1 2	Baseline Clinical, Hormonal and Molecular Markers Associated with Clinical Response to IL-23 Antagonism in Hidradenitis Suppurativa: A Prospective Cohort Study
3	
4	
5 6	A Flora MD ^{1,2,3} , EK Kozera MD MPH MBeth ^{1,2} , R Jepsen RN ⁴ , K Gill MD Candidate ³ , J Xu MD Candidate ³ , JW Frew MBBS(Hons) MMed MS PhD ^{1,2,3,4}
7	
8	¹ Department of Dermatology, Liverpool Hospital, Sydney Australia
9	² Laboratory of Translational Cutaneous Medicine, Ingham Institute, Sydney, Australia
10	³ University of New South Wales, Sydney, Australia
11	⁴ Holdsworth House Medical Practice, Sydney, Australia
12	
13	
14	Word Count: 2497
15	Figure Count: 5
16	Supp Fig Count: 8
17	Supp Table Count: 6
18	
19	Corresponding Author
20	Dr John W. Frew
21	Laboratory of Translational Cutaneous Medicine,
22	Department of Dermatology, Liverpool Hospital
23	Suite 7, Level 1, 45-47 Goulburn St,
24	Liverpool NSW 2170
25	Ph: +61 2 87384560
26	Fax: +61 2 87384639
27	Email: john.frew@unsw.edu.au
28	
29	
30	<u>Keywords</u> : Hidradenitis Suppurativa, Interleukin-23, Hormones, Testosterone, Monocytes,
31	Inflammation,
32	
33 24	Funding: Nil
34 25	Disclosure/Conflict of Interest Statement:
36	<u>Disclosure/ Connect of Interest Statement.</u>
30	Pharma Regeneron Chemocentry, Abbyje Azora Novartis and LICR participated in trials for
38	Pfizer LICB Boehringer-Ingelheim Eli Lilly CSL Azora and received research support from
39	Ortho Dermatologics Sun Pharma LEO Pharma LICB and La Roche Posav
40	AF. EK. RJ. KG. JX report no disclosures or conflicts of interest
41	
42	
43	Data Availability: All gene expression data is available under GEO Accession GSE214820

44 45 46	Ethics Approval Statement:
47	This study was approved by the Human Research Ethics Committee of South Western Sydney
48	Local Health District.
49	
50	
51	Contributor Statement:
52	AF: Investigation, Methodology, Writing, Revision
53	EKK: Methodology, Writing, Revision
54	RJ: Investigation, Methodology, Writing, Revision
55	JX: Methodology, Writing, Revision
56	KG: Methodology, Writing, Revision
57	JWF: Conception, Funding, Supervision, Investigation, Methodology, Writing, Revision
58	
59	Data Availability Statement:
60	The datasets used in this manuscript are publicly available through Gene Expression Omnibus
61	(GEO) via accession number GSE214820
62	
63	
64 65 66 67	

- 68
- 69

70 71 **ABSTRACT**

/	1	ABSTRACT

72	Background: Hidradenitis Suppurativa is a complex inflammatory disease in which predicting
73	therapeutic response remains challenging. IL-23 interacts with sex hormones but the
74	relationships between the two in HS remains uninvestigated.
75	Objectives: To assess whether baseline clinical, hormonal, or molecular markers are associated
76	with clinical response to IL-23 antagonism with Risankizumab in Hidradenitis Suppurativa.
77	Methods: 26 individuals with Hurley Stage 2/3 disease were administered Risankizumab 150mg
78	Week 0,4,12. Baseline sex hormones and skin biopsies were taken. Clinical response at Week 16
79	assessed by the HiSCR, and differences between responders and non-responders assessed.
80	Results: 18 of 26 participants achieved HiSCR50 at week 16 (69.2%). Clinical response to IL-23
81	antagonism was associated with male gender, elevated total serum testosterone, and
82	decreased levels of FSH. Stratification by clinical responders/non responders identified
83	differentially expressed genes including PLPP4 and MAPK10. Immunohistochemistry identified
84	elevated numbers of CD11c, IL-17A and IL-17F positive cells compared to non-responders.
85	CD11c+ cells significantly correlated with serum levels of total testosterone and inversely
86	correlated with serum FSH.
87	Conclusions: Clinical response to IL-23 antagonism in HS is associated with serum sex
88	hormones, Th17 polarized inflammation in lesional tissue and CD11c+ cells. These potential
89	therapeutic biomarkers require further validation in larger cohorts but may suggest potential
90	targeted HS therapy.

