.64 and intercept = 25.7 years for CN; r = 0.66 and intercept = 26.6 years for MCI) (Fig. 

2A). Interestingly, the trend line of the AD group met that of the MCI group at 89.0 years of age. 

The mean BADs values of the CN, MCI, and AD groups were 0.01 years, 1.5 years and 3.8 years, 

respectively. The AD group had larger BAD values than the MCI and CN groups (p < 0.001 for 

AD vs. CN; p < 0.001 for AD vs. MCI). In addition, the MCI group had a larger BAD than the 

CN group (p < 0.001) (Fig. 2B). 

 

The classification model of conversion groups 

The non-conversion groups (CNs and MCIs) had significantly different BADs than  the 

conversion groups (CNc and MCIc) when sex and age were adjusted as covariates (p = 0.005 for 

CNs versus CNc and p < 0.001 for MCIs versus MCIc) (Fig. 3). Based on these findings, we 

constructed classification models to predict conversion to MCI and AD. The proposed 

classification models of MCI conversion demonstrated an acceptable performance (AUC = 0.66, 

sensitivity = 0.62, specificity = 0.59), and AD conversion demonstrated a robust performance 

(AUC = 0.76, sensitivity = 0.66, specificity = 0.71). Furthermore, the proposed model of MCI 

conversion and AD conversion exhibited a significantly higher AUC than the baseline models 

due to education level (p < 0.01 for MCI conversion; p < 0.01 for AD conversion) (Fig. 4). 

 

Discussion 
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 This study demonstrated a robust brain age prediction (r = 0.803, MAE = 3.25 years) of 

elderly East Asian brains. The BADs derived from our model had a strong association with 

different diagnosis groups (p < 0.001, ANCOVA). Our longitudinal data showed significant 

differences in BADs between the conversion groups (CNc and MCIc) and non-conversion groups 

(CNs and MCIs). Furthermore, the differences in BADs resulted in the robust performances of 

the classification models between conversion and non-conversion groups (AUC = 0.66 for MCI 

conversion, AUC = 0.77 for AD conversion, respectively). 

 Previous brain age prediction models have been trained using a lifespan dataset with a 

wide range of ages and demonstrated an accurate prediction with minimal errors [39,40]. These 

models commonly adopted MRI-based biomarkers, such as brain volume or cortical thickness of 

parcellated ROIs [36] derived from T1w images. Nonetheless, a recent study has reported a more 

accurate brain age prediction model using a multimodal strategy [41].  

 However, these types of models have been found to be unsuitable for the evaluation of 

narrow age ranges, such as the younger or elderly groups. Several studies have reported the bias 

estimation of different age range groups, underestimation of younger ages, and overestimation of 

older age due to the systematic bias of inherent regression methods [11,42]. In fact, our model 

also demonstrated an inherent bias in brain age prediction in elderly brains (Fig. 1B). Until 

recently, there have been very few datasets available for a specific range of ages due to difficulties 

related to data acquisition, with the exception of a specific consortium, such as the Alzheimer’s 

Disease Neuroimaging Initiative (https://adni.loni.usc.edu/). 

 To overcome the limitations of previous approaches, our brain age prediction model was 

constructed using a large cohort dataset of elderly East Asian brains. The proposed prediction 

model had a smaller error (MAE = 3.25) and a larger correlation coefficient (r = 0.803) than the 

other models [35,36]. Furthermore, the trend lines and BADs derived from our model had a strong 

association with the different diagnosis groups (p < 0.001) (Fig. 2B). Interestingly, the crossover 

of AD and MCI trend lines at older ages (Fig. 2A) strongly supports the notion that chronological 

age is a key factor in AD [43]. In addition, the BADs also indicated an association with differences 

between the conversion and non-conversion groups (p < 0.01, MCI conversion; p < 0.001, AD 

conversion) (Fig. 3). Previous studies have shown that the trajectory of diagnosis changes from 

MCI; however, most of these studies were based on brain atrophy, cognitive measurements, and 

positron emission tomography features [44,45]. The BAD derived from our brain age prediction 

model has great potential to elucidate intrinsic brain acceleration associated with 

neurodegenerative diseases [39]. In addition, our classification of MCI conversion (CNs versus 

CNc) is important for evaluating BADs as a biomarker for early cognitive impairment, since a 
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large cohort of longitudinal CN datasets that can be divided into conversion and non-conversion 

types are difficult to acquire. However, our longitudinal datasets comprised large cohort data of 

elderly people, including both the conversion and non-conversion types of CN and MCI groups 

with fixed MRI acquisition protocols. Based on the classification results, the proposed model 

demonstrated acceptable classification performance for MCI conversion and robust performance 

for AD conversion (Table 2 and Fig. 4). The MCI conversion classification model demonstrated 

relatively lower accuracy due to the small sample size and differences in neurodegeneration 

between CNs and CNc [46]. 

 Despite these findings, this study had several limitations. First, the small sample size of 

CNs weakened our novel classification model. To use our model for clinical applications, it needs 

a higher accuracy and sensitivity of at least 0.8 AUC [47]. Second, the suggested brain age 

prediction model was based on a single feature, namely the brain volume of the parcellated ROIs. 

