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Abstract

SARS-CoV-2 vaccines were developed and distributed during a global crisis at unprecedented speed.
Still, little is known about trends in vaccine uptake over time, their association with socioeconomic
inequality, and the impact of these temporal trends on disease control. By analyzing data from dozens
of countries, we examined vaccination rates across high and low socioeconomic (SES) groups, showing
that socioeconomic disparities in the fraction of the population vaccinated exist at both national and
sub-national levels. We also identified two distinct vaccination trends: one characterized by rapid initial
roll-out, quickly reaching a plateau; and another trend that is sigmoidal and slow to begin. Informed
by these patterns, we implemented an SES-stratified mechanistic model, finding profound differences
across the two vaccination types in the burden of infections and deaths. The timing of initial roll-out has
a more significant effect on transmission and deaths than the eventual level of coverage or the degree of
SES disparity. Surprisingly, the speed of the roll-out is not associated with wealth inequality or GDP
per capita of countries. While socioeconomic disparity should be addressed, accelerating the initial roll-
out for all groups is a broadly accessible intervention and has the potential to minimize the burden of
infections and deaths across socioeconomic groups.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a respiratory virus first detected in China
in late 2019 and declared a pandemic in March 2020. Three years later, SARS-CoV-2 is responsible for
over 650 million confirmed cases and over 6.6 million deaths worldwide [1]. Disparities have been found
in coronavirus disease 2019 (COVID-19) outcomes across demographic groups (e.g. [2–4]), as well as5

the consequences of racial and socioeconomic disparities in infection fatality rates and all-cause mortality,
[2, 5, 6], COVID-19 testing rates [2, 7, 8], transmission [9], and in the ability to social distance and reduce
mobility [2, 9, 10].

This pandemic also prompted an unprecedented global development of hundreds of vaccine candidates, with
around two dozen authorized for use [11]. Vaccination began in late 2020 and the number of administered10

vaccine doses totals over 13 billion worldwide as of February 2023, exceeding the global population [1].
Global vaccination has been estimated to have averted at least 14 million deaths [12], but there has been un-
equal distribution of the global vaccine supply between high-income countries and low- and middle-income
countries [13, 14]. Mathematical models have been useful in understanding optimal SARS-CoV-2 vaccine
prioritization strategies based on age [15] and vaccine sharing to places with lower vaccine availability15

[16, 17]. At the same time, recent studies have highlighted the need to incorporate racial and socioeconomic
aspects of host heterogeneity into the study of infectious disease dynamics [10, 18, 19] and into vaccine pri-
oritization [20]. While local heterogeneity in vaccine coverage has also recently been identified at limited
time scales [21, 22], still little is known about the temporal trends of vaccination at the national and sub-
national levels, the potential differences across socioeconomic status, and their consequences for incidence20

and deaths due to SARS-CoV-2 infections.

Here, we analyze weekly vaccination data from dozens countries and territories, and more than 8000 sub-
national locations to examine temporal dynamics of vaccination. Our results show that, at the national
level, percentage of the population vaccinated is strongly associated with per capita gross domestic prod-
uct (GDP), and at the sub-national level, there are persistent socioeconomic inequalities in vaccine uptake25

across continents. Strikingly, we also distinguish substantial variability in the speed of the initial roll-out,
independent of GDP or continent. By implementing these different vaccination trends into a mechanistic
model, we find that a faster vaccine roll-out has the most significant effect on the incidence and mortality
than the proportion of population vaccinated in the long-term. Accelerating the initial roll-out can act as an
alternative and accessible intervention for many countries with limited access to the vaccine.30

Results

Global vaccine coverage and socioeconomic disparity

We analyzed data on vaccination and gross domestic product per capita for 160 countries and territories [23–
57], finding a significant positive association between the GDP per capita of a country and the percentage
of the population vaccinated against SARS-CoV-2 with at least one dose (fig. 1A). We found that as of35

June 2022, 97 of these countries (60%) have at least 50% of their population vaccinated, a finding that is
consistent with known disparities in vaccine distribution across country income levels [13, 14]. We also
collected publicly available temporal data for 34 countries and territories with a sub-national resolution,
selecting those that have at least 50% population coverage by a first dose to adequately capture the temporal
dynamics and with at least 12 sub-national localities reporting in the data so that individual localities do not40

dominate the SES-based analysis (fig. 1B).
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R = 0.68, p < 0.01