91

<u>Keywords</u>: Hidradenitis Suppurativa, Interleukin-23, Hormones, Testosterone, Monocytes,
 Inflammation,

94 Main Text:

- 95
- 96

97	Hidradenitis Suppurativa (HS) is a complex, heterogeneous inflammatory disease in need of
98	novel therapies ¹ . Currently, Adalimumab is the sole licensed biologic therapy for HS, and only
99	achieves clinical response (as measured by the Hidradenitis Suppurativa Clinical Response
100	outcome measure) in 60% of patients ² . Mechanistically, HS is associated with significant
101	polarization of the Th17 immune axis with significant dysregulation of cytokines including IL-
102	17A ³ , IL-17C ⁴ , IL-17F ^{3,5} and IL-23 ³ . Agents targeting the Th17 immune axis have been explored in
103	HS ⁶ including clinical trials ⁷ , but further development has been halted due to lack of positive
104	results ⁸ . Two separate IL-23 antagonists (Risankizumab and Guselkumab) have been withdrawn
105	from further development after a lack of positive results in Phase 2 studies ⁸ , with no significant
106	difference in clinical response when compared to placebo ⁸ (Supplementary Table 4). Isolated
107	case reports and case series however, report benefit in some patients ^{6,9}
108	
109	HS also has a significant hormonal component to disease pathogenesis ¹⁰ . The link between sex
110	hormones and the Th17 immunological axis is incompletely understood ¹¹ . Perimenstrual
111	disease flares, remission during pregnancy and the effect of comorbidities such as obesity and
112	insulin resistance on hormone levels suggest sex hormones play an important role in
113	modulating inflammation in HS ¹² . Hormonal therapies such as Spironolactone, oral
114	contraceptives and 5- $lpha$ reductase inhibitors such as finasteride and dutasteride are used,
115	primarily in female patients, with variable levels of efficacy ^{12,13} .

117	The Th17 immune axis is known to interact with sex hormones through IL-23 ^{14,15} . IL-23 interacts
118	with non-canonical androgen receptor signaling pathways, modulating inflammation in
119	epithelial tissues and monocytes/macrophages ^{14,15} . Monocyte activation and development into
120	macrophages are altered in the presence of tissue estrogens, (specifically E2 Estradiol) both in
121	in vivo and in vitro investigations ^{14,15} . Monocytes and macrophages are known to be central
122	players in the pathogenesis of ${ m HS}^{16-19}$, produce <code>IL-23</code> , and are proposed to interact with T cells, B
123	cells and Neutrophils to direct and orchestrate chronic inflammation in HS ¹⁶⁻¹⁹ .
124	
125	Recent Phase 2 studies of IL-23 antagonism in HS have suggested disparate clinical responses
126	based upon participant gender, with primarily male cohorts demonstrating higher rates of
127	clinical response to IL-23 antagonism compared to primarily female cohorts ⁸ . This would be
128	consistent with sex hormones influencing the role of IL-23 directed inflammation in HS,
129	however clinical and mechanistic evidence to support this hypothesis is currently lacking.
130	
131	The aim of this prospective cohort study was to assess whether baseline clinical, hormonal or
132	molecular markers are associated with clinical response to IL-23 antagonism with Risankizumab
133	in Hidradenitis Suppurativa.
134 135 136	METHODS:
130 137	26 individuals with dermatologist diagnosed HS (based upon the modified Dessau criteria ²⁰)
138	were included in this cohort study. All individuals had Hurley stage 2 or 3 disease and a
139	minimum of 5 inflammatory lesions (abscesses and nodules). Inclusion and Exclusion criteria
140	are presented in supplementary table 1. Clinical data including demographics, smoking status,

