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Abstract 

Multiple Sclerosis (MS) is an autoimmune disease that affects millions of people worldwide 

and causes symptoms such as dysarthria, ataxia, and nystagmus. MS is known to be 

characterized by an autoimmune attack by the immune system on the myelin sheath of 

neurons, causing inflammation and scarring (sclerosis). In the status quo, MS is treated or 

alleviated by disease-modifying therapies, including beta interferons (IFNβ) and monoclonal 

antibodies. Yet, the mechanism of action (MOA) of IFNβ is not fully understood, and only a 

limited proportion of patients respond to IFNβ treatment. Mononuclear cells from therapy-

naïve MS patients, IFN-β-1a-treated MS patients after 12 months from three databases on 

GEO are analysed to examine RNA changes that characterize both the disease and its 

treatment. 28 differentially expressed genes (DEGs) are identified in all three of the 

databases and passed the cut-off criteria. Using the 28 DEGs, we performed DAVID and 

PANTHER analysis, revealing that the biological process “immune response”, “defence 

against virus”, and “regulation of viral genome replication” are enriched. A protein 

interaction network for the DEGs was constructed and a protein module was identified and 

analysed with PANTHER, revealing “interleukin-27-mediated signalling pathway”, 

“regulation of ribonuclease activity”, “regulation of type III interferon production”, 

“cellular response to exogenous double-stranded RNA (dsRNA)”, and “ISG15-protein 

conjugation are enriched for >100 folds. Cytoscape analysis further identified the hub genes 

IFI44L, IFI44, and STAT1 and they may be important mediators in the therapeutic effect of 

IFNβ treatment and warrant further study.  Overall, the findings of the present study provide 

insights into the MOA of IFNβ-1a and provide greater confidence on which genes are 

differentially expressed in MS before and after IFNβ-1a treatment. The results also are 

additional evidence for the role of viral infection in MS, a topic that is gaining interest in the 

MS research community. 
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Introduction 

MS is a chronic autoimmune disease that affects the central nervous system. It is a 

progressive disease characterized by inflammation, demyelination, and neurodegeneration. 

MS affects millions of people worldwide and has no known cure [1]. However, there are 

treatments that can help to slow the progression of the disease, and one of the most 

commonly used treatments is IFNβ [2]. 

The initial interest in IFNβ as a potential therapeutic option in MS was motivated primarily 

by the known antiviral activities of IFNβ. Subsequently, the immunomodulatory and 

antiproliferative properties of IFNβ were discovered [3]. Generally, IFNβ works by 

regulating the immune system and preventing it from attacking the myelin sheath that 

surrounds nerve cells. It has been shown to reduce the frequency and severity of relapses in 

people with MS. It can also slow the progression of disability in people with relapsing-

remitting MS [1]. Mechanisms proposed on how this is achieved include inhibition of T-cell 

activation and proliferation, apoptosis of autoreactive T cells, induction of regulatory T cells, 

inhibition of leukocyte migration across the blood-brain barrier, and potential antiviral 

activity [4].  

While IFNβ can be an effective treatment for MS, there are challenges in using it. Firstly, the 

ways in which IFNβ produces its therapeutic effects in MS are not yet fully understood, 

however, IFNβ beneficial effects are most likely associated with its immunomodulatory 

properties [5]. Secondly, not all people with MS respond to the treatment. It has been 

estimated that up to 50% of MS patients do not respond to IFN-β treatment even with regular 

injections of IFNβ [6]. The present study seeks to elucidate the MAO of IFNβ, specifically 

IFNβ-1a, in MS which would allow further stratification of patient responders. 

Method 

Data Selection 

The Gene Expression Omnibus (GEO) is an online NCBI repository containing public gene 

expression data from a variety of studies [7-8]. GEO was searched for datasets matching 

“Multiple Sclerosis”, “IFNβ-1a”, and “Homo sapiens”. GSE26104, GSE5574, and 
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GSE53716 are selected for this study [9-11]. In total, 20 post-treatment samples (patients 

who have taken IFNβ-1a up to 12 months) and 20 pre-treatment samples (before taking 

IFNβ-1a) are present across the three studies. However, after removing outliers, we have a 

total of 18 post-treatment samples and 18 pre-treatment samples (Table 1). All three studies 

are profiling gene expression from RNA extracted from patient blood.  