Norway

Cape Verde

India

Israel

Russia

Ecuador
United States

Haiti

ChinaNicaragua

0

25

50

75

100

6 7 8 9 10 11
GDP per capita (log scale)

Po
pu

la
tio

n 
w

ith
 a

t l
ea

st
 o

ne
 d

os
e 

(%
)

Africa
Asia
Europe
North America
South America
Oceania

Vaccine coverage and incomeA

100 or more locations 21−99 locations 12−20 locations less than 50% vaccinated not included unknown

  Sub−national COVID−19 vaccination data resolutionB

Figure 1: SARS-CoV-2 vaccine coverage. (A) Association between population vaccinated with at least one dose and
gross domestic product (GDP) per capita for 160 countries and territories. Vaccine and population data come from
[23–55] and were compiled by the Financial Times as of June 22, 2022. GDP data are sourced from World Bank [56]
and PCBS [57]. (B) Sub-national vaccination data resolution. Based on publicly available data for places with 50%
or more of their population vaccinated with at least one dose, we identified 7 countries/territories with vaccination
rates for 100 or more locations, 17 for 21-99, and 10 for 12-20 locations. In this study, we excluded 78 countries that
have greater than 50% vaccination coverage due to a lack of high-resolution sub-national data, which are referenced
as ‘not included’ in the legend. Details of the data sources and dates of data collection are reported in tables S1 and
S2, respectively.

From the 34 countries and territories with available temporal data, we split the localities at the sub-national
level into quantiles based on measures representative of socioeconomic status (SES) such as income or
poverty rates (table S1). We then analyze the vaccination temporal trends of 81 places by SES, spanning 26
countries from 5 continents, 33 states of the United States and 24 states of Brazil, and a range of national45

GDP per capita. We find that high SES groups are experiencing higher rates of vaccination than low SES
in 83% of the places analyzed (fig. 2 and fig. S1), a disparity that persists over time in the majority of
cases (fig. S2 and fig. S3). We further analyzed the degree of disparity using two metrics, the ratio and the
difference for the average, the maximum, and the percentage of the population vaccinated at the final week
(fig. S4-S5, table S3). Across these 6 metrics, we found that California (United States,CA), Florida (United50

States, FL), Colombia, Malaysia, and Israel are places that have the highest disparity, while Argentina,
Amapa (Brazil, AP), Republic of Korea, and Finland have some of the least disparity observed. We also
identified places with disparities that favor low over high SES groups, as is the case of Amazonas (Brazil,
AM) and Nevada (United States, NV).

In order to evaluate possible biases of the quantile-based analysis due to the relative inequality within each55

location, we evaluated the degree of disparity as a function of the spatial resolution of the quantile-based
analysis. We found no significant association in most pairwise comparisons across the six disparity metrics
evaluated (fig. S6). We also analyzed the Lorenz curves for 83 places and estimated a corresponding Gini
coefficient of vaccine inequality, finding that vaccines are unequally distributed, with a wide range of Gini
values (fig. S7). Using publicly reported Gini indices of income inequality for countries/states (sources in60

table S6), we found a significant association between the Gini coefficients of vaccine disparity and the Gini
index of income inequality (fig. S8, S9), and with the quantile-based analysis (fig. S10), suggesting that
socioeconomic inequality is a likely driver of vaccine inequity across countries/states.
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Distinct vaccination temporal trends

Inspired by a method traditionally used in ecology [58], enzyme kinetics [59], and life expectancy [60], we65

fit a functional response f(t) to the percentage of the population vaccinated over time t (eq. 1), starting at the
first week of available data for each country. This allows us to quantify for each country/state the potential
maximum percentage of the population vaccinated Vm, the week at which half of the vaccination potential
is reached Wh, and a standard parameter k that relates to the shape of the temporal trend.
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United States, AR United States, CA United States, IA United States, ID United States, MA United States, ME United States, MN United States, MS United States, MT
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Figure 2: Observed (points) and predicted (lines) temporal trends of first-dose COVID-19 vaccine coverage at the
sub-national level for high (solid) and low (dashed) SES groups, spanning 26 countries. A remaining 9 places are
analyzed in figure S1, and full list of excluding factors are described in the supplementary text. Week 0 is the first
week available in the data.
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Figure 3: Parameters from the functional response fitting and the two temporal trends identified using the Gaussian
mixture model [61]. (A) Vaccination trends over time for concave (teal) and sigmoidal (purple) types. The percentage
of the cumulative population vaccinated over time for each type and SES (low in dashed line and high in solid line)
were calculated using the average parameters for each type based on the classification of the 81 locations shown in
figure 2. Parameters for each place can be found in table S4. (B) Values for low and high SES of the shape parameter
k, the week at which half of the vaccination potential is reached Wh, and of the potential maximum percentage of the
population vaccinated Vm, colored by the two temporal trends. Clustering is still apparent when displaying the United
States and Brazil as countries rather than states (fig. S11).