141	body mass index (BMI), family history of HS, and diagnosed insulin resistance were collated
142	(Supplementary Table 2). Disease severity was assessed using Hurley staging and lesion counts
143	using the international hidradenitis suppurativa severity score (IHS4) outcome measure ² .
144	Baseline blood work including serum total and free testosterone, follicular stimulating hormone
145	(FSH), luteinizing hormone (LH), sex hormone binding globulin (SHBG) as well as C reactive
146	protein (CRP) levels. All participants were administered Risankizumab at psoriasis dosing of
147	150mg week 0,4 and 12. The primary outcomes of interest was clinical response as measured
148	by the Hidradenitis Suppurativa Clinical Response (HiSCR ²) at week 16. Additional outcomes
149	included the IHS4, as well as HiSCR75 (defined as a 75% reduction in Abscess and Nodule count
150	without an increase in abscesses or draining tunnels), and HiSCR90 (defined as a 90% reduction
151	in Abscess and Nodule count without an increase in abscesses or draining tunnels) as used in
152	the recent Bimekizumab Phase 2 clinical trial in HS ²¹ . Clinical Responders were defined as
153	individuals who achieved HiSCR at Week 16. Non-Responders were defined as those who did
154	not achieve HiSCR 50 at Week 16.
155 15 c	
156 157	Skin Biopsy Collection and Processing:
158	Lesional, peri-lesional and non-lesional skin biopsies were taken prior to the commencement of
159	Risankizumab using previously described standardized lesion and site methodologies ²² . Each
160	6mm biopsy specimen was bisected, with one section immediately placed in RNA later and
161	frozen at -80 degrees Celsius until processing for RNA extraction. The other section was placed
162	in OCT medium and frozen at -80 degrees Celsius and processed for Immunohistochemistry.

164	RNA was extracted using the Qiagen RNEasy kit then eluted in 50ug of RNA-ase free water. RNA
165	was processed and analysed using the Nanostring nCounter Fibrosis 2.0 multiplex gene
166	expression assay (gene list in Supplementary Table 3). nCounter technology uses a pair of gene-
167	specific probes – a capture probe and a reporter probe – with each aligning to their target RNA
168	by complementary base pairing. The reporter probe contains a target-specific fluorophore, and
169	readout is via an imaging platform that identifies and quantifies probe complexes ²³ .
170	
171	Tissue sections in OCT were cut into 5.0 μm sections and stained for the following proteins of
172	interest: IL-17A (Thermofisher 14717982, 1:100), IL-17F (Thermofisher PA5115403 1:100), IL-
173	23p19 (Thermofisher PA520239 1:100) and Cd11c (Proteintech KHC0017) Appropriate
174	secondary antibodies (Abcam goat anti-mouse Ab6789 1:2000), Abcam goat anti rabbit Ab6721
175	1:200) were used with DAB chromophore. IHC quantification was undertaken using
176	semiquantitative measurement by 2 experienced independent raters (AF, JWF), with any
177	disagreement mediated by a third author.
178	
179	Statistical Analysis:
180	Power calculation was undertaken to determine the significance of findings. Assuming a clinical
181	response rate of 40% similar to clinical trial data ⁸ , a sample size of 26 participants will allow
182	detection of significant change in two markers (with log fold change greater than 1.5) with
183	power greater than 80% if one tailed significance T-tests is performed.

185	Descriptive statistics were used to collate all demographic and disease severity data in the
186	included patients. Differences between groups (Responders/Non responders) were analyzed
187	using Chi Squared analysis for binary/dichotomous variables and the Wilcoxon Rank sum test
188	for continuous variables. P<0.05 was considered statistically significant and adjustment for
189	multiple comparisons was made using the Benjamini Hochberg procedure. All statistical analysis
190	was completed in Graphpad Prism (9.4.1)
191 192	Analysis of Serum Sex Hormones:
193	Serum sex hormones were measured by the same laboratory across all individuals. All pre-
194	menopausal female participants underwent baseline blood tests during the first 3 days of their
195	menstrual cycle to account for cyclical variation. As per the exclusion criteria- no women in this
196	cohort study were on active hormonal contraception. Differences between groups were
197	analyzed using Wilcoxon Rank sum test for continuous variables. P<0.05 was considered
198	statistically significant and adjustment for multiple comparisons was made using the Benjamini-
199	Hochberg procedure.
200 201 202	Immunohistochemistry quantification:
203	IHC staining underwent semiquantitative analysis using previously published methods ²⁴ .
204	Differences between groups were analyzed using the Wilcoxon rank sum test with adjustment
205	for multiple comparisons was made using the Benjamini Hochberg procedure.
206 207	Nanostring NCounter Analysis:

