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Abstract  
 
Symptoms of Major Depressive Disorder (MDD) are commonly assessed using self-rating instruments 
like the Patient Health Questionnaire 9 (PHQ9, for current symptoms), and the Composite International 
Diagnostic Interview Short-Form (CIDI-SF, for lifetime worst-episode symptoms). Using data from the 
UKBiobank, we show that corresponding symptoms endorsed through PHQ9 and CIDI-SF have low 
to moderate genetic correlations (rG=0.43-0.87), and this cannot be fully attributed to different severity 
thresholds or the use of a skip-structure in CIDI-SF. Through a combination of Mendelian 
Randomization (MR) and polygenic prediction analyses, we find that PHQ9 symptoms are more 
associated with traits which reflect general dysphoria, while the skip-structure in CIDI-SF allows for 
the identification of heterogeneity among likely MDD cases. This has important implications on factor 
analyses performed on their respective genetic covariance matrices for the purpose of identification 
of genetic factors behind MDD symptom dimensions and heterogeneity.  
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Introduction  
 
Two sets of symptom-level data of Major Depressive Disorder (MDD) are available in the UKBiobank1 
through the self-administered online Mental Health Questionnaire (MHQ)2. First, current symptoms of 
MDD are assessed through the Patient Health Questionnaire 9 (PHQ9)3, a screening tool that scores 
the occurrence of all 9 DSM5-based symptoms for MDD4 in the past two weeks. A high sum score is 
used as an indicator of a potential presence of MDD and the basis for recommending clinical 
assessment. Second, MDD symptoms experienced during the lifetime worst episode of MDD are 
assessed through the Composite International Diagnostic Interview Short Form (CIDI-SF)5,6, which 
contains a “skip-structure”: 7 out of 9 MDD symptoms are only assessed when two weeks of sad mood 
or anhedonia are endorsed (cardinal symptoms of MDD, Figure 1A). As a result, the CIDI-SF 
assesses WorstEpisode symptoms in a clinically enriched population, which has a smaller sample 
size (~50K, Figure 1B) than the PHQ9 symptoms assessed in the general population(~100K).  
 

Previous studies have performed genome-wide association studies (GWAS) on individual 
items in the PHQ97. Likewise, genetic covariance-based factor analyses using genomicSEM8 have 
been performed on PHQ9 symptoms to identify symptom dimensions of MDD and how they overlap 
with those of anxiety and neuroticism7,9. In contrast, there are no genetic studies that analyse lifetime 
WorstEpisode symptoms or compare them with PHQ9 symptoms. This is despite the much wider use 
of WorstEpisode symptoms in phenotypic covariance-based factor analysis over the past decades10–
12, and findings that suggest symptoms in clinically-enriched populations have different structures and 
meanings from those measured in a general population10.  
 

In this paper, we ask whether PHQ9 symptoms capture the same underlying biology as 
WorstEpisode symptoms, using data collected through the MHQ in UKBiobank1. In particular, we want 
to know if the two sets of symptoms may be interchangeably used or combined to study symptom-
level genetic risks and MDD heterogeneity. We find that while PHQ9 and WorstEpisode symptoms 
have similar liability scale SNP-heritabilities (h2SNP), they have distinct genetic components. Overall, 
PHQ9 symptoms have greater genetic sharing with subjective well-being, insomnia, neuroticism, 
anxiety, and exposure to stressful life events. Polygenic predictions on MDD and 50 non-MDD 
phenotypes show a clear distinction between symptoms assessed with both questionnaires due to the 
skip-structure inherent in CIDI-SF; it enforces those symptoms assessed conditional on cardinal 
symptom endorsement to capture genetic sources of heterogeneity between likely MDD cases, rather 
than genetic liability to MDD. Finally, factor analyses performed on genetic covariance from both sets 
of symptoms using genomicSEM suggest different structures, with WorstEpisode evidencing factor 
structures concordant with previous factor analyses using phenotypic covariance from WorstEpisode 
symptoms in clinical cohorts.  

 
We, therefore, conclude that PHQ9 and WorstEpisode symptoms do not reflect the same 

biology, and are therefore not interchangeable in analysis - the former indexes genetic liability to 
general dysphoria in addition to MDD, while the latter captures genetic heterogeneity among likely 
MDD cases. 
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Results  

GWAS on PHQ9 and WorstEpisode symptoms 

We first perform GWAS (Methods) on 14 WorstEpisode symptoms (Figure 1C, Methods, 
Supplementary Table 1) and 9 PHQ9 symptoms (Figure 1C, Methods, Supplementary Table 2). 
We find a total of 3 significantly associated loci (at P-value < 5×10-8) in 2 out of the 14 WorstEpisode 
symptoms (Figure 1C, Supplementary Table 3): rs10959576 (OR = 0.94; 95% CI = [0.92-0.96], P-
value = 1.94x10-8) and rs61975852 (OR = 1.07; 95% CI = [1.04-1.09], P-value = 3.48x10-8) for 
symptom A2 (anhedonia), and rs12149832 (OR = 1.10; 95% CI = [1.07-1.13], P-value = 5.80x10-9) for 
symptom A3a (increase in appetite or weight). We find 2 significantly associated loci in 1 out of 9 
PHQ9 symptoms (Figure 1C, Supplementary Table 3): rs11752386 (OR = 1.06; 95% CI = [1.04-
1.09], P-value = 2.47x10-8) and rs62158170 (OR = 0.94; 95% CI = [0.94-0.96], P-value = 2.71x10-8) 
for A4 (change in sleep). None are significant once we correct for multiple testing on the number of 
symptoms analysed.  
 

