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ABSTRACT 

Aims: This study assessed an artificial intelligence (AI) model’s performance in predicting 

elevated brain natriuretic peptide (BNP) levels from chest radiograms and its effect on human 

diagnostic performance. 

Methods and results: Patients who underwent chest radiography and BNP testing on the same 

day were included. Data were sourced from two hospitals: one for model development, and the 

other for external testing. Two final ensemble models were developed to predict elevated BNP 

levels of >= 200 pg/mL and >= 100 pg/mL, respectively. Humans were evaluated to predict 

elevated BNP levels, followed by the same test, referring to the AI model’s predictions. The 8390 

images from 1334 patients were collected for model creation, and 1713 images from 273 patients 

for tests. The AI model achieved an accuracy of 0.855, precision of 0.873, sensitivity of 0.827, 

specificity of 0.882, f1 score of 0.850, and receiver-operating-characteristics area-under-curve of 

0.929. The accuracy of the testing with the 100 images by 35 participants significantly improved 

from 0.708±0.049 to 0.829±0.069 (P < 0.001) with the AI assistance (an accuracy of 0.920). 

Without the AI assistance, the accuracy of the experts was higher than that of non-experts 

(0.728±0.051 vs. 0.692±0.042, P = 0.030); however, with the AI assistance, the accuracy of the 

non-experts was rather higher than that of the experts (0.851±0.074 vs. 0.803±0.054, P = 0.033). 

Conclusion: The AI model can predict elevated BNP levels from chest radiograms and has the 

potential to improve human performance. The gap in utilizing new tools represents one of the 

emerging issues. 

 

Key Words: Deep learning, Neural network, Machine learning, Brain natriuretic peptide, Heart 

failure 
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Introduction 

Heart failure is a major cause of visits to medical facilities in both unplanned emergency 

situations and routine medical checkups. It is also a growing and called heart failure pandemic 

because of the aging population.1 However, diagnosing heart failure, which should be medically 

managed, can be challenging due to the variability of symptoms, especially in heart failure that is 

complicated by other diseases for patients visiting medical facilities or for attending physicians 

who are not familiar with cardiovascular disease.2 Several tests are used to evaluate heart failure. 

Chest X-rays are widely available, and the images can be obtained quickly; however, the 

evaluation of chest X-ray images requires experience and has limited sensitivity and specificity 

for heart failure.3 Natriuretic peptide levels are useful not only for diagnosing heart failure but 

also for heart failure management.4-6 However, natriuretic peptide testing requires equipment, 

and even if the facility has such equipment, it may not be available at all hours, as many facilities 

do not offer testing at night or on weekends. Furthermore, it is essential to make the decision to 

perform the test itself. We hope that automated support tools will be developed to assist in our 

daily practice of heart failure quickly and inexpensively. The rise of artificial intelligence (AI) 

and the evolution of computer hardware provide novel findings and solutions.7,8 With regard to 

image recognition, deep neural networks (deep learning) provide relatively good performance 

compared to those of previous architectures, and some have already been deployed in clinical 

practice.9-11 The aim of our study was to diagnose heart failure using chest X-ray imaging and an 

AI model, and to support clinical practice. We hypothesized that AI models that predict elevated 

brain natriuretic peptide (BNP) levels from chest X-ray images could provide excellent 

performance compared to experienced cardiologists and could improve the diagnostic 

performance of humans. 
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Methods 

Study Patients and Datasets 

Patients who underwent chest radiography and BNP testing on the same day at Hiroshima City 

Asa Hospital and Hiroshima City North Medical Center Asa Citizens Hospital from October 