208 Extracted RNA was analysed using the NCounter system (Nanostring) using the Human Fibrosis 209 V2.0 gene panel. Raw data was processed using the Nanostring Nsolver (version 4.0.70) analysis 210 software using guality control and normalization procedures derived from the NormgPCR R package as previously described²⁵. Differentially expressed genes (DEGs) were defined as >1.5 211 Log2Fold change with a false discovery rate<0.05 and p value<0.05. 212 213 214 215 216 217 **RESULTS:** 218 Clinical response to IL-23 antagonism was significantly associated with male gender, insulin 219 resistance and serum sex hormones 220 Eighteen of the twenty-six included participants were classified as responders (69.2%), having

221 achieved HISCR at Week 16. Responders demonstrated dramatic reduction in the number of 222 clinically apparent nodules and abscesses, but also draining tunnels as well as diffuse erythema, 223 pain and swelling (Supplementary Figure 1). The demographic and disease characteristics of the 224 included patients (including Responders and Non-Responders) is presented in Table 1. A 225 statistically significant difference in the proportion of male participants in the responder 226 category when compared to the non-responder category as measured by the Chi Squared test. 227 (77.8% vs 12.5% p<0.01). There was no significant difference between responders and non-228 responders with regards to age, BMI, or Hurley stage (Table 1). Significant differences in total 229 testosterone, FSH and LH were also identified between responders and non-responders. (Table 230 1, Figure 2).

232 The univariate association of clinical response as measured by HiSCR (hereafter termed 233 HiSCR50) was maintained when deeper measures of clinical response (HiSCR75 and HiSCR90) 234 were analyzed (Supp Figures). Statistically significant differences between serum FSH and 235 serum total testosterone were identified between HiSCR75 Responders/ Non-Responders. Only 236 serum total testosterone was statistically significant between HiSCR90 Responders/Non-237 Responders/ (Supplementary Figures 2,3,4,5). 238 No statistically significant differences between HiSCR Responders/ Non-Responders were seen between other hormonal measurements including sex hormone binding globulin (SHBG), free 239 240 testosterone and serum luteinizing hormone (LH). (Supplementary Figures 2,3,4,5) Additionally, 241 exploratory correlation between age and BMI did not reveal any statistically significant 242 difference between clinical Responders and Non-Responders (Supplementary Figures 2,3,4,5). 243 Examination of deeper levels of response including HiSCR75 and HiSCR90 also did not identify 244 any significant differences between responders and non-responders. (Supplementary Figures 245 2,3,4,5) 246 Analysis of the relationship between clinical response and FSH/total testosterone by multiple 247 248 regression analysis did not reveal any loss of association in the presence of other identified 249 variables (Supplementary Table 6). This indicates that serum total testosterone and serum FSH 250 are consistently associated with clinical response, as measured by HiSCR50/75/90 outcome 251 measures, even in the presence of other demographic and hormonal variables. 252

- 253
- 254

255 256 257 258	<u>HS Lesional, Perilesional and Non-Lesional Tissue Demonstrates Dysregulation of Multiple</u> Inflammatory and Immunological Pathways by Multiplex Gene Expression, similar to those observed in whole tissue RNA sequencing
259 260	Gene expression using multiplex gene expression (Nanostring nCounter Fibrosis 2.0 gene
261	expression panel) identified significant dysregulation of fibro-inflammatory genes including
262	IL1B, CXCL8, SYK, CXCR1) across lesional, perilesional and non lesional tissue (Figure 3). The
263	highest differentially expressed genes (Supplementary Figure 6, 7) included genes and
264	pathways previously identified in RNA sequencing including interferon responsive elements
265	(IRF1), neutrophil activation (CEACAM3), B cell activity (BLK) and Th17 pathways (IL17A).
266	Additionally, a number of novel genes and pathways were highlighted including CD8 cell
267	exhaustion (LAG3), mast cell activity (C4BPA) and sex-hormone regulated monocyte associated
268	genes (PRAP1).
269	Principal component analysis (Supplementary Figure 6) identified specific genes significantly
270	associated with lesional tissue (including BLK, CD44, IL6, STAT3), peri-lesional tissue (IL10, C5,
271	IRF1) and non-lesional tissue (ILK, COLA12, IL17A). These genes and associated cell types have
272	been observed in whole tissue RNAseq ^{26,27,28} validating the novel use of this technology in HS
273	tissue.
274 275	
276	Molecular response stratified by HiSCR Responders/ Non-Responders identify upregulated T cell,
277	Th17 associated genes and pathways in clinical responders to IL-23 antagonism
278	
279	Stratification of baseline tissue gene expression by HiSCR50 responders and non-responders
280	identified a number of genes associated with clinical response to Risankizumab therapy (Figure

