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Abstract:  

Background: Rapid and accurate triage of acute ischemic stroke (AIS) is essential for early 

revascularization and improved patient outcomes. Response to acute reperfusion therapies varies 

significantly based on patient-specific cerebrovascular anatomy that governs cerebral blood flow. 

We present an end-to-end machine learning approach for automatic stroke triage.  

Methods: Employing a validated convolutional neural network (CNN) segmentation model for 

image processing, we extract each patient’s cerebrovasculature and its morphological features 

from baseline non-invasive angiography scans. These features are used to detect occlusion’s 

presence and the site automatically, and for the first time, to estimate collateral circulation 

without manual intervention. We then use the extracted cerebrovascular features along with 

commonly used clinical and imaging parameters to predict the 90-day functional outcome for 

each patient.  

Results: The CNN model achieved a segmentation accuracy of 94%. The automatic stroke 

detection algorithm had a sensitivity and specificity of 92% and 94%, respectively. The models 

for occlusion site detection and automatic collateral grading reached 96% and 87.2% accuracy, 

respectively. Incorporating the automatically extracted cerebrovascular features significantly 

improved the 90-day outcome prediction accuracy from 0.63 to 0.83.  

Conclusions: The fast, automatic, and comprehensive model presented here can improve stroke 

diagnosis, aid collateral assessment, and enhance prognostication for treatment decisions, using 

cerebrovascular morphology. 
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INTRODUCTION 

Each year 800,000 people in the US suffering a stroke, leading to 140,000 deaths (1). 

Critically reduced regional cerebral blood flow during an acute ischemic stroke (AIS) initiates 

brain dysfunction and, if left untreated, brain tissue death at a high rate of 1.9 million neurons 

every minute (2). Fast and accurate AIS diagnosis is essential for timely treatment to limit 

irreversible brain damage (3), and improve functional outcomes (4). 

AIS triage consists of baseline patient assessment followed by imaging to rule out 

hemorrhage, localize vessel occlusion and identify salvageable tissue-at-risk. However, the 

current clinical process relies on the immediate availability of vascular neurology and 

neuroradiology expertise, which varies significantly across institutions (4,5). In recent years, 

software solutions have been developed for the automatic detection of large vessel occlusion 

(LVO) and estimation of the ischemic core and at-risk tissue (4,5) using features such as the 

difference between left versus right hemispheric average vessel density (4,6,7). These 

approaches, however, are limited by low sensitivity (63-85%) or low specificity (50-70%), 

despite achieving high sensitivity (83-92%) due to pre-existing cerebrovascular changes such as 

intracranial atherosclerosis and tandem occlusions. Developing fast, automatic and accurate 

methods to extract and analyze complex cerebrovascular morphology can improve stroke 

protocols even in smaller facilities without access to local expertise (4,8,9).  

Acute reperfusion therapies (ART), including intravenous thrombolysis (IVT), and 

increasingly, endovascular thrombectomy (EVT), are used for emergent recanalization of the 

occluded vessels (2,10). Accumulating evidence has established the effectiveness of EVT in 

improving the ischemic core to tissue-at-risk (penumbra) ratio and long-term functional 

outcomes (2). Hence, accurate and rapid patient selection is critical yet demanding and is 

typically performed using a combination of clinical and imaging parameters. The most common 

parameters include patient baseline functional status, symptoms onset time, stroke severity, 

baseline non-contrast computed tomography (CT) scan or magnetic resonance (MR) imaging of 

the brain, non-invasive vascular imaging modalities CT and Time-of-Flight MR angiography 

(CTA and ToF-MRA), as well as more advanced perfusion imaging in selected cased (11). 

However, not all AIS patients are eligible for ART and patient response to treatment relies on 

patient-specific cerebrovascular anatomy that governs cerebral blood flow during ischemia and 

reperfusion (12). Data-driven outcome prediction of ART can assist stroke systems of care in 

facilitating the triage and transfer of AIS patients and decision-making by physicians, patients, 

and their families. Therefore, automatic and individualized response prediction to treatment and 

outcomes is gaining popularity (13,14). 