2021 to September 2022 were eligible for this study. Since BNP testing is the first choice for 

natriuretic peptide testing in these hospitals, and not N-terminal pro-brain natriuretic peptide, we 

selected BNP for this study. We reviewed the medical records of eligible patients, including 

periods other than the above, and when chest X-ray and BNP testing were performed on the same 

day, the chest X-ray images, and plasma BNP values were collected. To increase the robustness 

and generalizability of the AI models, all conditions of the frontal view of chest X-ray images 

were collected, including anterior-posterior, posterior-anterior, standing, sitting, and supine 

positions, with or without inspiration, and any diseases or conditions. Lateral chest radiographs 

were not included in this study. According to the statement of the Japanese Heart Failure Society, 

we used a BNP cut-off value of 200 pg/mL for the main study and 100 pg/mL for the sub study.12 

The chest X-ray images were assigned a binary label according to the cut-off value. The patients 

from Hiroshima City Asa Hospital were used for the training and validation datasets, while the 

patients from Hiroshima City North Medical Center Asa Citizens Hospital were used for the 

external test dataset. The study patients from Hiroshima City Asa Hospital were randomly 

divided into two datasets for training and validation. The patients were assigned to datasets in the 

training: validation: testing dataset ratio of approximately 0.66:0.17:0.17. Many patients had 

multiple pairs of chest X-ray images and BNP labels, and each patient’s data were assigned to 

only one dataset to avoid overfitting. The models used in this study, along with the sample code 
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for their utilization, will be made available on GitHub following the publication of this study. 

The study was approved by the local institutional review board. 

 

Outline of an AI Model 

We fine-tuned 31 modified pre-trained image recognition models as weak learners to predict 

elevated BNP levels, and subsequently created an ensemble model. Details are provided in the 

Supplemental Methods. The Proposed Requirements for Cardiovascular Imaging-Related  

 

Evaluation of Models 

After obtaining the 31 models (weak learners), we constructed the final soft ensemble model by 

averaging the probabilities of the 31 models. Probabilities >= 0.5 were considered to represent 

BNP levels >= the cut-off value. The accuracy, precision, sensitivity (recall), specificity, F1 score, 

receiver-operating-characteristics (ROC) curves, and precision-recall (PR) curves were 

calculated using the test dataset. ROC and PR curves were constructed using probability of BNP 

>= cut-off value, and the area under the curve (AUC) was calculated. To avoid overfitting the test 

dataset, the results of the performance tests using the test dataset were not used to retrospectively 

train or select the models. 

 

Human Testing 

We evaluated human performance to predict elevated BNP levels from chest radiography. The 

subjects were voluntary participants from the hospitals’ staff. The general findings of heart 

failure seen in chest X-ray images, as well as the characteristics of BNP, were taught to those 

being evaluated. The test subjects were shown chest X-ray images and their corresponding BNP 
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labels in the training dataset for their learning phase. Then, they evaluated the 100 chest X-ray 

images from the test dataset and provided their binary prediction. The 100 images for human 

testing comprised 50 images with BNP < the cut-off value and 50 with BNP >= the cut-off value, 

presented in random order. After the first test, to assess whether the AI assistance could improve 

human diagnostic performance, the test subjects evaluated the same 100 images again, this time 

with reference to the predictions of the AI model. The performance of the AI model, which had 

the accuracy of 86% on the test dataset (approximately 10 to 20% higher than that of humans), 

was explained before the second test. The accuracy of the AI model for the 100 images and the 

ratio of the two labels were not disclosed to the test subjects until all tests were completed. An 

expert was defined as someone with a medical career of >= 10 years. 

 

Statistical Analysis and Calculations 

Continuous variables are presented as medians (with first and third quartiles) or as mean ± 

standard deviation (SD), and categorical variables are presented as numbers and percentages, as 

appropriate. We utilized Python 3.10.7 (Python Software Foundation, Delaware, USA) and 

TensorFlow 2.10.1 (Google LCC, Mountain View, CA, USA) for our machine learning and 

statistical analysis. The difference in the accuracies of the first and second human tests was 

tested using Welch’s t-test or paired t-test, as appropriate. A P value < 0.05 was considered 

statistically significant. 