281	4). The most differentially expressed genes pertained to extra cellular matrix synthesis (MFAP3,
282	CYP8B1) as well as T cells (TRAT1), PPAR signaling (CYP8B1), mast cells (TPSAB1/B2) and
283	cytokine signaling (CXCR1, LTA, FADD, OAS1). Statistically significant dysregulated genes are
284	listed in Figure 4). Sex-hormone modulated genes including PLPP4 and MAPK10 were
285	upregulated in responders compared to non-responders. Principal component analysis
286	identified significant clustering between responders and non-responders when stratified by
287	HiSCR50 (Figure 4). Pathway analysis by reactome identified interleukin-17 signaling,
288	chemokine receptors, and signaling by interleukins, Innate immune system and immune system
289	as significant pathways in responders versus non-responders (Supplementary Table 5).
290 291 292	Immunohistochemistry identifies Th17 associated proteins such as IL-17A, IL-17F and IL-23p19
293	as well as and CD11c+ leucocytes as associated with clinical response in HS lesional tissue.
294	
295	Confirmatory IHC indicates significantly increased number of CD11c+ cells and IL23p19+ cells in
296	dermal infiltrates in lesional tissue of clinical responders (as measured by HiSCR) when
297	compared to clinical non-responders. (Supplementary Figure 8). Semiquantitative cell counts
298	identified elevated levels of IL-17A and IL-17F positive cells in dermal infiltrates of lesional
299	tissue in clinical responders (Figure 5). Univariate correlation identified a significant association
300	between Serum FSH and Serum testosterone with semiquantitative IHC cell counts of CD11c
301	and IL23p19 positive cells (Supplementary Figure 8).
302 303 304 305	

306

307 Discussion:

308	Clinical response to IL-23 antagonism with Risankizumab in HS is associated with baseline
309	elevation in total testosterone and baseline suppression of FSH, as well as upregulation of sex-
310	hormone responsive genes including PLPP4 and MAPK10 in lesional tissue. The greater
311	proportion of males in this cohort (compared to other placebo-controlled trials in HS) may
312	explain the slightly higher response rate in this cohort. Different patient factors are associated
313	with clinical response in females as compared to males. In females, insulin resistance is also
314	associated with clinical response suggesting a complex interplay between inflammation, sex
315	hormones and metabolic comorbidities such as polycystic ovarian syndrome (PCOS).
316	Additionally, responders were associated with increased numbers of baseline lesional IL23p19+
317	and CD11c+ cells in dermal inflammatory infiltrates as well as upregulation of Th17
318	inflammatory pathways. Data from this observational study suggests that sex hormones may be
319	associated with IL-23p19 expressing CD11c+ cells in HS lesional tissue, which are associated
320	with elevations in the Th17 immune axis and therefore clinical response to IL-23 antagonism.
321	
322	This study was not designed to look at causation, and hence only associative conclusions can be
323	drawn. It may be that serum testosterone and serum FSH are surrogate markers for other
324	causative mechanisms which are currently unknown. What this study does provide is
325	observational evidence that clinical response to IL-23 antagonism associates with alterations in
326	serum sex hormones. Additionally, these hormone alterations are associated with Th17
327	immune axis skewing, upregulation of MAPK10 gene expression in lesional tissue and increases
328	in CD11c+ cell populations in lesional tissue.