The collateral circulation is a network of secondary vessels developed over time to 

maintain cerebral perfusion and prolong tissue survival during ischemia (15). Accordingly, the 

optimal treatment window varies between individuals, and a better-developed collateral 

circulation provides the patient more time to receive acute reperfusion therapies (16). Therefore, 

a validated and rapid assessment of collateral circulation and potentially other complex 
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cerebrovascular features can tremendously impact patient selection for treatment (17,18). The 

collateral index (CI) is a metric to quantify the extent of collateral circulation development. It has 

been shown to significantly impact patient recovery after recanalization and long-term functional 

outcomes (15). However, manual CI assessment is time- and labor-intensive and not 

incorporated into the routine stroke triage for patient selection and outcome prediction (19).  

Machine learning (ML) algorithms have been increasingly used in recent years to 

improve multiple aspects of stroke care, including diagnosis, treatment, and outcome prediction 

(20). Many previous attempts have been limited by the variety and reliability of their input, 

which typically includes parameters similar to those used for EVT patient selection, such as the 

National Institute of Health Stroke Scale (NIHSS) (21) and the Alberta Stroke Program Early CT 

Score (ASPECTS) of the baseline non-contrast head CT scan (22). However, only a very few 

ML models have used more advanced neuroimaging parameters (11,23), and most have failed to 

incorporate patient-specific cerebrovascular features in their models, thus missing out on 

exploiting the rich vascular information (14,24,25) despite their significant impact on patient 

outcomes (2,9,26). Not surprisingly, the outcome prediction studies have reported a relatively 

low specificity and sensitivity with an area under the curve (AUC) for the  receiver operating 

characteristic curve (ROC curve) under 0.76 (27,28).  

We hypothesized that incorporating patient-specific cerebrovascular morphological 

features would improve stroke diagnosis and long-term outcome prediction. A major challenge 

in the automatic estimation of the CI and other features of cerebrovasculature is the lack of a 

validated method for vascular segmentation and feature extraction from baseline CTA or MRA 

scans. In the past few years, there have been significant advances in automatic 

cerebrovasculature segmentation methods, which refers to partitioning an image into multiple 

segments to separate the regions of interest from the background, i.e., “vessels” and “non-

vessels,” by assigning a label to each image pixel, (29–31). We previously developed a novel, 

validated algorithm for accurate segmentation and geometric feature extraction of the cerebral 

vessel network (32). However, the segmentation must be extremely fast, and produce vessel 

network maps in real-time, for clinical applications. For this purpose, deep learning techniques 

are gaining popularity as they enable instantaneous 3D segmentation of volumetric imaging data. 

Most deep learning efforts in literature have used small datasets for neural network training and 

applied threshold-based vascular maps as the ground truth to generate binary vessel trees (30,33). 

These limitations lead to inaccuracies in the final segmentation due to insufficient training data, 

the inconsistent nature of the thresholding-based approach, and low inter-observer agreement in 

manually segmented ground truth.  

 In this work, we present a novel hybrid image processing and artificial intelligence 

pipeline for stroke patient triage. Using our validated segmentation algorithm as ground truth 

(32), we train a convolutional neural network (CNN) for instantaneous, accurate, and automatic 

segmentation of the vascular network from the raw CTA or MRA scans that aids in subsequent 

extraction of the complex geometric features of the cerebral vessel network, namely – total 
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length, average diameter, branching pattern, total volume, vessel tortuosity, and fractal 

dimension. We then used these features in conjunction with our previously developed statistical 

cerebrovascular atlas (34) to automatically detect the presence and site of the vessel occlusion, 

and calculate the CI for each stroke patient. The findings were validated against ground truth 

clinical assessment and grading of each subject’s CI. Lastly, we developed a predictive ML 

algorithm to incorporate the automatically extracted cerebrovascular features and CI in 

combination with the commonly used clinical and imaging parameters to predict the 90-day 

functional outcome of AIS. With this work we aim to improve various aspects of stroke patient 

triage by bringing imaging data to the forefront of treatment decisions. 

METHODS 

Datasets 

This retrospective study uses multiple anonymized datasets, each approved by the 

corresponding IRB. Table 1 lists the details of all the imaging data used in this study. 

Table 1. The imaging datasets and the corresponding number of scans used in the various 

aspects of the study. 

ToF-MRA was the modality used in all databases except the Healthy CTA database, where CT 

angiography was used. Additionally, 12 of the 100 stroke patients were excluded from the outcome 

prediction due to unavailability of their mRS outcome. 