Data ID 

Number of 

post- treatment 

samples 

Number of 

pre-treatment 

samples 

Source 
Profiling 

type 
Platform 

GSE26104 4 4 Peripheral 

blood 

mononuclear 

cells 

RNA 

GPL570 

GSE5574 10 10 GPL4191 

GSE53716 4* 4* GPL570 

Total 18 18 N/A N/A N/A 

Table 1. Information on GSE26104, GSE5574, and GSE53716, including the number of pre-

treatment and post-treatment samples, sources, and profiling type.  

* Outliers are being removed in GSE52716 to ensure data normalization. 

Differential Expression Analysis 

The three datasets were analysed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/ 

accessed on 25 February 2023) which is provided by the Gene Expression Omnibus. GEO2R 

is a browser-based software that processes gene expression values and outputs a table of 

DEGs between two user-defined groups (pre-treatment and post-treatment, in this case) [12]. 

In total, several thousand genes are deemed statistically significant by GEO2R for each 

dataset. T-tests are used to determine p-values. GEO2R is also used to calculate fold change 

(FC) for each gene (in this context, of treatment expression values versus pre-treatment 

values). The FC is a ratio of the average expression value of a gene in one group divided by 

the average expression value in a different group.  

GEO2R was also used to verify a normal distribution of gene expression values. The samples 

from GSE2614 and GSE5574 suggest excellent performance of normalization since the 

median of the expression value was almost on the same line (Figure 1a). However, 2 samples 

are removed from GSE53716 pre-sample and post-treatment samples respectively to ensure 
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data normalization (Figure 1b). Normalization is essential to account for factors that affect 

the number of reads mapped to a gene, like length, GC-content, and sequencing depth [13].  

 

Figure 1. Gene expression value distribution. In figure (A), Gene expression value 

distribution for GSE26104 (left) and GSE5574 (right) and in (B) Gene expression value 

distribution for GSE53716 before (left) and after (right) data normalization by removing 

outliers manually. The vertical axis represents expression values of the genes (no unit). Each 

box plot represents the gene expression values of one patient sample denoted on the 

horizontal axis. 
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We considered p-value p < 0.05 and | log2FC (logFC) | ≥ 1 to be statistically significant for 

the DEGs, and a logFC ≥ 1, logFC ≤ −1 are considered to indicate up-regulated and down-

regulated DEGs, respectively. We processed the lists of DEGs in Excel, where we removed 

DEGs with p-values of greater than 0.05 and the remaining DEGs are sorted into two 

categories: overexpression and underexpression. Next, only genes with | logFC | ≥ 1 are kept 

(Supplementary). 

Functional Enrichment of Gene Sets 

The initial ontology of gene of the DEGs was annotated (p < 0.05) using the online 

bioinformatics tool DAVID (v2022q4, https://david.ncifcrf.gov/ accessed on 25 February 

2023). DAVID provides exploratory visualization tools that promote discovery through 

functional classification, biochemical pathway maps, and conserved protein domain 

architectures from large lists of genes [14]. The human genome was selected as the 

background parameter, and official gene symbol was selected as identifier. The KEGG 

pathway enrichment analyses of the DEGs are cross-checked using PANTHER database 

provided by Gene Ontology (GO) (http://geneontology.org/ accessed on 25 February), which 

is a large database that stores information on biological pathways, components, functions, 

and the involved genes [15]. GO study is a frequently used approach for the functional 

studies of large-scale transcription or genomic data. Accordingly, GO’s tool PANTHER 

allows us to process a provided list of genes and calculates which biological entities those 

genes are overrepresented in [16].  

Construction of Protein - Protein Interaction (PPI) Network 

The online database STRING (v11.0, http://www.string-db.org/ accessed on 23 February 

2023) was used to construct the PPI network of the proteins encoded by DEGs. The STRING 

is an online repository with 24,584,628 proteins from 5090 organisms to predict the 

relationship between genes [17].  