330	Levels of sex hormones are influenced by age, the menstrual cycle, pregnancy and medication
331	such as the contraceptive pill ^{29,30} . Whilst the influence of sex hormones on the activity of HS is
332	well documented ¹⁰ , the link between sex hormones and inflammatory cytokines and
333	chemokines in HS is not well understood. Monocyte populations are known to be altered in the
334	setting of HS ^{19,26,27} with trends toward non-classical populations observed ^{19,26.27} but little data
335	has observed differences in monocyte populations between men and women with HS.
336	
337	PCOS is known to alter the populations and activity of CD11c+ monocytes ³¹ , and sex hormones
338	can alter monocyte differentiation with testosterone driving a non-classical monocyte
339	differentiation and estrogens forming a classical differentiation program ³²⁻²⁵ . This is manifest by
340	alterations in CD14 and CD16 expression, however this data has not been replicated in HS.
341	Additionally, estrogens can depress the dendritic cell stimulation of T cells, and testosterone
342	promote inflammatory activation of monocyte-derived dendritic cells ³²⁻³⁵ .
343	
344	Our presented results would be consistent with previous observations that sex hormones may
345	impact the ratio of classical/intermediate/non-classical monocytes ³²⁻²⁵ . An overarching
346	explanation for the observations in this study would be that elevated levels of testosterone in
347	IL-23 clinical responders may result in preferential intermediate and non-classical monocyte
348	polarization (via MAPK10 and CXCL1 gene expression ³²), manifesting in high levels of CD11c
349	expression and Th17 immune polarization compared to IL-23 clinical non-responders.
350	

351	An additional novel feature of this report is the utilization of the nCounter Nanostring gene
352	expression system, which when used in other inflammatory dermatoses ³⁶ has suggested higher
353	sensitivity than traditional RNAseq (particularly with inflammatory cytokines such as IL-17
354	isoforms). The similar upregulation of inflammatory targets in lesional, perilesional and non-
355	lesional tissue when compared to other published datasets ^{5,27,28} partially validates the use of
356	this gene expression method in HS.
357 358	
359	Limitations:
360	Limitations to this study include the small number of participants, the cohort nature of the
361	study and the use of only baseline serum and tissue data as opposed to pre and post
362	intervention sampling. The use of gene expression panel (nCounter) is reliant on a prior
363	identified gene groups as opposed to assumption free RNAseq. However, the increased
364	sensitivity of this technology promotes possible benefits from this over and above traditional

RNA sequencing. The observations gained can only look into association not causation of sex

hormones, CD11c+ populations and clinical response. All women included in this study were not

367 on any form of contraceptive therapy. Hence the potential beneficial or detrimental role of

368 exogenous hormones was not able to be assessed. Additionally, levels of tissue aromatase

369 (which can convert androgens to estrogens) was not assessed. This may account for disparity

between serum levels of sex hormones and their local action in tissue.

371 Future directions would include looking at pre and post interventional studies to potentiate

372 response to IL-23 antagonisms (through the use of hormonal manipulation), the role of sex

373 hormones in monocyte subsets in inflammatory skin disease, as well as exploring the effect of

- 374 the OCP other hormonal agents (such as Spironolactone) in concert with IL-23 antagonism in
- 375 HS.
- 376
- 377

378 Conclusions:

- 379 Overall, individuals demonstrating a clinical response to IL-23 antagonism in HS exhibit elevated
- 380 levels of total serum testosterone and elevated CD11c+ cell numbers in lesional tissue. Elevated
- 381 expression of *IL17A, PLPP4 and MAPK10* genes were observed in clinical responders suggesting
- 382 a potential link between sex hormones and modulation of monocyte differentiation in HS
- 383 tissue. These potential therapeutic biomarkers require validation in larger cohorts, and the
- 384 influence of hormonal medications in potentiating or facilitating clinical response to IL-23
- 385 antagonism may be an interesting future direction of translational research.
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395

396		
397		
398		
399		
400	<u>Refere</u>	ences:
401	1)	Frew JW, Marzano AV, Wolk K, Join-Lambert O, Alavi A, Lowes MA, Piguet V. A
402		Systematic Review of Promising Therapeutic Targets in Hidradenitis Suppurativa: A
403		Critical Evaluation of Mechanistic and Clinical Relevance J Invest Dermatol 2021;
404		141(2):216-324
405	2)	Kimball AB, Okum MM, Williams DA, Gottlieb AB, Papp KA Zouboulis CC et al Two Phase
406		3 Trials of Adalimumab for Hidradenitis Suppurativa. N Engl J Med 2016; 375:422-434
407	3)	Schlapbach C, Hanni T, Yawalkar N, Hunger RE et al. Expression of the IL-23/Th17
408		pathway in lesions of Hidradenitis Suppurativa. J Am Acad Dermatol 2011; 65(4):790-
409		798
410	4)	Navrazhina K, Frew JW, Krueger JG Interleukin 17C is elevated in lesional tissue of
411		Hidradenitis Suppurativa. Br J Dermatol 2020;182(4):1045-1047
412	5)	Witte Handel E, Wolk K, Tsaousi A, Irmer ML, Mossner R, Shomroni O, et al The IL-1
413		Pathway is Hyperactive in Hidradenitis Suppurativa and Contributed to Skin Infiltration
414		and Destruction. J Invest Dermatol 2019;139(6):1294-1305
415	6)	Berman HS, Villa NM, Shi VY, Hsaio JL Guselkumab in the treatment of concomitant
416		hidradenitis suppuratia, psoriasis and Crohn's disease. Dermatological Treatment 2021; ,
417		32(2): 261-263