We ask if each significant locus for WorstEpisode symptoms has a similar effect on the 
corresponding PHQ9 symptom, and vice versa. We find that only one of the SNPs significantly 
associated with WorstEpisode A2 has a significant association (P < 0.05/5) in the same direction of 
effect for A2 assessed through PHQ9 (rs61975852, P-value = 0.006, Figure 1D, Supplementary 
Table 3). As GWAS power is different between the two sets of symptoms due to differences in sample 
sizes (Figure 1B), we calculate the effective sample size (Neff) of each corresponding pair of PHQ9 
and WorstEpisode symptoms, and down-sample the larger of the two to the lower Neff, keeping 
prevalence constant (Methods, Supplementary Table 1, 2). We find that though none of the 
significant loci remain significant in GWAS after down-sampling, their relative effect sizes in PHQ9 and 
WorstEpisode symptoms remain the same (Supplementary Figure 1). 

Genetic differences between PHQ9 and WorstEpisode symptoms are not fully due to skip-
structure or severity thresholds  

We next estimate liability scale SNP-heritability (h2SNP) for all WorstEpisode and PHQ9 symptoms 
using LD score regression (LDSC13, Methods). We find that while there are differences in h2SNP 
estimates between the corresponding PHQ9 and WorstEpisode symptoms, their error bars overlap in 
all instances (Figure 2A). The genetic correlations (rG)14 between corresponding WorstEpisode and 
current symptoms, however, are mostly significantly different from unity, with the exception of A3 
(change in appetite) and A9 (suicide ideation, Figure 2B), demonstrating that WorstEpisode and 
PHQ9 symptoms are driven by partly distinct genetic factors.  
 

As WorstEpisode symptoms are assessed with a skip-structure in the CIDI-SF, and the PHQ9 
symptoms are not, we ask if their low rG is due to this inherent difference in the instruments. To do 
this, we implement the skip-structure on PHQ9 symptoms, like in CIDI-SF, obtaining “PHQ9Skip” 
symptoms (Supplementary Methods, Supplementary Table 2). We find that their rGs with PHQ9 
symptoms are not significantly different from unity (Figure 2C), whereas their rGs with WorstEpisode 
symptoms remain low (Figure 2D), similar to those between WorstEpisodes and PHQ9 symptoms 
(Figure 2B). In other words, low rG between PHQ9 and WorstEpisode symptoms cannot be largely 
attributed to the skip-structure in WorstEpisode assessments.  
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We then ask if the low rGs are due to different severity thresholds in the two sets of symptoms. 
As shown in Figure 1A and defined in previous studies 7,9, any occurrence of a symptom in PHQ9 
would qualify as an endorsement (Supplementary Table 2). In comparison, we require an occurrence 
of “nearly every day” to qualify as an endorsement of WorstEpisode symptom. We, therefore, define 
a set of “PHQ9Strict” symptoms, requiring the frequency of symptoms to be “nearly every day” 
(Supplementary Methods, Supplementary Table 2). Like PHQ9Skip symptoms shown above, 
PHQ9Strict symptoms show similar h2SNP to PHQ9 symptoms, and rGs between them are not 
significantly different from unity (Figure 2E). Further, just like PHQ9 symptoms, PHQ9Strict symptoms 
show low rG with WorstEpisode symptoms (Figure 2F). This shows that the occurrence of PHQ9 
symptoms is indicative of severity; lowering the occurrence threshold does not introduce heterogeneity 
in genetic contributions, and does not account for the difference in the genetic contribution to PHQ9 
and WorstEpisode symptoms. Overall, our findings suggest that the low genetic correlations between 
the PHQ9 and WorstEpisode depressive symptoms cannot be fully explained by methodological 
differences in how they are assessed. 

