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Abstract  

Background: Determining the genetic architecture of Alzheimer’s disease (AD) pathologies can 

enhance mechanistic understanding and inform precision medicine strategies. A genome-wide 

association study (GWAS) of cortical tau quantified by positron emission tomography (PET) was 

performed. 

Method: Participants included 3,136 non-Hispanic White older adults from 12 independent 

studies (n=1,449 discovery sample; n=1,687 replication sample) spanning preclinical and clinical 

stages of AD. Genetic variants associated with cortical tau measured using [18F]flortaucipir or 

[18F]MK-6240 PET were assessed including relevant covariates. Voxel-wise analysis was used to 

map the topographic distribution of identified associations. Supporting evidence for the identified 

SNP from gene expression, methylation quantitative trait loci (QTL), and AD mouse data were 

evaluated.  

Findings: Two novel SNPs at the CYP1B1-RMDN2 (Cytochrome P450 Family 1 Subfamily B 

Member 1 and Regulator of Microtubule Dynamics 2) locus were associated with tau deposition. 

The most significant signal was at rs2113389 (p-value=1.37x10-8), which explained 4.3% of the 

variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. The minor allele of 

rs2113389 (T; MAF=0.146) was associated with higher tau and faster cognitive decline. Additive 

effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4, and Aβ 

positivity. Voxel-wise analysis revealed higher tau in AD-related regions in rs2113389 T-allele 

carriers. CYP1B1 was upregulated in the temporal cortex in AD. The rs2113389 T-allele was 

associated with higher temporal cortex CYP1B1 expression and methylation levels. Mouse model 
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studies provided additional functional evidence for a relationship between CYP1B1 and tau 

deposition but not Aβ.  

Interpretation: The minor allele of rs2113389 may be a risk variant for tau and faster cognitive 

decline in AD. Further investigation of CYP1B1 and RMDN2 is warranted and may provide insight 

into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD. 

Studies of multiethnic populations are also needed.  
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trait loci; SUVR: standard uptake value ratio; FWHM: Full Width at Half Maximum; ROI: region 

of interest; HRC: Haplotype Reference Consortium; MAF: minor allele frequency; LASSO: Least 

Absolute Shrinkage and Selection Operator; CEU: Utah residents with Northern and Western 

European ancestry from the CEPH collection; TSI: Toscani in Italia; MDS: multidimensional 

scaling; CN: Cognitively normal older adults; MCI: Mild cognitive impairment; RMDN2: 

Regulator of Microtubule Dynamics 2; CYP1B1: Cytochrome P450 Family 1 Subfamily B 

Member 1 
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Introduction 

Alzheimer’s disease (AD) is a common neurodegenerative disease.1 Two pathological hallmarks 

are amyloid-beta (Aβ) plaques and neurofibrillary tau tangles. Measurements of Aβ and tau with 

positron emission tomography (PET) are commonly employed in research given the proposed 

amyloid/tau/neurodegeneration (A/T/N) classification criteria.2  

Genetic factors conferring susceptibility to or protection from AD are important for identifying 

target biological pathways for drug development and personalized medicine.3 Large-scale genome-

wide association studies (GWAS) using case-control designs have identified risk genes in immune, 

tau, Aβ, lipid, and other pathways.4,5 The strongest AD genetic risk locus is APOE (apolipoprotein 

E) ε4 (APOE4).6 Large case-control studies can be limited in that participant neuropathology is 

typically unknown. Endophenotype studies of in vivo neuropathology complement case-control 

studies by providing information about genetic variants associated with pathology.7 

Numerous studies have assessed genetic predictors of Aβ PET measures.8-13 However, most 

genetic studies of tau have utilized cerebrospinal fluid (CSF) tau measures due to non-availability 

of large tau PET datasets.14 One study investigated the association of tau PET with BIN1, finding 

an association between a known BIN1 risk single nucleotide polymorphism (SNP; rs744373) and 

greater [18F]flortaucipir PET.15 Another performed GWAS on tau PET endophenotypes and 

identified two genetic loci (PPP2R2B and IGF2BP3). However, this study had limited statistical 

power due to the modest sample size (n=754) and did not include a replication sample.16,17 

Here, we performed the largest GWAS of cortical tau on PET to date (n=3,136). We included data 

from twelve independent cohorts. We also assessed the relationship of the top SNP to cognitive 

decline and evaluated additive and interaction effects with diagnosis, APOE4 status, and Aβ 
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positivity in 1,161 individuals with voxel-wise data. We then used voxel-wise analysis to map the 

topographic distribution of the top variant effect on tau. We also performed a gene-set enrichment 

analysis, an analysis of gene expression levels in human brain tissue and single-nucleus RNA-Seq 

data, a methylation analysis, and an expression quantitative trait loci (eQTL) analysis. Finally, we 

investigated expression levels of the top gene in tau and Aβ mouse models.18-20 

Materials and methods 

Study participants 

The analyses included participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 

http://adni.loni.usc.edu), ADNI-Department of Defense (ADNI-DoD), Indiana Memory and 