Selection of Central Hub Proteins from PPI Network 

A tab separated value file containing the gene graph in text form was exported and imported 

into Cytoscape. Cytoscape is a desktop-based tool that can perform more powerful analyses 
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and functions on networks than STRING. The Network Analyzer tool in Cytoscape was used 

to calculate metrics of the gene network such as node degree and clustering coefficient [18]. 

Proteins that have a node degree at the top 10% of the sample and with a degree of  ≥ 10 are 

considered hub proteins. The node degree is the number of genes connected to a certain gene. 

Additionally, the Molecular Complex Detection MCODE was used within Cytoscape to 

discover significant modules in the protein interaction network. MCODE is a graph clustering 

algorithm that is able to identify “densely connected regions” in networks [19]. 

Result  

DEGs Identification  

 
Figure 2. Three-way Venn diagram displaying overlapping RNA between the three chosen 

datasets. 

 

We base our study on our proposed methodology and the cut-off criteria ( | log2FC | ≥ 1 and 

p-value p < 0.05). In GSE5574, 110 genes passed the criteria. In GSE26104, 331 genes 
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passed the criteria, and in GSE53716, 3088 genes passed the criteria. The genes from each of 

the three datasets are inputted into JVenn (http://jvenn.toulouse.inra.fr/app/example.html 

accessed on 25 February 2023) to generate a three-way Venn diagram and identify overlaps 

(Figure 2) [20]. The majority of RNA was present in only one study (2337 out of 2436, 

around 96%), despite the fact that the processed data had p-values of < 0.05. 99 genes are 

found in two out of three datasets and 28 genes are found in all three databases, and 

interestingly all of which are overexpressed in post-treatment samples. The 28 overlapping 

RNAs are selected for further analysis and their logFC values are retrieved from each dataset 

and shown in a heat map that reveals the recurrently upregulated RNAs, including IFI44L, 

SERPING1, USP18, HESX1, and IFI44 (Figure 3).We will further analyse the significant 

DEGs after identifying the hub proteins. 

 

 
Figure 3. Heatmap of logFC values of the 28 over-expressed RNAs in post-treatment 

samples. Colour code red to green with red indicating a greater magnitude of expression 

(more positive logFC value). The RNAs are plotted in order of greatest average positive 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.02.25.23286450doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.25.23286450
http://creativecommons.org/licenses/by/4.0/


 8 

value based on average logFC in the three datasets for visualization. All logFC values 

displayed on the heatmap are statistically significant (p < 0.05). 

 

Functional Analysis of DEGs 

DAVID analysis revealed several significantly enriched GO biological processes and 

molecular functions. The top 10 enriched biological processes and functions are displayed for 

the significantly enriched DEGs are depicted in Figure 4a. This is cross-analysed with 

PANTHER database, where the top 10 enrichment analysis outcomes are screened for the 28 

DEGs in Figure 4b. The more enriched the pathway, the more biological significant it is. 

 
Figure 4. Functional analyses of the upregulated DEGs in post-treatment samples with (A) 

DAVID (B) PANTHER. GO processes include that of biological process, cellular 

component, and molecular function. 
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PPI Network Construction 

To evaluate the PPIs between the DEGs, we used the STRING tool to identify the PPI 

networks for upregulated DEGs. The 28 DEGs are submitted to the STRING tool. Solitary 

genes are hidden to improve clarity. The minimum confidence score for whether a protein 

interaction existed was set to 0.400, but we set the score to 0.700 (high confidence) to ensure 

higher reliability and clarity of our results, creating Figure 5. There are 148 interactions 

(edges) between 28 genes (nodes) with an average node degree of 10.6. The expected number 

of interactions was only 1 so the network had significantly more interactions than would be 

expected (p < 1.0E-16).  

 
Figure 5. PPI network generated by STRING. Disconnected nodes are hidden and minimum 

interaction confidence is set to 0.700 for clarity. Each circle represents one gene and its 

protein product. Lines between circles are “edges” and represent interactions. 

 

Expectedly, 12 out of 28 DEGs are involved in “innate immune” with a false discovery rate 

(FDR) of 4.28e-12 and 10 out of 28 DEGs are involved in “Interferon alpha/beta signalling” 

with a FDR of  5.63e-15.  