Endorsement of PHQ9 symptoms is more likely due to general dysphoria 

It is well known that long-standing conditions that cause general dysphoria can lead to inflation in self-
ratings of current symptoms with PHQ915,16. To test this, we first ask if four traits including insomnia 
and measures of subjective well-being have greater genetic sharing with endorsements of the most 
similarly phrased PHQ9 items than the corresponding WorstEpisode symptom in CIDI-SF 
(Supplementary Table 4). We find all four traits have higher rG with PHQ9 symptoms than 
WorstEpisode symptoms, even though their error bars overlap (one-sided paired t-test P = 0.02, 
Figure 3A). We then perform the same analysis with four further sets of phenotypes: anxiety 
symptoms from the GAD7 questionnaire in the MHQ17,18; experience of stressful life events both 
recently and in one’s lifetime19–21, and individual items of the neuroticism items in the Eysenck 
Personality Questionnaire Revised-Short Form (EPQR-S)22 (Methods, Supplementary Table 4). 
Consistently, PHQ9 symptoms have higher rG with all four sets of phenotypes than WorstEpisode 
symptoms (one-sided paired t-test P for neuroticism items = 2.20×10-16, anxiety symptoms = 2.93×10-
11; lifetime trauma = 2.16×10-7, recent stressful life events = 0.0002, Figure 3B). Overall, we find that 
PHQ9 symptoms have greater genetic sharing with these non-MDD phenotypes that index general 
dysphoria.  
 

We then ask if PHQ9 and WorstEpisode symptom endorsement may be partly due to general 
dysphoria, using Mendelian Randomization (MR), which assesses the association of genetic 
predictors of an exposure with an outcome23,24. Using univariable MR25 (UVMR, Methods, Figure 4A), 
we find that genetic effects on insomnia and measures of subjective well-being are associated with 
individual PHQ9 symptoms with a higher odds ratio than WorstEpisode symptoms (Supplementary 
Figure 2, Supplementary Table 5). Similarly, genetic effects on neuroticism score and generalised 
anxiety disorder (GAD) are all associated with all PHQ9 symptoms with significantly larger odds ratios 
than WorstEpisode symptoms (paired single-sided t-test P-value for neuroticism = 0.0013; anxiety = 
0.0361, Figure 4C-F, Supplementary Table 6). This difference remains when both sets of symptoms 
are down-sampled to the same Neff (Supplementary Figure 3, Supplementary Table 6). For recent 
stress and lifetime trauma, differences between the two sets of symptoms are not significant 
(Supplementary Figure 3, Supplementary Table 6).  
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Using a multivariable MR approach based on Bayesian model averaging26 (MR-BMA, Figure 
4B, Methods), we further ask if genetic effects on neuroticism, anxiety, recent stress and lifetime 
trauma are associated with the endorsement of specific symptoms independently. For both 
WorstEpisode and PHQ9 symptoms, few UVMR associations remain significant in MR-BMA (Figure 
4C-F, Supplementary Figure 3, Supplementary Table 7). In other words, general dysphoria 
contributes more to the endorsement of PHQ9 symptoms than WorstEpisode symptoms, though its 
contribution is non-specific in both symptom sets.  

 
Finally, we ask if episodic MDD leads to the endorsement of either set of symptoms, and if 

either set of symptoms leads to episodic MDD. To do this, we perform two-sample UVMR and  MR-
BMA on either set of symptoms assessed in the UKBiobank with MDD assessed in external cohorts 
(PGC2927, iPSYCH201228 and iPSYCH2015i29, Methods). To avoid overfitting, we do not perform this 
analysis using LifetimeMDD30 in UKBiobank, as it is defined by a combination of PHQ9 and 
WorstEpisode symptoms. We find that while genetic effects on MDD in all three cohorts show no 
significant associations on either set of symptoms, their effects are larger on PHQ9 symptoms across 
all three cohorts (paired single-sided t-test P-value for UVMR = 0.0004, Supplementary Figure 4, 
Supplementary Table 8). Conversely, while none of the genetic effects on PHQ9 symptoms are 
associated with MDD in all three cohorts, genetic effects on WorstEpisode symptoms A1, A2 and A7 
are significantly associated with MDD in at least one cohort in either UVMR or MR-MBA analysis 
(Supplementary Figure 4, Supplementary Table 8, 9). All results still hold when comparing down-
sampled PHQ9 and WorstEpisode symptoms (Supplementary Figure 4, Supplementary Table 8, 
9). Overall, we find that genetic effects on WorstEpisode symptoms are associated with episodic MDD, 
while genetic effects on the latter are more associated with PHQ9 symptoms.  

 
For all MR analyses, we verify that the genetic instruments used are strong (Supplementary 

Methods, Supplementary Tables 5-9). Further, all UVMR effect estimates are largely consistent 
when considering pleiotropy-robust MR implementations like Weighted Median31 and MR-Egger32, 
though both come at a cost of statistical power (Supplementary Methods, Supplementary Table 5-
9).  

Skip-structure accounts for PRS Pleiotropy difference between WorstEpisode and PHQ9 
symptoms 

 
As MR results show that PHQ9 symptoms are more likely endorsed due to non-MDD phenotypes that 
index general dysphoria than MDD, we further ask if this means that genetic studies on PHQ9 
symptoms are less likely to lead us to identify MDD-specific biology. To do this we computed 10-fold 
cross-validated PRS on all PHQ9 and WorstEpisode symptoms in UKBiobank, and used these to 
predict MDD and non-MDD phenotypes explored above, obtaining the ratio between their prediction 
R2 (PRS Pleiotropy = R2non-MDD/R2MDD)33. A higher PRS Pleiotropy means lower specificity of a PRS 
for MDD. For the MDD phenotype, we use LifetimeMDD30 in UKBiobank (Figure 5, Supplementary 
Table 10) as well as ICD10-based MDD in iPSYCH201228 and iPSYCH2015i29 (Supplementary 
Figures 5,6, Supplementary Tables 11,12).  
 