 

Results 

Baseline Characteristics 

An overview of this study is shown in Graphical Abstract, and the baseline characteristics of the 
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study patients are shown in Table 1. No data were missing. Among the 1607 patients in the study, 

the diagnoses included heart failure (N = 471), acute heart failure (N = 320), coronary artery 

disease (N = 517), acute coronary syndrome (N = 176), hypertrophic cardiomyopathy (N = 32), 

interstitial pneumonia (N = 64), and hemodialysis (N = 23). In total, 10103 chest X-ray images 

were collected. These images were divided among the training, validation, and test datasets as 

follow: 1061 patients (66%) with 6697 images (66%), 273 patients (17%) with 1693 images 

(17%), and 273 patients (17%) with 1713 images (17%). 

 

Performance of the AI 

The 31 models (weak learners) were created and trained (Figure 1). Their performance is detailed 

in Table 2, Graphical Abstract, Figure 2, and Figure 3. The performance metrics of the final 

ensemble model were as follows: accuracy was 0.855, precision was 0.873, sensitivity (recall) 

was 0.827, specificity was 0.882, F1 score was 0.850, ROC AUC was 0.929, and PR AUC was 

0.934. 

 

Performance of Human 

A total of 35 participants, including 20 medical doctors of whom 13 were cardiologists, were 

tested. The duration of medical practice among the participants was 10.2±9.0 years, with 16 

identified as experts. The AI model's performance on the 100 images was as follows: the 

accuracy 0.920, sensitivity 0.880, specificity 0.957, and f1 score 0.917 (Graphical Abstract). 

Without the AI assistance, the human participants achieved an accuracy of 0.708±0.049, a 

sensitivity of 0.693±0.128, and a specificity of 0.722±0.144. With the AI assistance, these 

measures significantly improved to an accuracy of 0.829±0.068 (P < 0.001), a sensitivity of 
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0.787±0.113, and a specificity of 0.872±0.097. Even with the AI assistance, no human subjects 

surpassed the performance of the AI model in terms of accuracy, precision, specificity, or f1 

score. The accuracy of the medical doctors and experts was higher than that of non-medical 

doctors and non-experts in the non-assisted test, respectively (0.725±0.054 vs. 0.687±0.032, P = 

0.014; 0.728±0.051 vs. 0.692±0.042, P = 0.030) (Figure 4). However, with the AI assistance, the 

accuracy of the medical doctors was similar to that of the non-medical doctors (0.818±0.064 vs. 

0.843±0.074, P = 0.289), and the accuracy of the non-experts was even higher than that of the 

experts (0.851±0.074 vs. 0.803±0.054, P = 0.033). In the AI-assisted test, there were 3 

non-experts and 1 expert who responded entirely based on the AI model’s predictions, and these 

four participants achieved the highest accuracy throughout the test, with an accuracy of 0.920. In 

the non-assisted test, the accuracy had a weak positive correlation with the duration of medical 

careers (r = 0.414, P = 0.014), while in the AI-assisted test it showed a weak negative correlation 

(r = -0.347, P = 0.041). For the eight images that were incorrectly predicted by the AI model, the 

human accuracy was 0.301±0.124. Using majority voting for the hard ensemble prediction, the 

human accuracy was 0.800 in the initial test and 0.880 with the AI assistance. 

 

Sub Study 

We developed a model to predict BNP values. The mean absolute errors between the predicted 

and true BNP values were 208 pg/mL, with mean squared errors being 1.01*105 pg2/mL2. No 

significant difference was observed between the predicted and true BNP values (P = 0.274). The 

models’ performances in predicting elevated BNP level using a cut-off of 100 pg/mL was 

comparable to that of the models using a cut-off of 200 pg/mL (Table 2, Figure 2). 
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Discussion 

This study presents the development of a high-performing model that predicts elevated BNP 

levels from chest X-ray images, thereby improving human diagnostic accuracy. Furthermore, this 

study has revealed the new issue that there exists a gap among participants in the ability to 

effectively utilize the new AI tool. 