f(t) =
Vmtk

W k

h
+ tk

(1)

Our results not only show that the fitting successfully captures the vaccination trends in most places (lines in70

fig. 2), but we also identified distinct temporal dynamics that vary in shape from a very fast initial roll-out, as
is the case for Cape Verde, to sigmoidal trends, like those observed in Malaysia. To further characterize these
temporal trends, we fit a finite Gaussian mixture model [61] to the values of Vm, Wh, and k, identifying 2
types of dynamics shown in figure 3A: a rapid initial roll-out, and then slowing down until reaching a
steady state (concave type), and a slow beginning translated into several weeks of delay in reaching half of75

the vaccination potential, but with the potential to reach a higher percentage of the population vaccinated
(sigmoidal type).

While the cluster algorithm is informed by the three parameters, the values of k are the most segregated
into the two types of temporal trends identified (fig. 3B). The concave type includes values of k with ranges
of 0.8 � 2.7, while the range for the sigmoidal type has ranges of 2.4 � 5.5. While the distribution of Wh80

has some degree of overlap, the countries/states classified as sigmoidal types tend to have, on average, a
halfway-week falling 8 weeks later than for the concave types, with little difference among high and low
SES within each type. In contrast, the potential population vaccinated Vm shows a less clear partitioning,
with average values of 75%, 82%, 82%, and 90%, for concave low SES, concave high SES, sigmoidal
low SES, and sigmoidal high SES, respectively. When looking at the association of these two temporal85

classifications with GDP per capita and the Gini coefficient, Vm was significantly associated with wealth
inequality (fig S12). Unexpectedly, we found no significant relationship between shape k and timing Wh

when each variable is compared to GDP per capita and the Gini coefficient (fig. S12).

Impact of SES and vaccination temporal trends on disease transmission

We used the outputs of the functional response fitting to calculate an average daily vaccination rate (time90

derivative) for the concave and sigmoidal trends over a 14 month period, finding that the concave type peaks

5
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around 3 months earlier than the sigmoidal one (fig. 4A and fig. S13). We then implemented these average
daily rates in an SES-stratified SEIR model, with the vaccine intervention starting immediately or at month
7. If vaccination is started immediately, there is a larger impact, and a concave strategy is optimal for the
first 12 months, until cases begin to rise (fig. 4B), likely due to the waning of immunity. Since the vaccines95

for SARS-CoV-2 were not available until after several months, we consider the scenario where vaccination
starts at t = 7 months to be more realistic, in which a faster initial roll-out (concave type) also reduces the
incidence the most (fig. 4C). For the remaining analyses, we assume the latter scenario.

We then examined concave and sigmoidal vaccination strategies under 4 different scenarios of disparities
against a no-vaccination scenario considering: (i) the average parameters for each socioeconomic group100

(Disparity: average), (ii) an extreme case of disparity between high and low SES (Disparity: worst case),
(iii) the average parameters disregarding socioeconomic group (Equity: average), and (iv) having the low
SES group be vaccinated at the same rate as the high SES group (Equity: best case). These results show
that a substantial percentage of cases can be averted by moving from the worst-case disparity to any other
scenario, when compared to a no-vaccination case (fig. 4D), with a reduction of up to 16% in the ‘Equity:105

best case’ strategy. Moreover, we find that a faster initial roll-out is always better to avert cases, reflected in
an additional 24-25% of cases averted when moving from sigmoidal to concave type. This effect is slightly
stronger for the mortality case, with 25-27% of deaths averted (fig. S14D).

Our findings suggest that both the temporal trend and the disparity can have a substantial impact on the
outcomes. However, the effects of changes in individual parameters cannot be isolated. To this end, we110

independently varied Wh for high SES from 5 to 30 weeks and the Vm from 50% to 100%, fixing a constant
disparity in the parameters for the ‘disparity: worst-case’ and ‘equity: best case’ scenarios (fig. 4E). Intu-
itively, no matter the type of concave or sigmoidal dynamics, having a higher potential of people vaccinated
with an earlier halfway week is always better for both cases (fig. 4E) and deaths (fig. S14E). We also found
the halfway week has a stronger effect on the outcomes than Vm. For instance, if we analyze the equity sce-115

nario for both Wh and Vm (top-left corner in figure 4E), the cases averted could be as low as 60% (concave)
or 40% (sigmoidal) if the halfway week is 30, even if the maximum vaccinated is 100%. In contrast, if we
look at Vm = 50% and Wh = 5, the cases averted are around 80% in both concave and sigmoidal types.