 

To train and test the CNN segmentation algorithm, we used ToF-MRA scans of 175 

healthy subjects consisting of 109 subjects from the MIDAS public database (CASILab at the 

University of North Carolina, Chapel Hill, NC; distributed by Kitware, Inc.) and 66 subjects 

from the OASIS-3 study (35). We also obtained MRA scans of 100 AIS patients from the Centre 

Hospitalier Universitaire Vaudois in Lausanne, Switzerland. All patients had a confirmed 

diagnosis of AIS due to an occlusion in the anterior circulation in the internal carotid artery 

(ICA), the middle cerebral artery (MCA) at the M1, M2, or M3 segments, or a combination of 

these. The scans were performed within 72 hours from stroke onset. The database also included 

demographic, clinical, and additional neuroimaging data, including NIHSS, ASPECTS  and 

Databases Number of subjects 

Name N (Female) Resolution (mm3) CNN 

(train/ test) 

Stroke 

detection 

CI 

validation 

Outcome 

prediction 

MIDAS (healthy)  

OASIS3 (healthy) 

Stroke 

CTA (healthy) 

109 (57) 

66 (29) 

100 (54) 

10 (4) 

0.5 × 0.5 × 0.5 

0.3 × 0.3 × 0.3 

0.5 × 0.5 × 0.5 

0.43 × 0.43 × 0.62 

99/10 

41/25 

0/10 

0/10 

50 

- 

100 

- 

- 

- 

56 

- 

- 

- 

100 
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perfusion mismatch volume and ratio, as well as 90-day functional status assessed using the 

modified Rankin scale (mRS), when available.  We used the MRA scans and patient data to 

extract the patient-specific vascular features and collateral index and train our outcome 

prediction model. Out of the 100 AIS patients, 12 had to be excluded from the prediction model 

due to the unavailability of their mRS outcome.  

Segmentation and feature extraction 

For CNN-based cerebrovascular segmentation, we adapted and optimized the U-Net 

architecture. The U-Net framework, presented by Ronnenberger et al. (36), has previously been 

successfully used for various medical image segmentation applications. Out of the 175 healthy 

MRA, 10 stroke MTA and 10 CTA scans, we used 140, 25, and 30 scans for training, validation, 

and blind testing, respectively with a stratified sampling of the CNN segmentation model. We 

used our validated methodology for segmentation and vascular feature extraction to obtain the 

“ground truth” of the segmented vascular maps and their respective features (32). The 

segmentation algorithm involves a multi-step process, resulting in a 3D binary volume of the 

vessel network, with being able to detect vessels with diameters as small as the imaging 

resolution. It was shown to perform better than other available segmentation algorithms under 

technical issues that can cause intensity inhomogeneities in imaging data. After segmentation, we 

performed a skeletonization of the vessel network and extracted the vascular geometric features, 

described in the Supplementary Material. 

For CNN training, the raw scans were the model input and mapped to their corresponding 

segmented vascular networks, using the above method as output. The model architecture (Fig. 1, 

Supplemental Materials) includes skipping connections built in between the encoding and the 

mirrored decoding path for each scale level, with deconvolutional layers replacing the 2-stride 

convolutions. We use a small kernel size of 3✕3, and our model consists of 18 total layers – 9 

double convolution layers each in the encoding and decoding segments. We implement the 

Rectified Linear Unit (ReLU) activation function throughout the layers and a Sigmoid function 

at the last layer for the final prediction of grayscale pixel intensities between 0 and 1. Adam 

optimizer was used for the gradient descent, and the model was trained for 50 epochs until the 

loss minimized. Early-stopping and drop-outs were used to prevent overfitting and improve 

generalization (37). We defined an application-specific loss function known as “Dice Loss,” 

which, when minimized, maximizes the overlap of segmentation prediction and ground truth, 

measured using the Dice Similarity Coefficient “SoftDice” (38). 