The strengths of our study are as follows: First, this is the first report demonstrating that an AI 

model can predict elevated BNP levels from chest X-ray images, outperforming experienced 

cardiologists. Our models were predicated on the hypothesis that chest X-ray images contain 

features associated with elevated BNP levels indicative of heart failure. Prior reports have 

associated chest X-ray findings such as cardiomegaly, pulmonary venous congestion, interstitial 

or alveolar oedema, and cephalization with heart failure prediction.1,3 These prior evaluations 

were human based; our study establishes superior diagnostic performance by the AI models in 

predicting elevated BNP levels, substantiating the one of our hypotheses. The featured map 

images revealed that our models capture chest X-ray findings akin to prior human reports on 

chest radiography and heart failure (Figure 1). Nevertheless, various factors such as age, sex, 

hemoglobin level, renal function, left ventricular end-diastolic pressure, and left ventricular 

ejection fraction influence plasma BNP levels, so BNP level cannot be perfectly evaluated solely 

through chest X-ray imaging.13 Conversely, the predictability, as indicated by the ROC AUC, 

was above 0.929 in our test dataset population, suggesting a high level predictability. Matsumoto 

et al. reported that their model could predict heart failure from chest radiography.14 A limitation 

of their study was that the diagnosis of heart failure was determined by two cardiologists using 

chest radiographs. Our study highlights the relative inferiority of physician performance in 

predicting elevated BNP levels compared to the AI model, even among experienced cardiologists. 
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There are several reports predicting pulmonary arterial pressure, pulmonary hypertension, 

pulmonary wedge pressure, or extravascular lung water from chest radiographs, including similar 

studies by the same author groups.15-20 One limitation of their studies is the difference in timing 

between when the catheterization was performed and when the X-ray was taken, as the 

pulmonary artery pressure can greatly vary depending on the patient’s condition such as posture. 

The performance of the models in the studies is suboptimal, possibly due to the small sample 

size associated with the invasive catheterization procedures. Zou et al. reported that their model 

predicted pulmonary hypertension from chest radiographs with an ROC AUC of 0.967; however, 

in their study, a dataset excluding various conditions, such as pleural/pericardial effusion, and 

pneumothorax, was utilized. In contrast, our study utilized all available chest radiographs, 

encompassing a wide range of pathological conditions, which may contribute to the robustness 

and generalizability of our model. 

Second, the performance of our models was benchmarked against front-line physicians. 

Although numerous AI studies have reported that the AI models could accurately predict medical 

features from conventional tests, many of these did not evaluate the performance of physicians. 

Third, we showed that the AI model’s suggestions could enhance human diagnostic 

performance, and the utilization gap for new tools is an emerging issue. Regardless of the 

superior performance of a tool, it is useless if it is not trusted or utilized by users. While many 

studies have reported that AI models exceed human diagnostic performances, there has yet to be 

a report detailing the degree of improvement in performance when utilizing AI models, as 

compared to the standalone performance of the AI models or in the absence of any support. This 

study discovered that the performance without assistance was positively associated with the 

duration of medical careers. The AI assistance improved the diagnostic performance of both 
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inexperienced and experienced practitioners. Ironically, the inexperienced ones achieved results 

comparable to or even surpassing those of the experienced ones. This implies that with the aid of 

a potent diagnostic tool, inexperienced individuals can perform as well as or even surpass 

experienced ones. The limited improvement among the experts may be attributed to their 

confidence in their expertise and skepticism towards the AI model, despite being informed of the 

AI model’s superior performance compared to any human. Conversely, a less experienced 

individual might readily accept the AI’s prediction due to lack of confidence. Distrust in new 

technology or findings and self-confidence will be emerging issues in AI; this kind of skepticism 

towards novel approaches has always existed in other domains. In particular, the usage of 

generative AI has begun to be actively discussed. We should strive to understand and adapt 

appropriately to new ideas, technologies, and tools, including AI. 