 

Interestingly, 14 out of the 28 highly-expressed DEGs in post-treatment groups are linked to 

“antiviral defence” with a FDR of 1.28e-20 and 6 out of 28 DEGs are involved in “Epstein-

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.02.25.23286450doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.25.23286450
http://creativecommons.org/licenses/by/4.0/


 10 

Barr virus infection’ with a FDR of 2.67e-05. Since the involvement of viral infection in MS 

has been of great interest, we colour-coded the DEGs involved in “antiviral defence” and 

“Epstein-Barr virus infection” for further analysis. Figure 6a shows that the proteins involved 

in the aforementioned biological processes are interconnected. We also altered the confidence 

level to 0.900 (highest confidence) and about the same DEGs are interconnected (Figure 6b).   

 
Figure 6. PPI network generated by STRING. Disconnected nodes are hidden and minimum 

interaction confidence is set to 0.900. Each circle represents one gene and its protein product. 
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Lines between circles are “edges” and represent interactions. Red nodes represent 

involvement of protein in “antiviral defence”, blue nodes represent involvement of protein in 

“Epstein-Barr virus infection”. In (A), the confidence level is set at 0.700. In (B), the 

confidence level is set at 0.900. 

Modules and Hub Proteins Identification 

The resulting PPI network from STRING was exported as a “.txt” file and imported as a.csv 

file into Cytoscape v3.9.1 software for visualization. We have generated a merged network of 

PPI consisting of 28 nodes and 217 edges. The clustering coefficient is 0.922 out of 1, which 

indicates a dense connection.  

 

MCODE was used to detect modules (highly interconnected clusters of genes) in the 

Cytoscape network. One module was identified by the MCODE algorithm. The module is 

composed of 20 genes with 187 interactions between them. The DEGs in the module is 

shown in Figure 7. Functional enrichment analysis of the module with PANTHER revealed 

that 14 of 20 genes in the module are involved in “Defence Response to Virus” with a fold 

enrichment of 56.97, and 13 of 18 genes are involved in “Immune Response”. In particular, 

“interleukin-27-mediated signalling pathway”, “regulation of ribonuclease activity”, 

“regulation of type III interferon production”, “cellular response to exogenous dsRNA”, and 

“ISG15-protein conjugation” are enriched for >100 folds (not shown).   

 
Figure 7. Module analysis of PPI network. The module has 20 nodes and 187 edges. 
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Next, the tool Network Analyzer in MCODE was used to select hub genes (minimum node 

degree 10 and top 10% of sample). Accordingly, 3 genes passed the hub gene cut-off criteria 

shown in Table 2. Interestingly, IF144L and IF144 are within the top five of the most 

enriched DEGs in the post-treatment samples (Figure 3). 

Hub Gene Protein Node Degree 

IFI44 Interferon-induced protein 44-like 23 

IFI44L Interferon-induced protein 44 22 

STAT1 
Signal transducer and activator of 

transcription 1-alpha/beta 
22 

Table 2. Cytoscape calculated node degrees for the genes in the network. The genes with 

node degrees of at least 10 and at the top 10% are presented: IFI144, IFI44L, and STAT1. 

The corresponding protein for each gene is also listed. 

Discussion 
There are relatively few studies of gene expression during IFNβ therapy of MS patients [5]. 

Our analysis of three datasets on MS gene expression pre- and post-treatment yielded 99 

DEGs that are found across a minimum of two studies, while 28 DEGs are found across all 

three datasets, which are all over-expressed in the post-treatment samples. These genes pass 

the criteria for p-value (p < 0.05) and fold change (| log2FC | ≥ 1) and are attractive for further 

research as they are biologically relevant.  

 

From the pathway analysis with DAVID and PANTHER database, we have found that most 

of the pathways are mainly concentrated in “immune response”, “defence against virus”, and 

“regulation of viral genome replication” (Figure 4). This is supported by PPI network 

analysis showing high involvement of DEGs in immunity and defence against virus, 

especially where DEGs related to “antiviral defence” and “Epstein-Barre virus (EBV) 

infection” are interconnected in the PPI (Figure 5, 6). The involvement of the DEGs in EBV 

infection is of interest because recent study has found out there is a higher rate of EBV 

infection among people who developed MS than among controls [21]. Yet, this study does 

not show a causal relationship between the two, and further study is warranted to elucidate 

whether EBV infection increases risks of MS. 
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In module analysis with MCODE and PANTHER, we found out “interleukin-27-mediated 

signalling pathway”, “regulation of ribonuclease activity”, “regulation of type III interferon 

production”, “cellular response to exogenous dsRNA”, and “ISG15-protein conjugation” are 

enriched for >100 folds, suggesting the significance of the protein module in modulating 

these biological processes to affect the immunomodulary outcome of IFN-β (not shown). 