For CNN validation and testing, we compared the model predictions against the vascular 

maps obtained by our segmentation algorithm (ground truth) using an image matching metric, 

namely the Dice Similarity Coefficient (DSC). The DSC quantifies the overlap between the 

ground truth and the prediction for each slice of the 3D volume as a measure of accuracy and is 

obtained by averaging the DSC per 2D cross-sectional slice across each 3D volume and then 

averaging across all the test scans. Also, as a further quantitative assessment of model 

performance, we compared the following extracted features obtained by the CNN model against 
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the ground truth: total length, number of branches, total volume, and average diameter. Lastly, 

the CNN model was tested on the CTA scans of 10 healthy subjects and MRA scans of 10 AIS 

patients to accurately evaluate the model's ability to segment vasculature in different modalities 

and health status. 

Stroke detection and occlusion localization 

Of 100 AIS patients, the occlusion sites were the Internal Carotid Artery (ICA) in 18, 

tandem ICA-MCA in 17, and M1 and M2 segments of the MCA in 46 and 19, respectively. We 

utilized our previously developed probabilistic cerebrovascular atlas of spatially co-registered 

cerebral vessel maps of 175 healthy adults (34). The atlas was labeled to denote the five major 

vascular territories: (1) the ICA, (2 and 3) the left and right MCA, (4) Anterior Cerebral Artery 

(ACA), and (5) the posterior cerebral artery (PCA) and basilar artery (BA), as illustrated in Fig. 

3. 

We implemented a two-step approach for automatic stroke detection based on previous 

preliminary studies that showed a significant difference in cerebrovascular features between 

stroke patients and healthy subjects (32,34). In the first step, the presence of occlusion was 

determined by comparing the vessel density of the patient-specific vascular network with the 

cerebrovascular atlas using the total vessel length, volume, and the number of branches. A 

significantly lower vessel density, defined as more than three standard deviations below the 

average healthy subjects, indicated an occlusion. In the second step, each of the five vascular 

territories of AIS patients was compared with the corresponding territory in the atlas. The 

territory with the largest deviation score from the healthy average was identified as the occlusion 

location (Fig. 3). We also compared the vessel density between the left and right cerebral 

hemispheres for each patient for cases where the comparison against the atlas was not sensitive 

enough. The analysis was performed for all 100 AIS patients, and 50 randomly selected healthy 

controls to assess the algorithm's ability to detect the occlusion's presence and location. We 

evaluated the algorithm by calculating both steps' sensitivity, specificity, and positive and 

negative predictive values (PPV and NPV).  

Automatic collateral index estimation 

The collateral index (CI) quantifies the development of a patient’s collateral vessels. In 

clinical settings, CI is usually graded as either good, intermediate, or poor. The clinical grading 

which was utilized for developing and validating our method is as follows (39):  

0 = collateral supply absent 

1 = collateral supply filling >0% but ≤50%   

2 = collateral supply filling >50% but <100%  

3 = 100% collateral supply 

Of the 100 AIS patients, we had access to the CI for 56, graded in the clinic by a 

neuroradiologist, since this metric is not routinely estimated in all stroke patients due to the time 
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constraints and manual nature of the task. These clinically-evaluated CIs were used as the 

“ground truth” to develop and validate our algorithm. We then use the validated method, 

described below, to obtain the CI for the remaining 44 AIS patients automatically.  

Using our cerebrovascular atlas (34), the relative vessel density in the collateral region 

was calculated for each patient compared to patients with the fully developed collateral network 

(CI=3). Based on this relative index obtained using linear regression, we grade the collaterals per 

patient on a scale of 0 (absent collateral supply) to 3 (100% developed collateral supply). We 

used this automatically estimated CI for the 100 patients as an outcome predictor in our ML 

model, given the well-established impact of collateral circulation on the patient’s response to 

ischemia and eventual treatment (15,16,40). 

Functional outcome prediction 

The functional status of the AIS patients was evaluated at the 90-day mark using the 

modified Rankin scale (mRS) (Table 1, Supplementary Material) (41).  The input data for the 

prognostication model comprised of patients’ clinical and imaging variables, including 

demographic information, pertinent past medical history, stroke symptoms and severity (the 

baseline NIHSS), and data from initial brain imaging studies, including the ASPECTS and 

perfusion metrics. A larger perfusion mismatch volume or ratio indicates a larger salvageable 

tissue that may be amenable to acute treatments (42–44).  