Aging Study (IMAS) of the Indiana ADRC, Avid A05 clinical trial (A05), Anti-Amyloid 

Treatment in Asymptomatic Alzheimer's (A4) and Longitudinal Evaluation of Amyloid Risk and 

Neurodegeneration (LEARN) studies, Harvard Aging Brain Study (HABS), University of 

Pittsburgh Alzheimer’s Disease Research Center (UPitt ADRC), Mayo Clinic Study of Aging 

(MCSA), Memory and Aging Project (MAP) at the Knight Alzheimer’s Disease Research Center 

(Knight-ADRC), the Australian Imaging, Biomarker and Lifestyle Study (AIBL), and the Berkeley 

Aging Cohort Study (BACS). The discovery sample included ADNI, ADNI-DoD, IMAS, A05, 

A4, HABS, UPitt ADRC. The replication sample included MCSA, MAP-Knight ADRC, AIBL, 

and BACS. Post-hoc analyses of interactions with diagnosis, APOE4 status, and Aβ positivity, as 

well as voxel-wise analyses were performed in 1,161 individuals from ADNI, ADNI-DoD, IMAS, 

A05, A4, and LEARN, as voxel-wise scan data was available on these individuals. Informed 

consent was obtained for all participants, and studies were approved by the relevant institutional 
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review boards. Descriptions of all cohorts, as well as demographics and cognitive performance, 

are found in the Supplemental information (Supplemental Tables 1-12). 

Genotyping and imputation 

Participants were genotyped using several genotyping platforms. Un-genotyped SNPs were 

imputed separately in each cohort using the Haplotype Reference Consortium (HRC) data as a 

reference panel.21 Before imputation, standard sample and SNP quality control (QC) procedures 

were performed, as described previously.22 Furthermore, only non-Hispanic participants of 

European ancestry by multidimensional scaling analysis were selected.23 Imputation and QC 

procedures were performed as described previously.24 

Statistical analysis 

Genome-wide association analysis (GWAS): We confirmed that cortical tau deposition followed 

a normal distribution after a rank-based inverse normal transformation. Using imputed genotypes, 

a GWAS of cortical tau was performed using a linear regression model with age, sex, two principal 

component (PC) factors from population stratification, APOE4 status, and diagnosis as covariates 

using PLINK.25 A conservative threshold for genome-wide significant association (p<5 × 10−8) 

was employed.26 QQman was used to generate Manhattan and Q-Q plots, and LocusZoom was 

used to obtain regional association plots for selected loci.27 

Gene-set enrichment analysis: Gene-set enrichment analysis was performed using GWAS 

summary statistics to identify pathways and functional gene sets with significant associations with 

cortical tau deposition using the GSA-SNP software,28 as described in the Supplemental 

information. Enriched pathways with cortical tau levels were defined as those with FDR-corrected 

p-value<0.05. 
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Gene-based association analysis: Genome-wide gene-based association analysis was performed 

using GWAS p-values and the KGG software as described previously29,30 and in the Supplemental 

information. 

Interaction with diagnosis, APOE genotype, and Aβ positivity: The effect of the top identified 

SNP (rs2113389 – dominant model (CC vs. CT/TT)) and its interaction with diagnosis, APOE4 

status, and Aβ positivity, on global and medial temporal lobe (MTL) tau, which is a primary 

location of early tau in AD, was assessed as described in the Supplemental information. Different 

effects by sex were also evaluated using stratified analysis (methods in Supplemental information). 

Detailed whole-brain imaging analysis: Tau PET SUVR images (n=1,161) were used in a voxel-

wise statistical analysis of the effect of the top identified SNP on tau using SPM12 

(www.fil.ion.ucl.ac.uk/spm/) in a post-hoc analysis (described in the Supplemental information). 

A voxel-wise threshold of p<0.05 with family-wise error (FWE) adjustment for multiple 

comparisons was used.  

AMP-AD bulk RNA-Seq data in the post‑mortem human brain: Pre-processed bulk RNA-Seq 

data from 1,917 samples were downloaded from the Synapse database 

(https://www.synapse.org/#!Synapse:syn17115987) of the AMP-AD Consortium31-35 and 

analyzed as discussed in the Supplemental information. Procedures for sample collection, post-

mortem sample descriptions, tissue and RNA preparation methods, library preparation and 

sequencing methods, and sample quality controls were previously described.35 Finally, the 

eQTLGen36 consortium database (n=31,684) was used for eQTL of rs2113389 with CYP1B1 

expression in blood. 
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Single-nucleus RNA-Seq (snRNA-Seq) preprocessing and analysis: Frozen brain tissue 

specimens (n=479) from the dorsolateral prefrontal cortex were obtained in the Religious Orders 

Study/Memory and Aging Project (ROSMAP) cohort37 and processed as described in the 

Supplemental information. Raw data is available through the AD Knowledge Portal 

(https://www.synapse.org/#!Synapse:syn31512863). Fifty-five samples were excluded for quality 

control issues (see Supplementary information).  