418	7)	Zouboulis CC, Frew JW, Giamarellos-Bourboulis EJ, Jemec GBE, Del Marmol V, Marzano
419		AV, Nikolakis G, Sayed CJ, Tzellos T, Wolk K, Prens EP. Target molecules for future
420		hidradenitis suppurativa treatment. Exp Dermatol. 2021 Jun;30 Suppl 1:8-17
421	8)	Clinicaltrials.gov (NCT 03628924) A Study to Evaluate the Efficacy, Safety and
422		Tolerability of Guselkumab for the Treatment of Participants with Moderate To Severe
423		Hidradenitis Suppurativa (HS) (NOVA). Retrieved 28 th Sept 2022 from
424		https://clinicaltrials.gov/ct2/show/NCT03628924
425	9)	Kok Y, Nicolopoulos J, Howard A, Varigos G, Kern J, Doliantis C. Tildrakizumab in the
426		treatment of moderate-to-severe hidradenitis suppurativa. Australas J Dermatol
427		2020;61(4):e488-e490
428	10) Kozera E, Lowes MA, Hsaio JL, Frew JW Clinical Considerations in the management of
429		hidradenitis suppurativa in women. Int J Womens Dermatol 2021;7(5PartB):664-671
430	11) Moulton VR Sex Hormones in Acquired Immunity and Autoimmune Disease Front
431		lmmunol 2018; 02279
432	12) Riis PT, Ring HC, Themstrup L, Jemec GB. The role of androgens and estrogens in
433		Hidradenitis Suppurativa – An Systematic Review. Acta Dermatovenerologica Croatica
434		2016, 24(4):239-249
435	13) Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M et al IL23 Secreted by
436		myeloid cells drives castration resistant prostate cancer. Nature 2018;559(7714):363-
437		369

438	14) Silva e Souza CL, Barbosa CD, Coelho HILN, Santos-Junior M, Barbosa EN, Queiroz EC,
439	Effects of 17B Estradiol on Monocyte/Macrophage Response to Staphylococcus aureus:
440	An in vitro study. Front Cell Infect Microbiol 2021; Fcimb.2021.701391
441	15) Segerer SE, Muller N, van den Brandt J, Kapp M, Dietl J, Reichardt HM et al. Impact of
442	female sex hormones on the maturation and function of human dendritic cells. Am J
443	Reprod Immunol 2009 62(3):165-73
444	16) Vossen ARJV, van der Zee, Prens EP Hidradenitis Suppurativa: A Systematic review
445	Integrating Infglamamtory pathways into a Cohestive Pathogenic Model. Front Immunol
446	2018;9:2965
447	17) Wolk K, Join-Lambert O, Sabat R Aetiology and pathogenesis of Hidradenitis
448	Suppurativa. Br J Dermatol 2020; 183(6):999-1010
449	18) Frew JW, Hawkes JE, Krueger JG A Systematic Review and Critical Evaluation of
450	Immunohistochemical Assocaitions in Hidradenitis Suppurativa. F1000Res 2018;7:1923
451	19) Kanni T, Tzanetakou V, Savva A, kersten B, Pistiki A, van de Veerdonk F et al
452	Compartmentalized cytokine responses in Hidradenitis Suppurativa. PLoS One
453	2015;10(6):e0130522
454	20) Zouboulis CC, Del Marmol V, Mrowietz U, Prens EP, Tzellos T, Jemec GBE Hidradenitis
455	Suppurativa/Acne Inversa: Criteria for Diagnosis, Severeity Assessment, Classification
456	and Disease Evaluation. Dermatology 2015;231(2):184-190
457	21) Glatt S, Jemec GBE, Forman S, Sayed C, Schmieder G, Weisman J et al Efficacy and Safety
458	of Bimekizumab in Moderate to Severe Hidradenitis Suppurativa. JAMA Dermatol
459	2021;157(11):1279-1288