When comparing across types, the sigmoidal dynamics are more sensitive to the values of Wh, where the
outcomes are worst at higher values of Wh, compared to the concave, illustrated in the 20% difference in120

cases averted when Vm = 100% and Wh = 30. The association of a lower halfway week in countries/states
classified as concave may contribute to why concave dynamics are optimal in figure 4D. When we estimated
the infections averted for the values of Wh and Vm obtained from the data fitting (illustrated by the white
dots), we found that the majority of places with concave vaccination temporal trends would lead to 70%-90%
of infections averted, compared to a majority ranging from 50% to 70%, in the case of sigmoidal trends.125

To further understand the impact of socioeconomic disparity, we compared the outcomes of the best-case eq-
uity and worst-case disparity scenarios, at a given set of Vm and Wh values (fig. 4F). We find that difference
is minimal under a fast initial roll-out (Wh = 5) and a max. coverage (Vm = 100%), reflected in only a 5%
and 6% difference between best-case equity and worst-case disparity, for concave and sigmoidal, respec-
tively. Counter-intuitively, a low coverage (Vm = 50%� 64%) together with a fast roll-out (Wh = 5� 14)130

could generate the biggest gap between equity and disparity scenarios. However, this scenario seems to be
unlikely as it isn’t represented in the parameter combinations estimated from the data (white dots). These
analyses also show that while the values obtained from fitting the data fall in areas of the parameter space
with low differences between both scenarios, socioeconomic disparity could lead to higher differences in

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286326doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286326
http://creativecommons.org/licenses/by-nc/4.0/


the cases averted under the sigmoidal type, reflected in more areas with a difference greater than 15%.135

Finally, when comparing across the two types, the results show that the concave dynamics are optimal for
most of the parameter space, independent of the socioeconomic disparity (fig. 4G), and with the biggest
difference observed at Wh = 30 and Vm = 100%. However, if the initial roll-out is unusually fast (e.g.
Wh = 5 weeks), sigmoidal becomes optimal. Under these extreme conditions, sigmoidal and concave
trends are very similar up to the halfway week, when sigmoidal rapidly overtakes concave and reaches the140

potential maximum vaccinated relatively fast (fig. S15). This further supports that a fast roll-out in the
early weeks of vaccination drives a higher percentage of cases averted. Still, the area of the parameter space
where sigmoidal is optimal results in only a 5-10% difference in the cases averted, indicating that the effect
is weak (Fig. 4G). Similar results are shown for deaths averted (Fig. S14).

Figure 4: (A) Average daily vaccination rates for each type and SES group (per-country rates shown in fig. S13).
In the sigmoidal type, the parameters for high SES are V m = 89% and Wh = 23 weeks, while for low SES are
V m = 82.5% and Wh = 24 weeks. For both SES groups, k = 3.23, the average across SES. In the concave type,
the parameters for high SES are V m = 82.2% and Wh = 14 weeks while for low SES they are V m = 75.5%
and Wh = 15 weeks. For both SES groups, k = 1.58. (B) Cumulative cases per 10,000 with vaccination starting
immediately. (C) Cumulative cases per 10,000 with vaccination starting at t = 7 months. (D) Cumulative cases
per 10,000 after 14 months under 4 scenarios of sociocioeconomic disparity: disparity: average, disparity: worst
case (95th percentile), equity: average (averaging high SES and low SES parameters), and equity: best case (assuming
vaccination of the low SES group follow the same parameters as the high SES group. (E) Cases averted by vaccination.
Keeping k = 1.58 for concave and k = 3.23 for sigmoidal, we fixed the low SES parameters at a constant disparity
from high SES based on the 95th percentiles of the observed data (�V m = 21%, �Wh = 6 weeks), or considered
low SES parameters equal to high SES (equity) (fig. S16). The effect of varying parameter k can be found in figure
S17. (F) The difference in cases averted under the best-case equity scenario and worst-case disparity, for both concave
and sigmoidal types. (G) The difference in cases averted under concave versus sigmoidal types, for both best-case
equity and worst-case disparity. Average high SES parameters are illustrated with a cross, while country-specific
parameters for high SES are shown with dots. Model parameters are listed in table S5.
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Discussion145