ADNI DNA methylation data: In ADNI, Illumina EPIC chips (Illumina, Inc., San Diego, CA, 

USA) were used to profile DNA methylation in 1,920 blood or buffy coats samples including 200 

duplicate samples according to the Illumina protocols. A detailed protocol has been published 

previously38-40 and briefly described in the Supplemental information. We performed methylation 

quantitative trait loci (meQTLs) of the top SNP discovered with CpGs in that gene (n=634) using 

multivariate linear models adjusted for age, sex, cell composition changes, and DNA 

storage/source. 

AD pathology mouse model analysis: hTau mouse model: Generation of the hTAU mice, as well 

as brain extraction and tissue processing, was described previously18,19,41,42 and in the 

Supplemental information. Student’s t test was performed for qPCR results comparing C57BL/6J 

(B6; wild type) and hTAU mice. rTg4510 and J20 mouse model: Transgenic mice harboring 

human tau (rTg4510) and amyloid precursor protein (J20) mutations were used to investigate if 

gene expression changes of the top identified gene was associated with AD pathology.20 The 

rTg4510 mouse model and J20 mouse models, as well as experimental models and methods, were 

described previously20,43-46 and briefly in the Supplemental information. A Wald test was used to 

assess genotype effects, while a likelihood-ratio test was used to assess significant effects of age 
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and interaction effects (Genotype*Age) using the DESeq2 package.47 Associations between gene 

expression and neuropathology quantified by immunohistochemistry were tested with DESeq 

using a Wald test to calculate P-values. Models were fitted separately for neuropathology data 

measured in the entorhinal cortex for each mouse. P-values were adjusted for multiple testing 

using false discovery rate (FDR).48 

Results 

Genome-wide association analysis (GWAS)  

Additive genetic models were tested for each SNP with transformed cortical tau adjusted for age, 

sex, two PCs from population stratification analysis, APOE4 status (presence/absence), and 

diagnosis. We meta-analyzed GWAS results from seven cohorts in the discovery stage (n=1,449). 

GWAS results for cortical tau are shown as quantile-quantile (Figure 1A) and Manhattan (Figure 

1B) plots. No evidence of systematic p-value inflation was found (genomic inflation factor 

λ=1.025; Figure 1A). We identified a genome-wide significant association of cortical tau with a 

novel locus at 2p22.2 (Figure 1B), with two SNPs in the region reaching genome-wide 

significance (p-value ≤ 5x10-8). The SNP with the strongest association for cortical tau is 

rs2113389, which was directly genotyped. The other SNP (rs918804) is in strong linkage 

disequilibrium (LD, r2 = 0.91 and D' = 0.95) with rs2113389. The SNP (rs2113389) is located on 

2p22.2 between RMDN2 and CYP1B1 and non-coding RNA, CYP1B1-AS1 (Figure 2). The minor 

allele T of rs2113389 (MAF=0.146) was associated with higher tau (Z score=5.68; p-value=1.37 

x 10-8) and remained significant after including Aβ positivity as a covariate. We conducted a 

replication meta-analysis in five additional cohorts (n=1,687). The genome-wide significant SNPs 

(rs2113389 and rs918804) in the discovery stage were replicated with the same association 
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direction (Z score=3.83, p-value=1.26 x 10-4; Z-score=-2.97, p-value=2.97x10-3, respectively) 

(Supplemental Figure 1). When estimating the proportion of variance in cortical tau explained 

by these genetic variants using the Genome-wide Complex Trait Analysis (GCTA) tool49, we 

found that ~4.3% of the variation in cortical tau in ADNI are explained by rs2113389 and APOE4 

SNP rs429328 alone, accounting for 3.6% of variance. In ADNI, rs2113389 was associated with 

longitudinal decline in executive function over one year after adjustment for age, sex, education, 

APOE4 status, and baseline executive function (N=1,466; β=-0.053; p-value=0.014). Participants 

with the minor allele T of rs2113389 showed faster decline relative to non-carriers. 

Association of rs2113389 genotype with regional and global tau 

Figure 3 shows that both the additive (Figure 3A&B) and dominant models (Figure 3C&D) 

demonstrated higher MTL and cortical tau deposition in carriers of the minor allele (T) of 

rs2113389. Similar results were observed when stratified by sex (Supplemental Figures 2 & 3).  