Overall, we find that WorstEpisode cardinal symptoms A1 (sad mood) and A2 (anhedonia) 
show lower PRS Pleiotropy across all examined non-MDD phenotypes than their PHQ9 counterpart 
(Figure 5A,B, Supplementary Figures 5,6), but the non-cardinal WorstEpisode (A3-A9) symptoms 
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show much higher PRS Pleiotropy than the corresponding PHQ9 symptoms (Figure 5A,B, 
Supplementary Figures 5,6). This is in contrast to most of our results from the MR analyses, where 
we show that PHQ9 symptoms are more highly associated with genetic effects on non-MDD 
phenotypes. We hypothesise that this difference must come from how either sets of symptoms predict 
MDD, which requires the endorsement of either symptoms A1 or A2: WorstEpisode symptoms A3-A9, 
assessed with a skip-structure conditional on endorsement of symptoms A1 or A2, cannot predict the 
genetic liability in MDD shared with symptoms A1 and A2. In contrast, PHQ9 symptoms A3-A9 are not 
assessed with a skip-structure, and therefore may be able to predict those components of MDD 
genetic liability that are shared with PHQ9 symptoms A1 and A2. This would be in agreement with our 
MR finding that PHQ9 symptoms are more associated with genetic effects on MDD.  

 
To verify this, we first obtain rG between MDD (LifetimeMDD30, and MDD assessed in 

PGC2927, iPSYCH201228 and iPSYCH2015i29, Supplementary Methods) and both sets of 
symptoms. Consistent with our hypothesis, WorstEpisodes A1 and A2 have higher rG with MDD 
across all four cohorts than the corresponding PHQ9 symptoms, while it is generally the reverse for 
symptoms A3-A9 (Supplementary Figure 7). We then ask if this difference is reduced between 
WorstEpisode symptoms A3-A9 and PHQ9Skip symptoms A3-A9 (PHQ9 symptoms with skip-
structure applied), and find that this is generally true, though error bars are large for some PHQ9Skip 
symptoms (Supplementary Figure 7). Third, we perform factor analyses on genetic covariance 
between MDD and both sets of symptoms to identify their genetic sharing using genomicSEM8. We 
find that a two-factor model best captures sharing between WorstEpisode symptoms and MDD, where 
the first factor loads onto MDD, A1 and A2, and the second loads onto A3 to A9. In contrast, a one-
factor model captures genetic sharing between PHQ9 symptoms and MDD best. Once a skip-structure 
is applied, the wide-spread sharing between MDD and all PHQ9 symptoms is gone in all tested cohorts 
(Supplementary Figure 8). Finally, we obtain PRS Pleiotropy of PHQ9Skip symptoms A3-A9 and find 
that once the skip-structure is applied, PHQ9Skip symptoms A3-A9 have much higher PRS Pleiotropy 
for all non-MDD phenotypes across the board (Figure 5A,B, Supplementary Figures 5,6). This is 
consistent with our hypothesis. In other words, because of the skip-structure, WorstEpisode symptoms 
A3-A9 do not capture a large proportion of genetic liability to MDD.  

 
In fact, WorstEpisode symptoms A3-A9 capture genetic components indexing different 

liabilities within individuals enriched for MDD (through their endorsement of A1 and A2). WorstEpisode 
symptoms A3-A9 show the highest PRS Pleiotropy for childhood trauma, including violence in the 
family and having no access to a doctor, as well as items in the GAD7 questionnaire (Figure 5B), with 
some differences in magnitude between individual items. This demonstrates that WorstEpisode 
symptoms capture potential genetic heterogeneity among individuals with cardinal symptoms of MDD 
in relation to other non-MDD conditions. While PHQ9 symptoms A3-A9 show similar PRS Pleiotropy 
trends as WorstEpisodes A3-A9 (Figure 5B), they capture this heterogeneity to a much smaller extent.  

WorstEpisode symptoms are better at capturing within-MDD heterogeneity  

 
Finally, we investigate the utility of WorstEpisode and PHQ9 symptoms to identify genetically driven 
symptom dimensions of MDD with genomicSEM8. We find that rG (and genetic covariance, 
Supplementary Methods) among PHQ9 symptoms are significantly higher (mean rG = 0.80, sd = 
0.14, Figure 6A) than those among WorstEpisode symptoms (mean rG = 0.40, sd = 0.27, Figure 6A) 
indicating that the WorstEpisode symptoms, especially A3-A9, are more genetically heterogeneous 
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than PHQ9 symptoms. The choice between using either set of symptoms in factor analysis for 
identifying underlying symptom dimensions of MDD subtypes is therefore likely to make an important 
difference.  
 