Cerebrovascular geometric features have been shown to correlate with aging and 

pathologic states (32,34,45–47). To utilize the predictive ability of the rich imaging-based 

vascular information, we incorporated novel patient-specific cerebrovascular geometric features 

extracted by the segmentation algorithm described above (32) as well as automatically estimated 

CI into our ML model as additional predictors of the 90-day mRS. Table 2 in the Supplementary 

Material lists all the features used as predictors to train the model. 

The in-clinic assessment of the mRS at 90 days post-stroke was considered the ground 

truth, trichotomized into good (mRS 0-1), moderate (mRS 2-3), and poor (mRS 4-6) outcome 

groups. Reducing the 7-class mRS to the three output classes facilitates prediction and provides a 

more granular classification than the dichotomized predictions in literature (14,20,25). We used 

supervised ML to train the predictor model using the Classification Learner app in the 

MATLAB® package (Mathworks, MA). The dataset was divided into 80% training and 20% test 

datasets for validation.  We also included stratified sampling and five-fold cross-validation to 

improve learning and prevent overfitting. The features were then ranked using the chi-square test 

based on the univariate associations between each categorical or continuous predictor variable 

and the 90-day mRS outcome. The ranked features were used as predictors, and the three final 

outcome groups were the ground truth for the output classes. The final outcome prediction model 

was chosen based on the training and validation performance metrics. The model performance 

was assessed by calculating the accuracy using the true positive and false negative rates and the 

positive and negative predictive values. The findings were visualized by the AUC of the ROC 
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curve. Since we are performing a multi-class prediction, the AUC was computed for the ROC 

curves using the one-against-rest method for multi-class models (49). 

RESULTS  

CNN segmentation model 

The average Dice Similarity Coefficient (DSC) between the ground truth segmentation 

and CNN predictions across the multi-resolution test data was 0.94. The model captured the 

vascular branches and preserved the vascular volume, with the average error margins under 4% 

for all geometric features: total length (3.4%), number of branches (1.90%), total volume 

(3.18%), and average diameter (2.11%). Fig. 1 shows two predicted segmentation maps and their 

corresponding ground truth. The quantitative measures of model performance on the test dataset 

are shown in Table 2. 

 

Table 2. CNN model performance on test data per geometric feature between the predictions 

vs. ground truth 

Validation metric Value (mean ± std) 

Avg. DSC 0.94 ± 0.05 

Avg. error in total length (%) 3.40 ± 0.31 

Avg. error in the number of branches (%) 1.90 ± 0.44 

Avg. error in total volume (%) 3.18 ± 0.26 

Avg. error in average diameter (%) 2.11 ± 0.10 

 

Fig. 1. The CNN predictions of the segmented vascular maps. CNN segmentations of two 

MRA scans from test data are shown alongside the corresponding ground truth segmentations 
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obtained using our validated algorithm. The third column shows the error volume overlaid on the 

ground truth volume, with one 2D panel showing the overlap between corresponding slices of 

the ground truth and the error.  

Stroke detection and occlusion localization 

Our model identified 92 strokes among 100 AIS patients and 50 healthy subjects with a 

sensitivity of 92% and specificity of 94%. The algorithm only missed the presence of an LVO in 

8 cases due to the overall vessel length and volume not being significantly different than the atlas 

due to the presence of significant vessel density in the proximal part of the middle cerebral artery 

(MCA) in case of M2 strokes, in the distal segment of the MCA (Fig. 2). Additionally, the 

algorithm detected three false positives among the 50 healthy subjects due to the vascular 

networks deviating significantly from the atlas.   

 

Fig. 2. Stroke detection and occlusion localization. The brighter regions of the 3-dimensional 

probabilistic atlas (top-left) show maximum intensity projection and correspond to a higher 

probability of vessel occurrence. The brain vascular was divided into five major territories, 

illustrated in different colors (bottom-left). The Cerebrovasculature map of four stroke patients is 

shown on the right. The red arrow indicates the location of the occluded vessel 

The model had an accuracy of 95.6% in identifying the region containing the occlusion, 

with only four mis-localizations out of the 92 stroke cases identified. These errors are due to 
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outliers in vascular patterns deviating from the average atlas. Overall, the model achieved a 

95.56% positive predictive value (PPV) and a 95.56 negative predictive value (NPV). 

Collateral index (CI) calculation 

 The algorithm correctly estimated the CI in 49 out of the 56 strokes MRA, yielding a 

sensitivity of 87.2%. Fig. 3 shows the vascular tree, extracted vessel network from the ipsilateral 

collateral region, and the estimated CI for 4 cases, each corresponding to a CI score from 0 to 3.  