Interaction of rs2113389 genotype with variables of interest 

Main effects of diagnosis and rs2113389 genotype were observed, with a higher MTL and cortical 

tau across diagnoses, but there was no interaction effect with rs2113389 dominant genotype 

(Figure 4). The effect was similar in both males and females (Supplemental Figure 4). Main 

effects, but no interaction effect, for rs2113389 genotype and APOE4 status were also observed 

(Figure 5), with those positive for both APOE4 and rs2113389 minor allele (T) showing the 

highest MTL and cortical tau. The sex-stratified analysis showed similar results in both males and 

females (Supplemental Figure 5). Finally, main effects of Aβ positivity and rs2113389 genotype, 

but no interaction effect, on MTL and cortical tau were observed (Figure 6), with Aβ+ carriers of 

the rs2113389 minor allele (T) showing the highest tau. In the sex-stratified analysis, males and 
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females showed similar results (Supplemental Figure 6A,B), except for an interaction effect of 

Aβ positivity and rs2113389 genotype on MTL tau deposition in females (Supplemental Figure 

6C) and a trend for cortical tau (Supplemental Figure 6D). 

Voxel-wise association of rs2113389 genotype with tau  

A voxel-wise analysis of the effect of rs2113389 (voxel-wise p<0.05 (FWE corrected), minimum 

cluster size (k)=100 voxels; Figure 7 and Supplemental Figure 7) was completed to evaluate the 

topographic pattern of the association. In the dominant model, individuals carrying at least one 

minor allele at rs2113389 (CT or TT; n=327) demonstrated greater tau throughout the temporal 

lobe, parietal lobe, and inferior frontal lobe than rs2113389 CC individuals (n=834; Figure 7A). 

Beta-value maps supported the statistical map, showing widespread areas where rs2113389-T 

carriers show higher tau than non-carriers (Figure 7B). Using an additive model, rs2113389 CT 

individuals (n=300) showed higher tau than CC individuals (n=834) in the temporal, lateral 

parietal, and frontal lobes (Supplemental Figure 7A), while rs2113389 TT (n=27) showed a more 

focal region of higher frontal tau relative to rs2113389 CC individuals (Supplemental Figure 7B). 

Beta-value maps revealed interesting patterns, with rs2113389 CT individuals showing higher 

temporal and parietal tau relative to rs2113389 CC individuals (Supplemental Figure 7C). 

Alternatively, rs2113389 TT individuals showed widespread higher tau relative to rs2113389 CC 

individuals, especially in the frontal lobe (Supplemental Figure 7D).  Finally, despite not 

reaching statistical significance likely due to power issues, the beta-values map shows that 

rs2113389 TT homozygotes show higher frontal tau than rs2113389 CT heterozygotes 

(Supplemental Figure 7E). These findings may suggest later Braak stages are more likely in TT 
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homozygotes or that TT homozygotes have a cortical rather than limbic pattern relative to CT 

heterozygotes and CC homozygotes. 

Pathway analysis 

When gene ontology (GO) terms were considered, 480 gene-sets were significant after correction 

for multiple testing. GO for cell-cell adhesion was the most significant pathway identified (Table 

1). GO terms for MHC protein complex, postsynaptic density, regulation of synaptic transmission, 

and calcium ion transport were also significant. For the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway, 44 gene-sets were significant, including cell adhesion molecules, 

calcium signaling pathways, and axon guidance (Table 2). 

Gene expression analysis and eQTL analysis 

Our genome-wide gene-based association analysis identified two protein coding genes (CYP1B1 

(corrected p-value=0.040), RMDN2 (corrected p-value=0.040)), and one non-coding RNA 

(CYP1B1-AS1 (corrected p-value=0.040)) as associated with cortical tau after multiple testing 

adjustment. Then, bulk RNA-Seq data from 1,917 samples preprocessed in AMP-AD was 

evaluated for these genes. The two genes are highly expressed in the brain (Figure 8). Differential 

expression of RMDN2 was seen in the parahippocampal gyrus (p-value=0.004; Figure 8a), with 

down-regulation in AD. CYP1B1 demonstrated differential expression in the temporal cortex (p-

value=0.001; Figure 8b), with upregulation in AD. We also investigated whether the identified 

SNPs were associated with expression levels of CYP1B1 and RMDN2 (eQTL). The most 

significantly associated SNP, rs2113389, was associated with CYP1B1 expression levels in the 

temporal cortex, but not with RMDN2 expression. Specifically, the rs2113389 T-allele was 

associated with higher temporal CYP1B1 expression (β=0.25; p-value=0.02; Figure 8c). Finally, 
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the rs2113389 T-allele was associated with higher CYP1B1 expression levels in blood from the 

eQTLGen consortium database (n=31,684; Z score=24.93; p-value= 3.6 x 10-137). 

Cell type-specific expression and eQTL analysis of CYP1B1 

Single-cell expression of CYP1B1 in ROSMAP single-nucleus RNA-Seq data from the 

dorsolateral prefrontal cortex showed that fibroblasts (Fib) had the highest expression of the 

CYP1B1 gene across all 12 cell types. Among the eight major brain cell types, excitatory neurons 

(Exc) had the highest expression of CYP1B1 (Figure 9 (a)). Finally, eQTL analysis of cell type 

specific CYP1B1 expression in excitatory neurons showed that the rs2113389 T-allele was 

associated with higher cell type-specific CYP1B1 expression levels (p-value= 0.035; Figure 9 (b)). 