By analyzing publicly available data at the national and sub-national level, we examine different aspects of
temporal trends in vaccination with a first dose against SARS-CoV-2, the association with socioeconomic
disparities, and the impact on overall transmission and mortality. Socioeconomic and racial disparities have
been previously identified in SARS-CoV-2 incidence [2, 18, 62] and in vaccination in a few places [21, 22].
We validated these findings at the global level by showing a significant association between the fraction of150

the population vaccinated with at least one dose and gross domestic product per capita, in line with prior
observation that the global distribution of vaccines has been highly heterogeneous [13, 17].

While the impact of SARS-CoV-2 vaccination on disease outcomes has been previously studied (e.g. [12,
15, 16]), less understood has been the extent of heterogeneity in vaccination temporal trends and its con-
sequences for disease outcomes. To this end, we characterized weekly vaccination uptake of 81 locations,155

disaggregated by SES, finding that most countries and states experience inequity in vaccine administration in
favor of high SES groups, which do not resolve over time. Additionally, the temporal trends vary widely in
shape and speed of the vaccination roll-out, which we classified as concave or sigmoidal types. We showed
that concave dynamics tend to have a faster initial roll-out, which is reflected in a higher number of cases
and deaths averted due to vaccination. Critically, the timing of vaccination is not associated with wealth160

inequality or GDP per capita, where, for example, Cape Verde has implemented a faster timing compared to
many high GDP countries such as Belgium, which experienced a very slow initial roll-out. These findings
suggest a broadly accessible intervention where the timing rather than allocation of vaccines can be modified
early on, providing a broad benefit to the population, even when the entire population cannot be vaccinated
due to limited stock. We also show that speeding up the timing of vaccine roll-out can be as effective as165

modifying the socioeconomic disparity, which may be more challenging to address in the short term due to
structural inequities in factors such as healthcare or transportation, especially given our finding that wealth
inequality is correlated with vaccine disparity.

Our paper should be considered in light of the following limitations. Previous work has shown that for
influenza, association between SES and vaccination is often dependent on the SES measure selected [63].170

This study is limited by the availability of vaccine and socioeconomic data at a high spatial resolution for
countries, especially on the African continent. It is therefore not possible to know with certainty what hap-
pens at the individual level, leading to the potential for ecological fallacy. We analyzed first dose coverage
but trends may differ for second dose or booster. First dose coverage may vary in quality as a long-term
vaccination strategy depending on the quality of immune response [64]. While we did not study the causes175

of socioeconomic heterogeneity in vaccination, access and intent to vaccinate can vary widely across differ-
ent countries, and for the case of SARS-CoV-2, it has been linked to demographic factors including income,
race, political affiliation, and education [21, 65–68]. This analysis is also agnostic to age structure in the
population and this limits the quantification of overall burden. Finally, we used a mechanistic SEIR model
that did not consider non-pharmaceutical interventions or pathogen evolution, which could impact intent to180

vaccinate.

To summarize, we have analyzed the temporal trends of vaccination from thousands of places across 5
continents showing not only that vaccine inequity exists within and between countries, but also that the
speed of the roll-out can play a crucial role in the impact on disease incidence, and that surprisingly, this
speed is not associated with socioeconomic metrics. By promoting faster initial vaccine uptake, our work185

outlines concrete steps that can be taken to reduce the impacts of inequitable vaccination on the burden of
disease for everyone.
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Methods

Data collection and processing

We collected national statistics on the percentage of the population with at least one dose from [23–55],190

which were compiled by the Financial Times, and GDP per capita for these nations from the World Bank
[56] and Palestinian Central Bureau of Statistics (PCBS) [57]. We also collected publicly available on
vaccination, SES, and population size at the sub-national level from countries, territories, and states that
have at least 12 locations with both vaccination and SES data to avoid single locations having an outsize
impact on the dynamics. We excluded countries where less than 50% of the total population had received195

a first dose, to adequately capture the temporal variation across trends. Sources and dates of collection are
listed in tables S1 and S2 respectively. Within each country and state, locations were grouped into quantiles
by relative SES. For countries with 12-20 locations, we used 3 groups; for 21-99 we used 5 groups; for 100
or more we used 10 groups. We then computed the average proportion vaccinated at each week, for the
highest and lowest SES groups in each country.200