 

In terms of immunomodulation, three biological pathways have been enriched for >100 folds. 

Firstly, “interleukin-27-mediated signalling pathway” was enriched for >100 folds. The role 

of interleukin-27 (IL-27) in regulating T cell responses that prevent immune hyperactivity has 

been extensively characterized and IL-27 has been investigated as a possible therapeutic for 

chronic inflammatory conditions with excessive T cell activation, which includes MS [22]. 

On the other hand, the anti-inflammatory capability of IL-27 can also be induced from other 

cell types in the central nervous system such as macrophages, microglia, and dendritic cells 

[23]. Overall, the finding suggests the MOA of interferon-β and suggests other possible 

therapies targeting IL-27 in alleviating MS symptoms. Secondly, “regulation of ribonuclease 

activity” was also enriched for >100 folds. Ribonucleases (RNases) are RNA-processing or -

degrading enzymes that hydrolyse phosphodiester bonds within RNA molecules [24]. The 

contribution of RNases in inflammation modulation has been documented increasingly. For 

example, studies report that RNase T2 can act as an alarmin, which is an alarm-like molecule 

that acts on the innate immune system to send “dangerous” signals (such as bacterial 

infection, tissue damage, etc) [25]. Research has also shown that high expression of RNase 

protects against immune activation and inflammation such as in systemic lupus 

erythematosus, which is also an autoimmune disease [26-27]. Yet, the research on the role of 

RNases in MS is limited and more research is warranted. Thirdly, “regulation of type III 

interferon production” was also enriched for >100 folds. Type III interferons (IFNL) are 

antimicrobial cytokines that play key roles in immune host defence at endothelial and 

epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, 

IFNLR1 and interleukin 10Rβ. Recent work has shown that IFNL might play an important 

role in the pathogenesis of immune-related disease including MS. In the experimental 

autoimmune encephalomyelitis model of MS, IFNLR1-/- animals demonstrated improved 

clinical disease course and decreased spinal cord axonal injury compared with WT animals 

[28]. Therefore, this might suggest a MOA for IFNβ’s immunomodulatory effect due to 

increased regulation of IFNL to alleviate MS symptoms and accordingly, more research is 

warranted to develop drugs targeting IFNL to treat autoimmune disease.  
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In terms of defence against virus, two biological pathways have been enriched for >100 folds. 

Firstly, “cellular response to exogenous dsRNA” was enriched for >100 folds. Since the 

presence of exogenous double-stranded RNA (dsRNA) is usually indicative of a viral 

infection, we can infer that IFNβ play a role in modulating the cell’s response to viral 

infection [29]. Secondly, “ISG15-protein conjugation” was also enriched for >100 folds. 

ISG15 is a member of the ubiquitin family and directly inhibits viral replication and 

modulates immune response. ISG15 can be covalently conjugated onto target proteins via an 

enzymatic cascade, yet the fate of these modified proteins is still largely unknown [30].  

 

In our PPI analysis, we identified 3 hub genes based on node degree value from the merged 

PPI analysis. This included IFI44L, IFI44, and STAT1. It is to note that OAS1, OAS2, OASL 

IFIH1, IFI35, MX1, MX2, USP18, ISG15, XAF1, EIF2AK2, PLSCR1 had 20 interactions 

with other genes, meaning that they might be of interest as well. For example, the gene MX1 

encodes for Mycovirus A (MxA), a protein with antiviral activity, and has been proven to be 

a sensitive measure of IFNβ bioactivity in MS [9].  