Blood-based DNA methylation QTLs of rs2113389 

The DNA methylation QTL analysis (meQTL) of rs2113389 with CpGs in CYP1B1 measured in 

blood identified three CpGs located in the CYP1B1 gene body region associated with rs2113389 

(p-value < 1 x 10-5; Figure 10). The rs2113389 T-allele was associated with higher CpG 

expression levels. 

Cyp1b1 expression and expression changes in the brain of AD mice 

Cyp1b1 expression was increased in the cortex of 6-month-old hTAU mice, consistent with our 

findings in humans (p-value=0.038; Figure 11 (a)). Cyp1b1 expression also significantly changed 

with time (genotype*age) in rTg4510 mice (FDR corrected p-value=0.040) but not J20 mice 

relative to wild-type mice (Figure 11 (b) and Figure 11 (c)). Cyp1b1 differential expression over 

time in the TG rTg4510 mice was associated with entorhinal cortex tau pathology (FDR-corrected 

p-value=0.002; Figure 11b and Figure 11c). 
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Discussion 

We performed a genome-wide association analysis (GWAS) of cortical tau PET and identified and 

replicated a novel SNP at the CYP1B1-RMDN2 locus at 2p22.2. The most significant SNP at the 

locus originated from rs2113389, with the minor allele (T) of rs2113389 associated with higher 

MTL and cortical tau. Higher tau levels in rs2113389 T-allele carriers were observed across 

diagnoses. An additive effect of the T-allele with APOE4 status was also observed, with minor T-

allele carriers and APOE4 carriers having the highest tau levels. Similar findings were seen with 

Aβ positivity, such that Aβ+ carriers of the rs2113389 T-allele had the highest tau level. In sex-

stratified analyses, generally similar results were observed, except for an interaction of Aβ 

positivity and rs2113389 genotype on MTL tau in females. Overall, these results provide 

converging evidence that the minor allele (T) of rs2113389 is a risk variant for high tau. Voxel-

wise whole brain analysis confirmed that the rs2113389 T-allele was associated with tau in AD-

related cortical regions. These findings also support a previous GWAS of CSF tau, where 

rs1478361, which is in strong LD with rs2113389 (r2 = 0.96 and D' = 1.00), was associated with 

CSF total tau levels (n=3,076; β=0.0176; p-value=0.0295).14  

The two protein coding genes at the locus identified in this analysis (CYP1B1 and RMDN2) are 

highly expressed in the brain. RMDN2 (Regulator of Microtubule Dynamics 2) is down-regulated 

in the parahippocampal gyrus in AD, while CYP1B1 (Cytochrome P450 Family 1 Subfamily B 

Member 1) is up-regulated in the temporal cortex in AD. The minor allele of rs2113389 is also 

associated with higher temporal cortex CYP1B1 expression levels. Fibroblasts and excitatory 

neurons had the highest expression levels of the CYP1B1 gene in the brain, and in excitatory 

neurons, the minor allele of rs2113389 was associated with higher expression levels of the CYP1B1 
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gene. Blood-based DNA methylation analysis also supported the impact of the rs2113389 on CpGs 

within the CYP1B1 gene, with the minor allele of rs2113389 associated with higher CpG 

expression. Finally, Cyp1b1 expression was higher in the cortex of 6-month-old hTAU mice 

relative to controls. In addition, in the longitudinal analysis, Cyp1b1 expression changed with 

aging in rTg4510 mice but not J20 mice, which suggests that Cyp1b1 expression was associated 

with progression of tau but not amyloid pathology.  

CYP1B1 is of particular interest as the eQTL analysis shows altered temporal lobe expression in 

AD patients, and rs2113389 genotype is linked to the amount of temporal lobe CYP1B1 

expression. CYP1B1 is a member of the cytochrome p450 enzyme family (CYP). CYP is present 

and active in the brain and expressed in a region- and cell-specific manner, including in the blood-

brain barrier.50-52 CYP is responsible for oxidative metabolism of exogenous and endogenous 

substrates, potentially having both neuroprotective and pathologic roles.51 CYP is also involved in 

modulating blood flow, metabolism of fatty acids, cholesterol, and neurotransmitters, and 

mobilization of intracellular calcium,53-56 suggesting multiple potential roles in AD. Previously, 

genetic variants in CYP genes have been associated with neurodegenerative diseases, including 

AD,57,58 as well as AD pathophysiology (Aβ and tau).53,59-61 CYP1B1 regulates endogenous 

pathways involved in metabolism of drugs and synthesis of cholesterols, steroids, and other 

lipids.62 While several cytochrome P450 family genes such as CYP2C19 have been implicated in 