Fourth, the models used in this study, along with the sample codes for their application, will be 

made available on GitHub following the publishment of this article. This implies that anyone can 

evaluate and refine the models, and challenge old notions with new ideas. 

Fifth, we enhanced the models using state-of-the-art deep learning techniques used in Kaggle 

competitions. Our models were based on these technical aspects, and our collected dataset, which 

was comprehensive and had not been used in previous reports regarding heart failure and chest 

radiography, is thought to be one of the strengths of our study and may enhance the model’s 

robustness and generalizability. 

Ensemble prediction has the potential to improve performance.21 In our study, the accuracy 

improved from 0.818 in the single model to 0.855 in the final ensemble model. Through the 

ensemble method, there is a potential enhancement not only in the described performance 

metrics but also in robustness and generalizability. To enhance the performance of the ensemble, 
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the models’ performances should be reasonably good and their prediction correlation should not 

be overly strong. This parallels the performance of a heart team, where members who 

consistently agree with others, or remain silent, contribute little to the quality of decisions, and 

active members lacking a certain level of performance can impair overall performance. Given 

that sensitivity and specificity exist in a trade-off relationship, a weak learner that may not be the 

best in terms of overall accuracy could potentially enhance the accuracy and generalizability of 

the ensemble model due to the diversity it provides. 

Sixth, good old chest radiography is widely available in numerous medical facilities. 

Technically integrating software, such as the one used in this study, into X-ray machines or 

smartphones is not challenging. As advancements in both hardware and software continue, the 

integration process may become even more streamlined, potentially allowing these tools to be 

used in diverse ways, with the potential to change the world. 

 

Study Limitations 

Natriuretic peptides are used for diagnosis of heart failure, employing either absolute values or 

relative changes, and for managing the condition through sequential relative changes. This study 

primarily conducted with binary prediction, as the main goal was to diagnose heart failure in this 

time. Notably, the human performance in predicting absolute BNP values from chest X-ray 

images was extremely poor in preliminary testing (data not shown). The choice of a cut-off BNP 

value warrants discussion. The cut-off values should be determined based on intended purpose 

while ensuring a balance between sensitivity and specificity. We set the BNP cut-off value at 200 

pg/mL with the aim of diagnosing unrecognized heart failure that requires early management; 

however, a cut-off value of 100 or 125 pg/mL would be considered for different purposes or 
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applications. In this study, models with a cut-off of 100 pg/mL demonstrated performance 

comparable to those with a cut-off of 200 pg/mL. While we labelled the X-ray images based on 

the BNP cut-off value, it is important to remember that heart failure is not diagnosed based solely 

on natriuretic peptide values. One of our goals is to diagnose unrecognized heart failure that 

needs early intervention, which is not synonymous with diagnosing elevated BNP levels alone. 

 

Conclusions 

The AI model can predict elevated BNP levels from chest X-ray images with superior 

performance compared to experienced cardiologists and can improve the diagnostic performance 

of individuals, ranging from non-experts to experienced cardiologists. The gap in utilizing new 

tools represents one of the emerging issues. 
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Figure Legends 

Graphical Abstract. 

We developed AI models using an ensemble method to predict elevated BNP levels. The AI 

model achieved a higher accuracy rate than any individual participant. While the accuracy of 

experts was higher in the non-assisted test, with the AI assistance, the accuracy of non-experts 

surpassed that of the experts. AI, artificial intelligence; AUC, area-under-curve; BNP, brain 

natriuretic peptide; GPU, graphic processing unit; PR, precision-recall; ROC, 

receiver-operating-characteristics. 