We first perform an exploratory factor analysis (EFA, Methods) on the genetic covariance 
matrix of the 8 WorstEpisode symptoms (missing A5), obtaining results for solutions based on one to 
three factors. We then run follow-up confirmatory factor analyses (CFA, Methods) on the EFA 
solutions (standardised loadings > 0.2 are retained). The two-factor solution (χ2=57.36; AIC=91.37; 
CFI=0.987; SRMR=0.078) and three-factor solution (χ2=39.74; AIC=81.74; CFI=0.991; SRMR=0.055) 
both give much better fits than the single, common factor model (χ2=249.87; AIC=277.87; CFI=0.915; 
SRMR=0.137). We choose the three-factor solution for its fit and the low correlations between its 
factors (range 0.47 - 0.59, Figure 6B). In this solution, the first factor loads onto A2, A1 and A7 (all 
symptoms are ordered by loadings), the second loads onto A3 and A4, while the third loads onto A6, 
A8, A4, A9 and A7. This is consistent with previous factor analyses based on phenotypic covariances 
which, though not always consistent with each other34, generally identify factors that group dysphoric, 
neurovegetative, and psychomotor symptoms/signs of MDD12,35,36.  

 
We then perform the same analyses on the genetic covariance matrix of the PHQ9 symptoms 

(Figure 6C). The two factor solution (χ2=44.34; AIC=82.34; CFI=0.993; SRMR=0.052) only marginally 
outperform the one-factor solution (χ2=54.09; AIC=90.09; CFI=0.990; SRMR=0.062), and the three 
factor model did not yield any standardised loadings greater than 0.2. Removing A5 from PHQ9, to 
make this analysis comparable with that in the WorstEpisode symptoms, yields similar results 
(Supplementary Methods). In the two-factor solutions, the first factor loads onto A2, A8, A1, A3, A7, 
and A9, and the second factor loads onto A5 (where it is in the model), A6, and A4 (Figure 6D). This 
structure is inconsistent with that derived from the WorstEpisode symptoms; notably, the correlation 
between factors 1 and 2 is much higher (0.90) than the average correlation between factors observed 
in WorstEpisode symptoms (0.53), reflective of the high correlations between all PHQ9 symptoms. In 
other words, PHQ9 symptoms do not capture as much heterogeneity as WorstEpisode symptoms, 
and are not interchangeable in their utility for identifying genetically driven symptom dimensions of 
MDD.  
 
Discussion  
 
In this paper, we examine whether symptom-level data assessed in the general population by the 
PHQ9 capture the same biology as WorstEpisode MDD symptoms assessed through the CIDI-SF. We 
find that while they have similar h2SNP, they have distinct genetic components, and this difference can 
only partly be accounted for by the skip-structure of the CIDI-SF or the severity threshold for symptom 
endorsement in PHQ9. We further find that PHQ9 symptoms are much more genetically correlated 
with each other than WorstEpisode symptoms, and factor analysis on their genetic covariance 
matrices do not identify the same underlying symptom dimensions for MDD. The two sets of symptoms 
are not interchangeable in genetic analyses; they lead to different findings with different biological 
meanings.  
 

Some of the differences between the two sets of symptoms are due to the implementation of 
the skip-structure in CIDI-SF when assessing WorstEpisode symptoms. We find that non-cardinal 
WorstEpisode symptoms, which are only assessed when cardinal symptoms A1 and A2 are endorsed, 
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are only able to capture those genetic components of MDD not shared with A1 and A2. As such, their 
PRS Pleiotropy on 50 non-MDD phenotypes are higher than non-cardinal PHQ9 symptoms, which are 
not subject to the skip-structure. Once the skip-structure is applied in non-cardinal PHQ9 symptoms, 
most of their differences from the corresponding WorstEpisode symptoms are gone. The remaining 
differences may be due to recall differences between current symptoms and those during a potentially 
distant MDD episode. Overall, we find that the skip-structure effectively reduces the genetic sharing 
between non-cardinal WorstEpisode symptoms and MDD, while increasing their ability to capture 
heterogeneity amongst those with MDD. Of particular interest, the non-cardinal WorstEpisode 
symptoms show highest PRS Pleiotropy for childhood trauma and anxiety symptoms, pointing to them 
as potential axes of genetic heterogeneity among those likely with MDD.  
 

WorstEpisode symptoms must, by definition, be occurring during MDD episodes. Most PHQ9 
will not be, and this can explain most of our results: PHQ9 symptoms show more genetic sharing with 
more stable traits like neuroticism, insomnia and measures of subjective well-being. In other words, 
PHQ9 symptoms index general dysphoria more than episodic MDD. As pointed out in “The Clinician’s 
Illusion”37, if one samples at any given time the population currently suffering from a condition (a point 
prevalence sample), one is more likely to oversample those who have long episodes of illness. Our 
findings on PHQ9 symptoms are consistent with this hypothesis: they index traits like chronic insomnia 
more than the episodic state of MDD, a recurrent and relapsing disorder. Our findings also complement 
previous findings that self-ratings with PHQ9 likely lead to the inclusion of long-standing conditions as 
well as those due to external causes unrelated to MDD, and this can inflate MDD prevalence15,16. This 
may be exacerbated by the “healthy volunteer” effect in the general population that answers the MHQ 
in the UKBiobank2,38. This does not discredit the PHQ9 as a sensitive screening instrument for current 
MDD, especially in ruling out those without MDD, or as a measurement of depression severity, as it is 
intended for3. It may not, however, be suitable for identifying symptom dimensions in MDD patients. 
As previously argued, “not all instruments are appropriate for all purposes”39,40. 