AD, CYP1B1 has not previously been directly implicated in AD.57,58,61 However, CYP1B1 may 

have multiple potential roles related to AD-related tau pathology and has been shown to be a 

regulator of oxidative stress, which in turn promotes angiogenesis.63,64 CYP1B1 also promotes 

angiogenesis by suppressing NF-kB activity, which is also implicated in inflammation.65 Previous 

studies suggested that CYP1B1 inhibition reduced oxidative stress and metabolized cell products 
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that modulate intracellular oxidative stress; however, a lack of CYP1B1 leads to increased 

intracellular oxidative stress in the endothelium.66-68 CYP1B1 may play an important role in high 

fat diet-associated learning and memory deficits and oxidative damage.68 Increased brain oxidative 

stress causes damage to cell function with aging and is an important pathogenic factor in AD, 

contributing to tau phosphorylation and the formation of neurofibrillary tangles.69-71 Functional 

studies for RMDN2 are limited, only showing that it encodes a protein important for regulating 

microtubule dynamics. 

Pathway-based analysis identified enrichment in pathways related to the MHC, postsynaptic 

membrane, postsynaptic density, synapse organization, and calcium channel activity. MHC 

proteins and signaling have been implicated in large-scale AD genetic associations,4,72,73 along 

with associations with specific MHC alleles.74 Microglial activation via MHC class II signaling is 

increased in regions of phosphorylated tau.75 Dysfunctional synaptic connections are involved 

early in AD-related cognitive impairment,76 and tau deposition may induce synaptic impairment 

and learning deficits.77,78 Studies also suggest a role for tau at dendritic spines in affecting the 

trafficking of postsynaptic receptors.79,80 Finally, the “Calcium Hypothesis” suggests that Ca2+ 

signaling and homeostasis are implicated in AD pathology.81 Calcium signaling controls a variety 

of pathways, including activation of calpain, which has been shown to precede tau 

phosphorylation.82,83 Treatments targeting calcium channels are potential pathways for novel 

therapeutics for neurodegenerative diseases.83 

There are some notable limitations, as studies are primarily observational and composed only of 

cohorts of European ancestry. Multiethnic studies are important, and to be generalizable to other 

populations, our findings require replication using large community studies or international 
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collaborations. Although we performed the largest GWAS of tau PET to date, our meta-analysis 

had limited statistical power due to the moderate sample size for genetic association. Additional 

independent large cohorts with tau PET and GWAS data will enable validation studies.  

In summary, GWAS of tau PET identified novel genetic variants in a locus (CYP1B1-RMDN2) 

that influences MTL and cortical tau. The mechanistic significance of this locus was supported by 

a range of independent functional genomic observations in humans and model systems. Taken 

together, these results can inform future biomarker and therapeutic development.  
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Figures 

Figure 1. Results of Discovery GWAS for cortical tau deposition  

Quantile-quantile (QQ) (A) and Manhattan (B) plots of genome-wide association study (GWAS) 

results are shown. The genomic inflation factor is λ=1.025 In the Manhattan plot, the horizontal 

blue and red lines represent the -log10(10−5) and -log10(5.0 × 10−8) threshold levels, respectively. 

Two single nucleotide polymorphisms (SNPs) on chromosome 2 showed highly significant (<5.0 

× 10−8) associations with cerebral tau deposition. Note: cerebral tau endophenotype measured as 

an inverse normal transformed variable of cortical tau SUVR. 
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Figure 2. LocusZoom plot of most strongly associated SNPs in the locus (RMDN2-CYP1B1) 

The regional association plot for the locus that passed genome-wide significance shows the region 

around the most significant SNP (rs2113389) at the RMDN2-CYP1B1 locus. SNPs were plotted 

based on their GWAS −log10 p-values and genomic position. The red color scale of r2 values was 

used to label SNPs based on their degree of linkage disequilibrium with the most significant SNP. 

Recombination rates calculated from 1000 Genomes Project reference data are also displayed in a 

blue line corresponding to the right vertical axis. 
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Figure 3. Association of the most significant SNP (rs2113389) at the RMDN2-CYP1B1 locus with 

regional and global cortical tau burden  

Using an additive model, the minor allele (T) of rs2113389 was associated with higher tau 

deposition across participants, with both rs2113389 CT and TT individuals showing significantly 

greater medial temporal lobe (A) and cortical (B) tau deposition than rs2113389 CC individuals. 

Similar results were seen using a dominant model. Specifically, individuals with one or more 

minor alleles of rs2113389 showed significantly greater tau deposition in the medial temporal lobe 

(C) and cortex (D) than rs2113389 CC individuals. All associations were significant at p<0.0001. 