 

Fig. 3. The extracted vascular networks and estimated collateral index for the four varying 

levels of development of the collateral network in patients with a middle cerebral artery stroke. 

The collateral index (CI) is shown at the bottom right of panel a-d. The top right sub-panels show 

the vessels in the corresponding collateral region of the ipsilateral hemisphere.  

Functional outcome prediction 

Fine Decision Trees were adopted for multi-class prediction of the 90-day modified 

Rankin scale (mRS) (41). The basic predictor model using conventional predictors of functional 

outcomes, reached an area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve of 0.63±0.01 (Fig. 4-a), similar to currently available models. By including the 

automatically estimated CI in the prediction model, the and the AUC of the ROC curve increased 

to 0.74±0.02. The additional incorporation of vascular geometric features further increased the 

prediction accuracy with an AUC of the ROC curve of 0.83±0.02 (Fig. 4-a). ROC curves in Fig. 

5 are overlaid on the same graph to highlight the AUC values, with the true class being the 

‘Good’ outcome (i.e., mRS  0-2). The confusion matrices (Fig. 4-b and 4-c) show the prediction 

accuracy per outcome group for the predictive models with and without the morphologic 

features. 
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Fig. 4. Results of the outcome prediction models. (a) ROC curves for the three Fine Decision 

Tree models are plotted. All three models included the baseline clinical and imaging data. AUC-

ROC for the model without any vascular features was 0.63. AUC-ROC increased to 0.74 in the 

model trained with the collateral index but without other geometric features. Incorporating all 

vascular features improved the model’s performance with AUC-ROC =0.83. The confusion 

matrix for the prediction model before (b) and after (c) incorporating the vascular geometric 

features and auto-estimated collateral index are shown.  

DISCUSSION  

ML strategies have been used in various applications in stroke medicine (9,14). In this 

work, we presented an end-to-end automatic ML approach for stroke triage, consisting of a 

CNN-based cerebrovascular segmentation and morphologic extraction, an automated algorithm 

for stroke detection and collateral circulation assessment, and finally, a 90-day functional 

outcome predictor.  

Cerebrovascular segmentation using CNN 

Accurate and efficient segmentation of brain vascular imaging by extraction and 

visualization of the 3D cerebrovascular network is critical for clinical practice. We had 

previously developed and validated a method to detect brain vessels as small as the image 

resolution (voxel size) with superior performance compared to other freely available 

segmentation software (32). However, depending on the image resolution and computing 

resources, our method took up to 20-30 minutes to segment one vascular imaging study. Here, 

we used the segmented vascular maps extracted by our algorithm as the ground truth to train a U-
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Net architecture-based CNN model for accurate and instantaneous segmentation of 3D vessel 

networks from raw imaging data. The existing CNN-based segmentation methods require manual 

annotation with increased “noise” in the final segmented map pertaining to the erroneous 

prediction of non-vessel voxels from the skull or bright spots on the scans (30,33). Our model 

demonstrated accurate segmentation without requiring manual annotations. It detects the finer 

vessels present in the ground truth segmentation with a small error margin and, in some cases, 

detects smaller tapering vessel voxels that were not present in the ground truth segmentation of 

the blind test data due to poor contrast in the raw imaging scan at those voxels. The segmented 

vascular edges are smooth, and the CNN predictions do not miss vessel pixels around the 

boundary surface of the vessel cross-sections, as seen in 2D slices, resulting in the diameter and 

other geometric features to be computed accurately.  

Stroke detection and occlusion localization 

Vascular morphology differs significantly between healthy and stroke subjects (32,34). 

Implementing complex cerebrovascular features and quantitative measurement of deviation from 

the average healthy atlas forms the basis of our stroke detection algorithm. Using a labeled atlas 

of healthy vessel networks and their inherent geometrical properties, we identified the 

anatomical region of occlusion in the most commonly occurring ischemic strokes. The sensitivity 

of our algorithm is comparable to (and in some cases higher than) previously published methods, 

and the specificity has improved as well (4,5). The high sensitivity and specificity of the stroke 

detection algorithm demonstrate the applicability of vascular geometry in automated stroke 

diagnosis and occlusion localization rather than a simplistic hemispheric comparison that may 

lead to false detections due to inconsistent vascular symmetry between the two hemispheres. 