 
Our results should be interpreted in the context of the following limitations. First, our sample 

sizes are low, leading to low statistical power in GWAS and MR analyses. This can be improved with 
increased data collection at the symptom level, using methods going beyond diagnostic 
questionnaires40,41. Second, genetic associations identified for PHQ9 or WorstEpisode symptoms may 
be due to collider bias from the ascertainment of individuals participating in the MHQ: participation in 
the MHQ has positive rGs with higher educational attainment and better health, and negative rGs with 
psychological distress and schizophrenia38. Third, no clinician ratings are available in UKBiobank to 
be compared like-to-like with PHQ9 and CIDI-SF ratings, and hence we do not have insights into 
biases inherent in self-rated symptoms. The latter, in particular, may suffer from greater recall-bias. 
Both these limitations may be improved in truly representative population-based, clinician-assessed 
cohorts such as electronic health records or national registries, especially when clinicians’ notes are 
available to assess symptom-level disease characteristics. Finally, factors identified through 
genomicSEM should not necessarily be seen as “real” or “entity-like”10, as they may be subject to 
statistical underdetermination42,43. Rather, they reflect genetic sharing among PHQ9 and 
WorstEpisode symptoms, and greater utility of WorstEpisode symptoms to detect symptom 
dimensions of episodic MDD is determined only through similarities between its clustering and 
previous results from phenotypic factor analyses.  
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In summary, our work explicitly examines two instruments (PHQ9 and CIDI-SF) widely used 
in disease cohorts and biobanks to assess MDD symptoms, and which have been previously used to 
understand MDD heterogeneity7,9. We find that symptoms assessed through these instruments 
capture different underlying biology, and are not interchangeable in genetic analysis. In particular, 
PHQ9 symptoms index general dysphoria more than episodic MDD, and WorstEpisode symptoms are 
more suitable for investigations into symptom dimensions of MDD.  
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Methods  

Definition of WorstEpisode and PHQ9 MDD symptoms in UKBiobank 

Individual-level MDD symptom data are available for UKBiobank participants from those who 
answered the questions for MDD symptoms in the CIDI-SF and PHQ9 conducted through an online 
mental health follow-up survey (MHQ, data category 138). Details of definitions of each WorstEpisode 
and PHQ9 symptoms can be found in Supplementary Methods, and sample sizes can be found in 
Supplementary Tables 1 and 2 respectively. Definitions and sample sizes of PHQ9Strict and 
PHQ9Skip symptoms are described in Supplementary Methods and detailed in Supplementary 
Table 2. To investigate PHQ9 and WorstEpisode symptoms at the same GWAS power, we perform 
downsampling: for each corresponding pair of PHQ9 and WorstEpisode symptoms, we downsample 
the one with higher effective sample sizes accounting for imbalance between cases and controls (Neff 
= 4/(1/Ncases + 1/Ncontrols) to the same Neff of the one with lower Neff (Supplementary Table 1, 2), 
keeping its prevalence unchanged.  

Definition of other phenotypes in UKBiobank 

We further selected other phenotypes, including insomnia, measures of subjective well-being, 
neuroticism, individual neuroticism items, anxiety symptoms and stressful life event exposures in the 
UKBiobank to test for genetic sharing with PHQ9 and WorstEpisode symptoms. For all data fields in 
UKBiobank, endorsement criteria and sample sizes, see Supplementary Table 4. 

Genome-wide associations in UK Biobank 

Genome-wide association analysis was performed using imputed genotype data at 5,776,313 SNPs 
(MAF >= 0.05, INFO score >= 0.9) in PLINK244. We used 20 PCs computed with flashPCA45 on 
337,198 White-British individuals in UK Biobank and genotyping arrays as covariates, using a logistic 
regression model for binary phenotypes and a linear regression model for continuous phenotypes. 

GWAS on MDD from PGC29 and iPSYCH cohorts 

We used the publicly available PGC29 GWAS summary statistics from Psychiatric Genomics 
Consortium27 (https://www.med.unc.edu/pgc/download-results). For iPSYCH, we performed GWAS 
using logistic regression in PLINK244 on MDD defined by at least one specialty psychiatric care contact 
registered in the Danish Psychiatric Central Research Register (PCR)46 or the Danish National Patient 
Register (DNPR)47 for ICD10 code of F32 or F33, in two independent iPSYCH cohorts iPSYCH201228 
and iPSYCH2015i29: with 42,250 and 23,351 unrelated individuals with European genetic ancestry 
respectively. We used 5,210,642 and 5,222,714 SNPs (MAF >= 0.05, Beagle DR2 >= 0.9, P-value for 
HWE violation > 10-6) for GWAS in iPSYCH2012 and iPSYCH2015i respectively. We used the top 10 
genomic PCs from individuals in iPSYCH2012 and iPSYCH2015i, computed using FlashPCA45 as 
covariates to control for population structure in each of the cohorts. Details of the iPSYCH cohorts can 
be found in Supplementary Methods. 