Note: tau measured as an inverse normal transformed variable of medial temporal and cortical 

tau SUVR 
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Figure 4. Interaction effect of the most significant SNP (rs2113389) at the RMDN2-CYP1B1 locus 

with diagnosis on regional and cortical tau deposition 

Both diagnosis and rs2113389 dominant genotype were significantly associated with medial 

temporal (A) and cortical (B) tau deposition (all p<0.001), such that AD participants who carry at 

least one minor allele (T) of rs2113389 have the highest tau level relative to all other diagnoses 

and CC rs2113389 individuals. AD=Alzheimer’s disease; CN=cognitively normal; DX=diagnosis; 

Dom=rs2113389 dominant genotype (CC vs. CT/TT); Int.=interaction; MCI=mild cognitive 

impairment; n.s.=not significant; Note: tau measured as an inverse normal transformed variable 

of medial temporal and cortical tau SUVR 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.27.23286048doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.27.23286048


Nho, Risacher et al. 
 

33 

 

 

Figure 5. Interaction effect of the most significant SNP (rs2113389) at the RMDN2-CYP1B1 locus 

with APOE4 carrier status on regional and cortical tau deposition 

APOE4 carrier status and rs2113389 dominant genotype are significantly associated with medial 

temporal (A) and cortical (B) tau deposition (all p<0.0001). The highest tau level is observed in 

carriers of both at least one APOE4 allele and minor allele (T) at rs2113389, relative to either CC 

rs2113389 individuals or APOE4 negative individuals. APOE=apolipoprotein E; Dom=rs2113389 

dominant genotype (CC vs. CT/TT); Int.=interaction; MCI=mild cognitive impairment; n.s.=not 

significant; Note: tau measured as an inverse normal transformed variable of medial temporal 

and cortical tau SUVR 
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Figure 6. Interaction effect of the most significant SNP (rs2113389) at the RMDN2-CYP1B1 locus 

with Aβ positivity on regional and cortical tau deposition 

Significant effects of both Aβ positivity and rs2113389 dominant genotype on medial temporal 

(A) and cortical (B) tau deposition are observed (all p<0.001), with Aβ positive individuals 

carrying at least one minor allele (T) at rs2113389 showing the highest level of tau deposition 

relative to all other groups (Aβ negative individuals, rs2113389 CC individuals). Aβ=amyloid-

beta; Dom=rs2113389 dominant genotype (CC vs. CT/TT); Int.=interaction; MCI=mild cognitive 

impairment; n.s.=not significant; Note: tau measured as an inverse normal transformed variable 

of medial temporal and cortical tau SUVR 
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Figure 7. Voxel-wise analysis and visualization of the effect of rs2113389 dominant genotype on 

tau deposition 

(A) Widespread regions of association between rs2113389 dominant genotype and tau deposition 

are observed in the inferior frontal, parietal, and medial and lateral temporal lobes, such that those 

with one or more minor alleles (T) at rs2113389 show greater tau deposition than CC rs2113389 

individuals. Images are displayed at a voxel-wise threshold of p<0.05 with family-wise error 

correction for multiple comparisons and a minimum cluster size (k)=100 voxels. (B) Beta-value 

maps show widespread regions of higher tau deposition in rs2113389-T carriers relative to non-

carriers. Specifically, temporal, parietal, and frontal lobe tau is greater in minor allele carriers than 

non-carriers. 
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Figure 8. Gene expression of RMDN2 and CYP1B1 by diagnosis and rs2113389 dominant 

genotype 

Patients with AD showed downregulated expression of RMDN2 in the parahippocampal gyri (A) 

and upregulated expression of CYP1B1 in the temporal cortex (B) relative to CN individuals using 

brain tissue-based RNA-Seq data from the AMP-AD project. (C) In an eQTL analysis, the 

identified SNP (rs2113389) was shown to be associated with CYP1B1 expression levels in the 

temporal cortex, with carriers of the minor allele showing upregulated CYP1B1 expression relative 

to individuals with the rs2113389 CC genotype. AD=Alzheimer’s disease; CN=cognitively normal 
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Figure 9. Cell type-specific expression and eQTL of CYP1B1 

Cell type-specific expression levels (A) and eQTL in the excitatory neuron (B) of CYP1B1 gene 

are shown. In (A), the x-axis is cell types in ROSMAP DLPFC single-nucleus RNA-Seq data. The 

y-axis is the log2 of counts per million mapped reads (CPM) of CYP1B1 gene. Bars show the 25%, 

50%, and 75% quartiles, respectively. Expression levels were computed at the donor level, by 

aggregating cells from the same donor. Rare cell types were observed only in a small fraction of 

donors. To reflect this, areas of violin plots are scaled proportionally to the number of donors. 