Several studies have shown a higher AUC and lower MAE through multimodal features such as 

diffusion-weighted images, T1-weighted images, or genetic features [44,45]. Our model can be 

enhanced by using these multimodal features. Lastly, we did not evaluate our model using an 

external dataset with different ethnicities and MRI acquisition parameters. The shape and volume 

of the Caucasian brain are substantially different from those of the Asian brain, which can result 

in prediction errors [48] and different MR acquisition parameters can change the contrast of 

images, resulting in a slightly altered segmentation [49]. Thus, our model cannot be generalized, 

but the MRI acquisition parameters used in this study have been commonly used in the clinical 

field. 

 Despite these limitations, our study has great potential in shedding light on Alzheimer’s 

disease research. We constructed an elderly specific model of brain age prediction using a large 

East Asian cohort dataset, in contrast to other studies that have mostly adopted the ADNI dataset 

composed of Caucasians. The Asian brain has different aspects of morphology, and ethnicity-

specific approaches can provide more accurate predictions [50]. To the best of our knowledge, 

we have proposed a novel MCI conversion classification model for elderly East Asian brains. In 

addition, MCI convergence from CN is hardly detected because of its small detectable 

morphological changes, cognitive changes, and reversion from MCI to CN due to cognitive 

rehabilitation [51,52]. These inherent limits of the datasets resulted in a lower performance of 

MCI conversion than that of AD conversion (Fig. 4). Although there have been a few studies 

[53,54] that indicated convergence from CN to MCI, our model can be applied to the early 

detection of AD prediction, especially in East Asian people.  
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In conclusion, we found that the BAD of our proposed brain age prediction model is a 

good candidate biomarker for cognitive impairment and neurodegenerative disease diagnosis. The 

novel classification model based on BAD demonstrated great potential for early AD detection and 

prediction, and can be useful for the clinical treatment of AD in the future. 
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Figures Legends:  

Figure 1: Brain age prediction model. (A) the prediction performance of the proposed model. (B) 

Brain age delta derived from the proposed model. 

 

Figure 2: Brain age prediction of different diagnosis groups; Cognitively normal (CN), mild 

cognitive impairment (MCI), and Alzheimer’s Disease (AD). (A) the prediction of CN, MCI, and 

AD. (B) Brain age differences (BADs) of CN, MCI, and AD. 

 

Figure 3: Brain age prediction and brain age delta (BAD) distribution of different conversion 

groups. (A) The distribution of CN converted (CNc) and CN stable (CNs) groups. (B) The 

distribution of MCI converted (MCIc) and MCI stable (MCIs) groups. 

 

Figure 4: MCI and AD conversion classification models. (A) Area under the curve (AUC) plot 

of the MCI conversion classification model. (B) AUC plot of the AD conversion classification 

model.  
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Tables: 

Table 1: Demographic information. 

(A) Descriptive statistics for the brain age prediction model. To build and evaluate the brain 

age prediction model, a total of 2,381 participants consisting of 1,690 CN participants, 476 MCI 

participants, and 215 AD participants were evaluated. 

Group Total CN MCI AD 

N 2,381 1,690 476 215 

Age, mean, years (SD) 72.0 (6.9) 71.3 (6.7) 73.2 (6.8) 75.4 (7.2) 

Male sex, N (%) 988 (41.5) 655 (38.8) 237 (33.4) 96 (44.7) 

Education, mean, years (SD) 10.0 (4.6) 10.2 (4.5) 10.4 (4.6) 8.1 (5.0) 

MMSE score mean, (SD) 26.0 (3.6) 27.1 (2.3) 25.3 (2.9) 19.4 (5.5) 

MMSE: Mini-Mental State Examination 

SD: Standard deviation 

 

(B) Descriptive statistics for the classification model of conversion groups. For the 364 CN 

subjects at baseline, 84 subjects were converted to MCI subjects, while 280 subjects remained.  A 

total of 239 MCI subjects at baseline consisted of 47 subjects who were converted to AD and 192 

subjects who were still diagnosed as CN. 

Group 
Non Conversion Conversion 

CNs MCIs CNc MCIc 

N 280 192 84 47 

Baseline age, mean, years (SD) 71.0 (5.1) 72.1 (5.3) 73.3 (5.7) 75.2 (6.4) 

Male sex, N (%) 123 (43.9) 98 (51.0) 40 (47.6) 26 (55.3) 

Education, mean, years (SD) 10.9 (4.3) 10.6 (4.7) 11.0 (4.5) 8.5 (4.5) 

MMSE score mean, (SD) 27.9 (1.8) 25.9 (2.8) 27.3 (2.3) 23.2 (3.2) 

Follow-up period, mean, years (SD) 3.1 (1.9) 2.5 (1.5) 2.5 (1.9) 2.4 (2.1) 

CNs: CN stable; MCIs: MCI stable; CNc: converted to MCI; MCIc: converted to AD 
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Table 2: Prediction results for the classification of conversion groups. The baseline model 

was considered using chronological age, sex, and education. Other models were statistically 

compared with the baseline model to evaluate AUC differences using the Mann–Whitney U-test. 

Input modality 
CNs vs CNc MCIs vs MCIc 

AUC p-value AUC p-value 

Education 0.599 [0.596 – 0.602] - 0.673 [0.670-0.675] - 

Education + MMSE 0.615 [0.612 - 0.618] <0.05 0.727 [0.725-0.730] <0.01 

Brain Age 0.656 [0.655 - 0.657] <0.01 0.763 [0.760-0.772] <0.01 
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