Some of the vaccination data have inconsistent reporting and apparent adjustments to the data over time.
Issues with data reporting have been flagged by other authors studying vaccination data in the US [22]. We
discarded data points where the cumulative vaccination was not monotonically increasing by applying the
despike() function in R to the final aggregated data, which tracks a window of the median in the data and
removes any points outside a specified deviation from that median.205

The daily vaccination rates, estimated as an approximation to the first derivative of the fit data, is given by
the following expression:

% vaccinated � lag(% vaccinated)
week � lag(week)

(2)

Mechanistic model

We implemented a mechanistic SEIR model of transmission, varying the force of infection, proportion with
mild or asymptomatic disease, fatality rate, and vaccination rate by socioeconomic status. Parameter values210

can be found in table S5. We used the functional response to estimate daily vaccination rates ⌫(t) for both
high and low SES under two scenarios of parameter k, reflecting the average values of the two clusters
identified in the results shown in figure 3. The following equations were implemented for the low SES
group, and an identical set were implemented for high SES, but changing the parameter values:
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dSL1

dt
= ��LSL1 � ⌫L(t)SL1

dEL1

dt
= �LSL1 � ✏EL1 � ⌫L(t)EL1

dIL1A
dt

= aL1✏EL1 � �AIL1A

dIL1S
dt

= (1� aL1)✏EL1 � �SIL1S

dRL1

dt
= �AIL1A + (1� ↵L1)�SIL1S � !RL1 � ⌫(t)RL1

dSL2

dt
= !RL1 + b!RL2 � k�LSL2 � ⌫(t)SL2

dEL2

dt
= k�LSL2 � ✏EL2 � ⌫(t)EL2

dIL2A
dt

= aL2✏EL2 � �AIL2A

dIL2S
dt

= (1� aL2)✏EL2 � �SIL2S

dRL2

dt
= ⌫(t)(SL1 + SL2 + EL1 + EL2 +RL1) + �AIL2A + (1� ↵L2)�SIL2S � b!RL2

dDL

dt
= ↵L1�SIL1S + ↵L2�SIL2S

In this SEIR model, individuals start in the S1 class, and become exposed (E1) through contact with in-215

fectious individuals. Once they become infectious, they can either develop a mild (I1A) or severe (I1S )
disease. The force of infection weights mild and severe infections equally, based on the observation that
mild infections are substantial drivers of transmission [69]. Infectious individuals can move to the recovery
class R1 with rate �, and only individuals with severe infections can die with probability ↵. We estimated
infection fatality rate (IFR) for low versus high SES as a weighted average, using the age-based estimates220

from Santiago, Chile [2] and United Nations population structure data for Chile [70]. We further adjusted
to account for the proportion of mild/asymptomatic cases in the model, since only severe cases can die. We
ran simulations with a population of 10 million low SES and 10 million high SES individuals, and assuming
one exposed individual in each SES group at time 0.

Immunity from the primary infection wanes after 4 months, when individuals move from R1 to S2. Individ-225

uals in non-infected categories can also move directly to R2 through a vaccine intervention. Individuals in
R2 wane their immunity after 8 months. We assume that individuals in the second compartments are less
susceptible and less infectious, and there is a slightly higher proportion of mild infections, using the CDC
upper bound on asymptomatic cases for both SES groups [71]. We scaled the infection fatality rate for the
IS2 class using estimates of vaccine efficacy and waned vaccine immunity against severe disease [72, 73].230

Literature on contact patterns across socioeconomic groups is limited. However, it is known that workplace
and housing environments differ for low and high SES [74, 75], SES groups tend to have more mobility
within-group than outside of their group [9, 76], and low SES groups have not been as able to reduce their
mobility during the pandemic (e.g. [2, 10]). For these reasons, we assumed contact rates were asymmetric
across SES groups. All parameter values are listed in table S5.235
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The force of infection �, defined as the infection risk per susceptible individual, is given by:

�L = µcLH

✓
IH1 + siIH2

PH �DH

◆
+µcLL

✓
IL1 + siIL2
PL �DL

◆
�H = µcHL

✓
IL1 + siIL2
PL �DL

◆
+µcHH

✓
IH1 + siIH2

PH �DH

◆

Where µ is the probability of infection given contact, cij is the contact rate among SES groups, and si is a
scale parameter that reduces the infectiousness of individuals that are in the second Infected class I2.
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