 

Figure 1. Chest X-Ray Images and Featured Map of Weak Learners 

(A) Chest X-ray image with a BNP of 9 pg/mL and a GRAD-CAM image generated by the 

EfficientNetV2L-based-model. (B) The EfficientNetV2L-based-model identified features such as 

pulmonary congestion and pacemaker, with a BNP of 798 pg/mL. (C) The attention map revealed 

the Vit-b16-based-model’s features in the caption, the pulmonary vessel, and the diaphragmatic 

line, with a BNP of 413 pg/mL. The caption in the upper left corner is a Kanji character meaning 

the supine position. (D) The EfficientNetV2S-based-model identified features in the captions of 

images with a BNP of 824 pg/mL. The caption in the upper left corner is a Kanji character 

meaning the sitting position. (E) The other EfficientnetV2S-based-model did not focus on the 

features in the captions but on the pleural effusion, cardiomegaly, pulmonary artery, air 

bronchogram, and Kerley A lines. The caption in the upper left corner is a Kanji character 

meaning the sitting position. BNP, brain natriuretic peptide; GRAD-CAM, gradient-class 

activation maps. 
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Figure 2. Performance of the Models 

The ROC curves (A) and PR curves (B) of the AI models for predicting BNP >= 200 pg/mL are 

shown. Similarly, the ROC curves (C) and PR curves (D) for predicting BNP >= 100 pg/mL are 

shown. The ROC and PR curves were shown for the final ensemble model as well as for 3 of the 

31 weak leaners. BNP, brain natriuretic peptide; PR, precision-recall; ROC, 

receiver-operating-characteristics. 

 

Figure 3. Representative Images and Predictions of the AI Models and Humans 

The chest X-ray images and their featured map images, age, sex, BNP value, AI prediction, and 

human accuracy are shown. The featured map images were generated by the 

EfficientNetV2S-based-model using GRAD-CAM. The caption in the upper right corner of (A) 

and the upper left corner of (B, C, and D) are Kanji character meaning sitting and standing 

position, respectively. AI, artificial intelligence; BNP, brain natriuretic peptide; GRAD-CAM, 

gradient-class activation maps. 

 

Figure 4. The Results of the Tests 

(A and B) Both the non-experts (0.692±0.042 vs. 0.851±0.074, P < 0.001) and experts 

(0.728±0.051 vs. 0.803±0.054, P < 0.001) improved their accuracy with the assistance of the AI 

model. (C) The increase in the accuracy with the AI assistance was greater for the non-experts 

than for the experts (0.159±0.069 vs. 0.074±0.052, P < 0.001). (D) In the non-assisted test, the 

accuracy had a weak positive correlation with the duration of medical careers (r = 0.414, P = 

0.014). (E) However, in the AI-assisted test, it had a weak negative correlation (r = -0.347, P = 

0.041). BNP, brain natriuretic peptide; AI, artificial intelligence; AUC, area-under-curve. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.02.22.23286205doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.22.23286205
http://creativecommons.org/licenses/by-nc/4.0/


20 

 

Table 1. Characteristics of the Study Patients and Materials 

Patient  

Study patients 1607 

Male sex 980 (61) 

Diagnosis (multiple)a  

Heart failure 471 (29) 

Acute heart failure 320 (20) 

Coronary artery disease 517 (32) 

Acute coronary syndrome 176 (11) 

Hypertrophic cardiomyopathy 32 (2) 

Congenital heart disease 14 (1) 

Atrial fibrillation 253 (16) 

Peripheral artery disease 97 (6) 

Pericardial effusion 6 (1) 

Aortic disease 68 (4) 

Hemodialysis 23 (1) 

Chronic kidney disease 171 (11) 

Pneumonia 62 (4) 

Interstitial pneumonia 64 (4) 

Venous thromboembolism 43 (3) 

Pneumothorax 9 (1) 

Lung carcinoma 16 (1) 

Trauma 5 (1) 
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Chest pain syndrome 29 (2) 

Dataset, patients  

Train 1061 (66) 

Valid 273 (17) 

Test 273 (17) 

Images  

Chest X-ray images, N 10103 

Age, y 74 (64 – 81) 