Early automatic diagnosis of AIS and identifying the occluded could be invaluable in 

radiological screenings in case of an emergency or lack of on-call neuroradiologists in smaller 

medical centers.  

CI estimation and functional outcome prediction 

 A large number of studies support the significant benefits of EVT in treating acute 

ischemic stroke (1,2,10,11,50). The eligibility for EVT is expected to expand, with a shift from 

rigid time-based treatment protocols to imaging-based strategies that incorporate patient-specific 

factors into therapeutic decision-making, such as collateral circulation (2). Variations in vascular 

anatomy affect cerebral hemodynamics and even rates of neuronal degradation (51)(52) during 

ischemia and, thereby, response to treatment. A more developed collateral circulation provides 

more time for therapeutic interventions and impacts clinical outcomes (15,16). Therefore, a 

better understanding of each patient’s cerebrovasculature and collaterals are pivotal to expanding 

eligibility for acute treatments (17). The method presented in this study can accurately, rapidly, 

and automatically calculate the CI. This development can drastically impact patient triage and 

reduce the time for diagnosis and treatment  (53).  

Prognostication of AIS remains challenging (24) despite its tremendous impact on 

decision-making for patients, their families, clinicians, and society (27,54). An algorithm that 
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can achieve early, reliable, and accurate prognostication is lacking. Many previous attempts at 

using ML for outcome prediction after AIS have yielded low-performance algorithms with low 

sensitivity and AUC for ROC curves under 0.76 (24,25,28,54).  

Vessel structure and geometry, including lumen diameter and branching patterns, are 

known to impact the patient’s response to ischemia and reperfusion (12,15,48). This study 

presents a novel ML approach incorporating quantitative cerebrovascular information to predict 

the functional outcome. Adding the automatically graded CI as a predictor significantly 

improved the 90-outcome prediction, shown as a 17% higher AUC of the ROC curve. Including 

other vascular geometric features further enhanced the predictive utility of the algorithm, as 

shown in Fig. 5.  

Limitations 

The stroke detection algorithm calls for a comparison with the cerebrovascular atlas, 

which, in turn, requires the patient-specific vascular network to be spatially co-registered to the 

Montreal Neurologic Institute (MNI) space, utilized to normalize all patient scans spatially. 

However, the standardized MNI atlas space is intended for MR scans, and CT scan images 

cannot be co-registered to the same space. Thus, for a wider appositeness of this method, CT 

scan data needs to be registered to this common space. Additionally, due to the inherently 

distinct nature of subject-specific vascular anatomy, patient vascular network alignments 

sometimes differ significantly from the probabilistic atlas in the cartesian space. This can cause 

errors in stroke detection as well as collateral estimation algorithms.  

As a pilot study, we retrospectively analyzed a smaller stroke patient database (n = 100) 

to establish our methods and the utility of cerebrovascular morphology in stroke diagnosis and 

prognostication. Outcome prediction typically requires a large and representative patient 

database to assess predictive features accurately. Our training dataset was also limited to patients 

with large vessel occlusion in the anterior circulation. Furthermore, patients with missing 

outcomes were excluded from the final model (n = 12). A future large and prospectively 

collected dataset of patients with various stroke syndromes, including those with strokes in the 

posterior circulation and medium or small vessel occlusion, is necessary to solidify the 

effectiveness of vascular geometry as a predictive tool in AIS patients.  

Conclusion 

We presented a novel end-to-end quantitative machine-learning strategy to extract 

patient-specific cerebrovascular morphology accurately, rapidly, and automatically from 

segmented vessel trees, automatically detect and localize LVOs, calculate the collateral 

circulation index, and predict 90-day functional outcomes. This approach aims to improve the 

accuracy and efficiency of detecting and localizing LVO and the fidelity of predicting the 

functional outcomes of stroke. Our method for automatic CI grading can help address the 

incongruity between the significant impact of collateral circulation assessment in AIS patients 

and the lack of time and resources to perform this task in the acute hospital setting. Through this 
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approach, we highlight the need for patient selection and treatment decisions to be based on 

quantitative, imaging-based information along with clinical patient evaluation. 
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