SNP-heritability and genetic correlation 

To test for heritability of each symptom and the rG between pairs of symptoms, we performed LD 
score regression implemented in LDSC v1.0.113, using in-sample LD scores estimated from 10,000 
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random White British UKBiobank1 individuals at SNPs with MAF > 0.05 as reference. We assumed 
the population prevalence of each symptom was equal to its sample prevalence in UKBiobank, then 
estimated SNP-heritability on the liability scale for each symptom and rG between pairs of symptoms. 
One-sided paired t-tests are conducted on rGs between the two sets of symptoms and non-MDD 
phenotypes in R.    

Univariable Mendelian Randomization (UVMR) 

Two-sample UVMR was performed using MendelianRandomization v0.6.025 implemented in R v4.0.3. 
For each pair of exposures and outcomes, we used SNPs that were genome-wide significantly (P-
value < 5×10-6) associated with each exposure as instruments. Clumping and LD pruning were 
performed with default settings with R library ieugwasr: clump_kb=10,000, clump_r2=0.001. We tested 
the validity of instruments used in MR using the F statistics (Supplementary Tables 5,6,8). Multiple-
testing corrections on the number of symptoms were performed separately for PHQ9 and 
WorstEpisode symptoms. To assess horizontal pleiotropy48, we further conducted pleiotropy-robust 
Weighted Median MR31 and MR Egger32 to compare the MR estimates between different MR models 
(Supplementary Methods). One-sided paired t-tests are conducted on effect sizes from UVMR 
analyses in R.    

Multivariable MR Bayesian model averaging (MR-BMA) 

We use MR-BMA26, a statistical learning algorithm for two-sample multivariable MR in order to select 
likely causal exposures from a larger set of candidate exposures. We selected independent genetic 
variants associated with any of the symptoms as instrumental variables for the multivariable MR 
model. We assumed that half of the tested items were expected causal risk factors (prior = 0.5) when 
iterating through all possible combinations of candidate models in the model averaging algorithm. We 
ranked symptoms according to their marginal inclusion probability and calculated the respective 
empirical P-values. Finally, we adjusted for multiple testing using the Benjamini Hochberg false 
discovery rates (FDR). Only those exposures with an FDR corrected P-value below 0.05 were 
significant and therefore being reported in this paper.  
 
PRS prediction and PRS Pleiotropy  
 
For all in-sample PRS prediction in UKBiobank, we perform 10-fold cross-validation PRS on all PHQ9 
and WorstEpisode symptoms in UKBiobank, by performing GWAS on each symptom 10 times, each 
time using 90% of the individuals, and building PRS from this GWAS results with PRSice v249. We 
evaluated predictive accuracy for observed LifetimeMDD and 50 non-MDD phenotypes that index 
neuroticism, anxiety, and recent and lifetime stress (Supplementary Table 4) in the held-out 10% for 
all 10 folds. For all PRS predictions in UKBiobank phenotypes, we used 20 genomic PCs and the 
genotyping array used as covariates. For out-of-sample predictions of MDD diagnostic code in 
iPSYCH2012 and 2015i, we use PRS built from the same 10-fold GWAS on symptoms in UKBiobank. 
We perform the prediction on MDD defined by ICD10 code of F32 or F33, in two independent iPSYCH 
cohorts iPSYCH201228 and iPSYCH2015i29, as described in Supplementary Methods. We use top 
10 genomic PCs from individuals in iPSYCH2012 and iPSYCH2015i as covariates to control for 
population structure in each of the cohorts in PRS predictions. For binary phenotypes, including 
LifetimeMDD in UKBiobank and MDD in iPSYCH, we evaluated accuracy using Nagelkerke’s 𝑅!. For 
all quantitative phenotypes, including neuroticism, we evaluated accuracy using ordinary 𝑅!. PRS 
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Pleiotropy33 is calculated for each PHQ9 and WorstEpisode symptom using the ratio of its PRS 
predictions on 50 non-MDD phenotypes and its prediction on LifetimeMDD in UKBiobank or ICD10-
based MDD in iPSYCH cohorts (PRSPleiotropy = 𝑅!non-MDD/𝑅!MDD, Supplementary Tables 10-12).  
 