Plasma BNP, pg/mL 158 (47 – 569) 

Dataset, images  

Train 6697 (66) 

BNP >= 200 pg/mL 2994 (45) 

Valid 1693 (17) 

BNP >= 200 pg/mL 726 (43) 

Test 1713 (17) 

BNP >= 200 pg/mL 852 (50) 

Data presented as N (%) or median (interquartile range). BNP, brain natriuretic peptide. aMultiple 

selections were allowed to account for patients with co-existing conditions. 
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Table 2. Performance of Models with BNP Cut-Off 

Model a Input 

size 

Accuracy Precision Sensitivity 

(Recall) 

Specificity F1 score ROC AUC PR AUC 

BNP Cut-off: 200 

pg/mL 

        

VGG16 224 0.842 0.868 0.805 0.879 0.835 0.919 0.926 

VGG16 384 0.823 0.877 0.749 0.897 0.808 0.907 0.914 

VGG19 224 0.838 0.869 0.793 0.882 0.829 0.913 0.918 

VGG19 384 0.841 0.871 0.799 0.883 0.833 0.915 0.923 

VGG19_2 384 0.834 0.844 0.816 0.852 0.830 0.910 0.917 

InceptionResNetV2 299 0.829 0.852 0.793 0.864 0.822 0.909 0.909 

Xception 299 0.791 0.916 0.638 0.942 0.752 0.899 0.904 

Xception_2 299 0.840 0.862 0.807 0.873 0.834 0.919 0.926 

MobileNetV3Small 224 0.809 0.876 0.717 0.900 0.789 0.914 0.918 

MobileNetV3Large 224 0.837 0.863 0.799 0.875 0.830 0.912 0.917 
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ResNet-RS101 224 0.823 0.884 0.741 0.904 0.806 0.902 0.909 

ResNet-RS200 224 0.823 0.879 0.745 0.899 0.807 0.903 0.906 

EfficientNetV2B0 224 0.819 0.841 0.784 0.854 0.811 0.900 0.900 

EfficientNetV2B1 240 0.831 0.847 0.806 0.856 0.826 0.904 0.909 

EfficientNetV2B2 260 0.821 0.801 0.852 0.791 0.826 0.907 0.912 

EfficientNetV2B3 300 0.825 0.873 0.758 0.891 0.811 0.908 0.913 

EfficientNetV2S 384 0.844 0.867 0.810 0.878 0.837 0.914 0.919 

EfficientNetV2M 480 0.835 0.853 0.807 0.863 0.830 0.915 0.919 

EfficientNetV2L 480 0.832 0.839 0.819 0.845 0.829 0.909 0.906 

ConvNeXtTiny 224 0.831 0.865 0.781 0.879 0.821 0.922 0.924 

ConvNeXtSmall 224 0.827 0.866 0.772 0.882 0.816 0.918 0.922 

ConvNeXtBase 224 0.830 0.834 0.820 0.839 0.827 0.910 0.913 

ConvNeXtLarge 224 0.832 0.835 0.825 0.839 0.830 0.906 0.908 

ConvNeXtXLarge 224 0.820 0.889 0.727 0.911 0.800 0.913 0.919 

Vit-b16 224 0.822 0.816 0.828 0.816 0.822 0.906 0.909 

Vit-b16_2 224 0.827 0.816 0.843 0.812 0.829 0.906 0.912 
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Vit-b16 320 0.811 0.863 0.736 0.885 0.794 0.905 0.909 

Vit-b16 384 0.828 0.903 0.733 0.922 0.809 0.919 0.924 

MLPMixerB32 224 0.817 0.856 0.759 0.874 0.804 0.901 0.898 

MLPMixerB32_2 224 0.605 0.558 0.985 0.231 0.713 0.834 0.817 

MLPMixerB32_3 224 0.768 0.716 0.884 0.653 0.791 0.864 0.862 

Overallb  0.818±0.042 0.845±0.064 0.791±0.060 0.844±0.125 0.813±0.026 0.906±0.017 0.909±0.021 