 

For our 3 hub genes, IFI44L is a gene of 26 kb, larger than the 14 kb of IFI44, but both genes 

encode similar-sized proteins translated from a transcript produced from nine exons. IFI44 is 

made up of 444 amino acids, whereas IFI44L has 452 residues; the two proteins share 45% 

amino acid identity. Overexpression of IFI44 has been shown to restrict Bunyamwera virus 

and HIV-1 infection in vitro [31]. Yet this was first identified in the context of hepatitis C 

virus infection. IFI44L has been shown to have a moderate impact on hepatitis C virus 

infection. Interestingly, IFI44L expression has also been associated with several autoimmune 

disorders, cancer, and humoral responses to vaccination. These seemingly disparate contexts 

suggest that IFI44L is a biomarker of IFNβ responses independent of the type of stimulus. On 

the other hand if we consider the enriched pathways for antiviral defence from the functional 

analysis, this could also suggest a relationship between MS and viral infections that is yet to 

be unpacked with future research. STAT1 is also an identified hub gene which encodes for a 

protein with 750 residues. Expectedly, it plays a role as a signal transducer and transcription 

activator to mediate cellular responses to IFNs, cytokines, and other growth factors [32].  

 

Limitations in this study are that the overexpressed genes in MS patients are not compared to 

that of healthy control within the 12-month span due to a lack of data from the GEO 

databases (including GSE53716 and GSE5574). Only GSE26104 has compared the gene 
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expression before and after treatment of IFNβ for MS patients and healthy controls, where 

USP18 was found the only biomarker found to be differentially expressed between MS 

patients and controls, suggesting that USP18 may play a role in the pathogenesis of MS [9]. 

In our study, USP18 is one of the 28 DEGs present in all 3 databases with a node degree of 

20, suggesting that proteins that are not identified as hub protein cannot be overlooked. Due 

to the “scale-free” nature of protein interaction network, there is no consensus in the literature 

on the degree threshold that defines a hub protein. Given the largely ad hoc definition of hub 

proteins, it is possible that many special properties attributed to hubs may be simply a 

consequence of the definition used [33]. From our results, although further studies are 

needed, it is tempting to speculate that overexpression of IF144L and IF144 in MS patients in 

post-treatment compared to pre-treatment samples has implications for the therapeutic effect 

of IFNβ. Lastly, the research databases did not include the responsiveness of patients to the 

IFNβ-1a therapy after 12 months due to “the clinical decline in our non-responder occurred 

prior to collecting the chronic treatment specimen” in GSE5574 [10]. Although it has been 

estimated that determination of response requires lengthy clinical follow-up of up to 2 years, 

further research is warranted to identify whether these overexpressed genes after IFNβ 

treatment are linked to clinical responsiveness and non-responsiveness of MS patients 

towards IFNβ to figure out biomarkers for the responsiveness towards IFNβ treatment [6].  

Conclusion 
The present study identified 28 RNAs that are overexpressed in post-treatment MS patients in 

all three datasets. Functional enrichment analysis of the DEGs revealed several 

overrepresented pathways relevant to immune defence and antiviral activity. 3 target genes 

are hub genes in the PPI network and possess significant prognostic value. More research on 

the correlation of gene expression and responsiveness towards IFNβ treatment and the 

correlation between MS and viral infection are warranted. Although our results do not prove 

that the changes in these genes in MS patients and in IFN-β-dosed MS patients are anything 

but coincidental, this abnormal pathway may be a window into the etiology or immune 

pathogenesis of MS. 
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value p < 0.05 and a | log2FC | ≥ 1. “Overexpressed” are the genes with log2FC ≥ 1 while 

“Underexpressed” are the genes with log2FC ≤ 1. 

GSE26104 Excel 

https://docs.google.com/spreadsheets/d/1aGlJoMPEuxwXKt9XpXMVpfCerIIkJUNhHrSMW

BBsr1E/edit?usp=sharing 

GSE5574 Excel 

https://docs.google.com/spreadsheets/d/15NKGwozlsbXVrrNW9quyXnHFWPjY9Mp43rcU3

_0axTw/edit?usp=sharing 

GSE53716 Excel  

https://docs.google.com/spreadsheets/d/1g9_AWuuyDDiHUvLW2qFLrV4Fn5ghJvb_bOHp

GrhitXs/edit#gid=1364008547 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.02.25.23286450doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.25.23286450
http://creativecommons.org/licenses/by/4.0/