Fibroblasts (Fib) had the highest expression of CYP1B1 gene. Among major cell types, excitatory 

neurons (Exc) had the highest expression. In (B), the minor allele (T) of rs2113389 was associated 

with higher cell type-specific CYP1B1 expression levels in the excitatory neuron (p-value= 0.035). 
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Figure 10. Blood-based DNA methylation QTLs of rs211338 

DNA methylation QTL analysis (cis-meQTL) of rs2113389 with CpGs in CYP1B1 measured in 

blood samples from 634 ADNI participants identified three CpGs, located in the CYP1B1 gene 

body region, as significantly associated with rs2113389 (p-value < 1 x 10-5). The minor allele (T) 

of rs2113389 was associated with higher expression levels of the CpGs. 
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Figure 11. Cyp1b1 expression and expression changes in the brain of tau (hTAU, rTg4510) and 

amyloid (J20) mice 

(A) Cyp1b1 expression was increased in the hTAU mouse model expressing six isoforms of human 

tau, consistent with our findings in human LOAD (p-value=0.038). In hTAU mice, Cyp1b1 

expression was increased in the cortex of 6-month-old mice. (B) Cyp1b1 expression significantly 

changed with time (genotype*age) in TG rTg4510 mice, i.e., Cyp1b1 is associated with disease 

progression in the rTg4510 model. Cyb1b1 is also specifically associated with tau pathology 

progression. (C) Cyp1b1 expression did not change with time (genotype*age) in J20 mice, i.e., 

Cyp1b1 is not associated with disease progression in the J20 model. In addition, Cyb1b1 is not 

associated with amyloid pathology progression. 
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Table 1. List of top gene ontology (GO) pathways for global cortical tau deposition. 

Pathway maps Set sizea z-score q-value 
Homophilic cell adhesion via plasma membrane adhesion 
molecules 151(154) 6.24 1.38E-6 
Regulation of Ras protein signal transduction 182(192)     6.06 2.22E-6 
Ras guanyl-nucleotide exchange factor activity  123(130)     5.97 2.51E-6 
Guanyl-nucleotide exchange factor activity   192(205)     5.93   2.51E-6 
Plasma membrane organization   197(199)     5.80 4.46E-6 
UDP-glycosyltransferase activity   128(139)     5.21 1.04E-4 
Interaction with host 157(159)     5.12 1.44E-4 
Flavonoid glucuronidation   21(21)     5.06 1.71E-4 
Protein autophosphorylation   179(189)     5.04 1.71E-4 
Regulation of Rho protein signal transduction 105(110)     5.03 1.71E-4 
Positive regulation of leukocyte cell-cell adhesion   192(208)     4.99    1.81E-4 
Positive regulation of homotypic cell-cell adhesion 191(207)     4.97 1.81E-4 
Positive regulation of T cell activation   187(203)     4.93 2.06E-4 
Protein tyrosine kinase activity   140(146)     4.84 3.00E-4 
Cellular glucuronidation   25(25)     4.83 3.00E-4 
Antigen binding   81(234)     4.80 3.24E-4 
Calcium ion transmembrane transport   132(136)     4.67 5.69E-4 
Glucuronosyltransferase activity   33(34)     4.67    5.69E-4 
Divalent inorganic cation transmembrane transporter activity   155(162)     4.64 5.94E-4 
Phosphatidylinositol binding   187(195)     4.64    5.94E-4 
Lamellipodium   163(169)     4.58 7.18E-4 
Flavonoid biosynthetic process   19(19)     4.57    7.28E-4 

Set sizea: Number of genes from study data (number of genes in the pathway). 
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Table 2. List of top the Kyoto Encyclopedia of genes and genomes (KEGG) pathways for global 

cortical tau deposition level. 

Pathway maps Set sizea z-score q-value 
Focal adhesion 194(202) 4.74 2.01E-4 
Cell adhesion molecules (CAMs) 127(137) 4.71 2.01E-4 
Ascorbate and aldarate metabolism  26(27) 4.51 2.02E-4 
Type I diabetes mellitus  43(47) 4.24 5.23E-4 
Viral myocarditis 69(76) 4.17 5.86E-4 
Endocytosis 195(206) 4.09 6.72E-4 
Phagosome 144(160) 4.06 6.72E-4 
Allograft rejection 36(41) 4.02 6.97E-4 
Bacterial invasion of epithelial cells  69(74) 3.82 1.43E-3 
Porphyrin and chlorophyll metabolism 41(44) 3.72 1.88E-3 
Pentose and glucuronate interconversions  29(30) 3.66 2.17E-3 
ECM-receptor interaction 84(85) 3.53 3.27E-3 
Calcium signaling pathway 168(179) 3.34 6.08E-3 
Autoimmune thyroid disease 51(56) 3.33 6.08E-3 
Renal cell carcinoma 67(71) 3.23 7.75E-3 
Protein processing in endoplasmic reticulum 159(168) 3.18 8.71E-3 
Type II diabetes mellitus 45(48) 3.18 8.71E-3 
Steroid hormone biosynthesis 55(57) 3.16 8.71E-3 
Drug metabolism - other enzymes 51(53) 3.13 8.71E-3 
Complement and coagulation cascades 67(70) 3.10 9.22E-3 
ABC transporters 42(45) 3.01 1.18E-2 

Set sizea: Number of genes from study data (number of genes in the pathway). 
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