Ensemble model 

(Final model) 

 0.855 0.873 0.827 0.882 0.850 0.929 0.934 

BNP Cut-off: 100 

pg/mL 

        

VGG16 224 0.838 0.843 0.915 0.703 0.877 0.915 0.952 

VGG16 384 0.827 0.836 0.904 0.692 0.869 0.907 0.948 

VGG19 224 0.838 0.852 0.902 0.728 0.876 0.913 0.951 

VGG19 384 0.841 0.862 0.891 0.752 0.877 0.907 0.947 

InceptionResNetV2 299 0.847 0.861 0.905 0.746 0.883 0.912 0.951 

Xception 299 0.853 0.871 0.902 0.768 0.886 0.912 0.949 
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Xception_2 299 0.853 0.861 0.917 0.743 0.888 0.919 0.954 

MobileNetV3Small 224 0.832 0.834 0.917 0.684 0.874 0.899 0.936 

MobileNetV3Large 224 0.831 0.851 0.89 0.73 0.87 0.906 0.946 

ResNet-RS101 224 0.828 0.845 0.892 0.716 0.868 0.891 0.93 

ResNet-RS200 224 0.853 0.857 0.922 0.733 0.888 0.908 0.943 

EfficientNetV2B0 224 0.837 0.859 0.889 0.748 0.874 0.898 0.936 

EfficientNetV2B1 240 0.838 0.851 0.902 0.727 0.876 0.903 0.944 

EfficientNetV2B2 260 0.842 0.864 0.892 0.756 0.878 0.908 0.946 

EfficientNetV2B3 300 0.83 0.85 0.889 0.727 0.869 0.907 0.947 

EfficientNetV2S 384 0.834 0.859 0.883 0.749 0.871 0.914 0.951 

EfficientNetV2S_2 384 0.838 0.853 0.9 0.732 0.876 0.914 0.952 

EfficientNetV2M 480 0.842 0.866 0.889 0.762 0.877 0.914 0.952 

EfficientNetV2L 480 0.818 0.877 0.83 0.797 0.853 0.891 0.937 

ConvNeXtTiny 224 0.815 0.837 0.88 0.701 0.858 0.886 0.927 

ConvNeXtSmall 224 0.846 0.864 0.899 0.754 0.881 0.905 0.943 

ConvNeXtBase 224 0.842 0.85 0.912 0.72 0.88 0.903 0.942 
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AUC, area-under-curve; BNP, brain natriuretic peptide; PR, precision-recall curve; ROC, receiver-operating-characteristics curve; aModel 

means the base-model of finetuning for the weak learners. bData was presented as mean ± standard deviation. 

 

ConvNeXtLarge 224 0.825 0.867 0.855 0.773 0.861 0.89 0.931 

Vit-b16 224 0.846 0.849 0.922 0.716 0.884 0.915 0.95 

Vit-b16_2 224 0.831 0.849 0.891 0.725 0.87 0.907 0.944 

Vit-b16 320 0.842 0.852 0.908 0.727 0.879 0.911 0.948 

Vit-b16_2 320 0.822 0.816 0.929 0.636 0.869 0.899 0.938 

Vit-b16 384 0.83 0.836 0.91 0.69 0.871 0.908 0.946 

MLPMixerB32 224 0.843 0.88 0.871 0.794 0.876 0.907 0.948 

MLPMixerB32_2 224 0.843 0.866 0.891 0.76 0.878 0.908 0.947 

MLPMixerB32_3 224 0.838 0.851 0.903 0.725 0.876 0.906 0.945 

Overallb  0.837±0.010 0.854±0.014 0.897±0.020 0.733±0.033 0.875±0.008 0.906±0.008 0.945±0.007 

Ensemble model  0.853 0.867 0.909 0.759 0.888 0.921 0.956 
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