Factor analysis on genetic covariances using genomicSEM 
The genetic exploratory factor analysis (EFA) was conducted using the psych library in R with the 
minimum residual (minres) extraction approach and “promax” rotation enabled by the GPArotation, on 
PHQ9 symptoms and WorstEpisode symptoms respectively using genetic covariance matrices 
estimated with LDSC. Solutions with one to three factors were carried forward and assessed for their 
model fit (retaining factor loadings >0.2) using confirmatory factor analysis (CFA) in genomicSEM8; 
only models with significant fit (p<0.05) are considered in model comparisons.  
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Figure 1: Definition, sample size and GWAS of WorstEpisode and PHQ9 symptoms of MDD in 
UK Biobank. A. Definitions of WorstEpisode and PHQ9 symptoms of MDD in UK Biobank. B. Sample 
sizes in WorstEpisode and PHQ9 symptoms. There is no data for WorstEpisode A5; subgroups of 
symptoms A3 and A4 are not assessed in PHQ9. C. Miami plot for 14 WorstEpisode symptoms on top 
and 9 PHQ9 symptoms at the bottom. Associations with P-values smaller than 5×10-8 are considered 
as genome-wide significant and are indicated in the plot. D. Forest plots and accompanying data 
showing the odds ratios (OR) and P-values at significant loci; statistics at the corresponding 
WorstEpisode or PHQ9 symptoms are shown for comparison; error bars show 95% confidence 
intervals of the OR estimates.  
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Figure 2: SNP heritability and genetic correlation estimates from LDSC. A. Liability scale h2SNP 
estimates for each WorstEpisode and PHQ9 symptom, calculated assuming their observed 
prevalence in UKBiobank are equal to their population prevalence. B. Genetic correlation (rG) between 
WorstEpisode and PHQ9 symptoms. C. rG between PHQ9 and PHQ9Skip symptoms. D. rG between 
PHQ9Skip and WorstEpisode symptoms. E. rG between PHQ9Strict and PHQ9 symptoms. F. rG 
between PHQ9Strict and WorstEpisode symptoms. For all plots, horizontal dashed lines show rG = 1; 
error bars indicate 95% confidence intervals of estimates; lack of convergence on the estimate or 
missing data is indicated as “NA”.  
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Figure 3: Genetic correlation (rG) estimates between PHQ9 or WorstEpisode symptoms and 
non-MDD phenotypes. A. rG between depressed mood (A1) vs. subjective well-being; change of 
sleep (A4) vs. insomnia; feeling of worthlessness (A7) vs. finding meaning in life; and suicidal ideation 
(A9) vs. finding life not worth living, in both WorstEpisode and PHQ9 symptom definitions. Error bars 
indicate 95% confidence intervals of the estimates. Bar directions indicate either positive or negative 
rG. B. rG between PHQ9 or WorstEpisode symptoms of MDD vs. neuroticism items in the EPQR-S22; 
anxiety symptoms from the GAD7 questionnaire in the MHQ17,18; and experience of stressful life events 
both recently and in one’s lifetime19–21; black square indicates a lack of convergence on the estimate 
in LDSC. 
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Figure 4: Mendelian randomization between MDD symptoms and non-MDD phenotypes. A. 
Directed Acyclic Graph (DAG) demonstrating the UVMR model between MDD symptoms and non-
MDD phenotypes. B. DAG demonstrating the MR-BMA model between MDD symptoms and non-MDD 
phenotypes. C-F. UVMR results between neuroticism or anxiety (exposures) and PHQ9 or 
WorstEpisode symptoms (outcomes); orange arrows indicate significant UVMR results (P<0.05 after 
Bonferroni correction), blue arrows indicate significant MR-BMA results (<0.05 FDR). Marginal 
inclusion threshold for MR-BMA is >0.5. 
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Figure 5. PRS Pleiotropy of PHQ9 and WorstEpisode symptoms. A. Mean PRS Pleiotropy for 
MDD across 10-fold cross-validation of WorstEpisode, PHQ9 and PHQ9Skip symptoms on 50 
phenotypes (including LifetimeMDD and 50 non-MDD phenotypes, PRS Pleiotropy = R2non-MDD/R2MDD); 
the MDD phenotype here is LifetimeMDD30 defined in UKBiobank; phenotypes on the x-axis across 
all three panels are ordered by WorstEpisode A1 PRS Pleiotropy in descending order. B. Mean PRS 
Pleiotropy for each symptom across 10-fold cross validation; phenotypes on the x-axis in each panel 
are ordered by the WorstEpisode symptom PRS Pleiotropy in descending order; top 5 phenotypes in 
terms of PRS Pleiotropy are indicated.  
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Figure 6. rG estimates and factor analysis of PHQ9 and WorstEpisode symptoms of MDD. A. 
rG estimates between pairs of symptoms. Blue squares on the diagonal line show rG estimates 
between pairs of corresponding WorstEpisode and PHQ9 symptoms, squares in the upper triangle 
show rG estimates between pairs of WorstEpisode symptoms, squares in the lower triangle show rG 
estimates between pairs of PHQ9 symptoms. Black squares indicate no data for WorstEpisode 
symptom A5. B. CFA factors loadings on WorstEpisode symptoms. C. CFA factor loadings on PHQ9 
symptoms, including symptom A5. D. CFA factor loadings on PHQ9 symptoms, excluding symptom 
A5. Only models with P < 0.05 are considered in model comparisons; models with best fit are shown.  
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