460	22) Frew JW, Navrazhina	K, Byrd AS,	Garg A, In	ıgram JR, et al.	Defining lesional	, perilesional
-----	-------------------------	-------------	------------	------------------	-------------------	----------------

- 461 and unaffected skin in hidradenitis suppurativa: proposed recommendations for clinical
- 462 trials and translational research studies. Br J Dermatol 2019;181(6):13391-341
- 463 23) Goytain A, Ng T Nanostring nCounter Technology: High-Throughput RNA Validation
- 464 Methods Mol Biol 2020; 2079:125-139
- 465 24) Crowe AR, Yue W Semi-quantitative Determination of Protein Expression using
- 466 Immunohistochemistry staining and Analysis: An Integrated Protocol. Bio Protoc.
- 467 2019;9(24):e3465
- 468 25) Bhatttacharya A, Hamilton AM, Furberg H, Pietzak E, Purdue MP, Troester MA et al An
- 469 approach for normalization and quality conrol for Nanostring RNA expression data. Brief
 470 Bioinform 2021;22(3):bbaa163
- 471 26) Gudjonsson JE, Tsoi LC, Ma F, Billi AC, van Straalen KR, Vossen ARJV et al Contribution of
- 472 plasma cells and B cells to hidradenitis suppurativa pathogenesis. JCI Insight
- 473 2020;5(19):e139930
- 474 27) Lowe MM, Naik HB, Clancy S, Pauli M, Smith KM, Bi Y, et al Immunopathogenesis of
- 475 hidradenitis suppurativa and response to anti-TNF-a therapy. JCI insight
- 476 2020;5(19):e139932
- 477 28) Navrazhina K, Frew JW, Grand D, Williams SC, Hur H, Gonzalez J et al Interluekin-17RA
- 478 blockade by Brodalumab decreases inflammatory pathways in hidradenitis suppurativa
- 479 skin and serum. Br J Dermatol 2022;187(2):223-233

480	29) Lee SJ, Lenton EA, Sexton L, Cooke ID The effect of age on the cyclical patterns of plasma
481	LH, FSH oestradiol and progesterone in women with regular menstrual cycles. Hum
482	Reprod 1988;3(7): 851-855
483	30) Raju GAR, Chavan R, Deenadayal M, Gunasheela D, Gutgutia R, Haripriya G et al
484	Luteinizing hormone and follicule stimulating hormone synergy: A review of role in
485	controlled ovarian hyper-stimulation. J Hum Reprod Sci 2013;6(4):227-34
486	31) Huang ZH, Manickam B, Ryvkin V, Zhou J, Fantuzzzi G, Mazzone T, Sam S. PCOS is
487	associated with increased CD11c Expression and Crown like structures in Adpiose tissue
488	and increased central abdominal fat deposits independent of obesity. J Clin Endocrin
489	Metab 2013;98(1):E17-E24
490	32) Sellau J, Groneberg M, Fehling H et al Androgens predispose males to monocyte
491	mediated immunopathology by inducing the expression of leucocyte recruitment factor
492	CXCL1 Nat Commun 11, 3459 2020
493	33) Becerra-Diaz M, Song M, Heller N Androgen and Androgen receptors as regulators of
494	monocyte and macrophage biology in the healty and diseased lung Front Immunol
495	2020
496	34) Pelekanaou V, Kampa M, Kiagiadaki F, Deli A, Theodoropoulos P, Agrogiannis G et al
497	Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk
498	between estrogen receptor Era36 and GPR30/GPER1 J Leucoc Biol 2016; 99(2):333-347
499	35) Kramer PR, Winger V, Kramer SF 17-B Estradiol utilizes the estrogen receptor to regulate
500	CD16 expression in monocytes. Mol Cell Endocrinol 2007;279(1-2):16-25

501	36) Krueger JG Wharton KA, Schlitt T, IL-17A inhibition by secukinumab induces early clinical
502	histopathologic, and molecular resolution of psoriasis. J Allerg Clin Immunol 2019;
503	144(3): 750-763
504	
505	Figures and Tables:
506	
507	Table 1: Table of summary demographic and disease data of participants in this cohort study.
508	
509	Figure 2: Comparison of Baseline Serum Testosterone and Serum FSH levels in Responders and
510	Non-Responders (at week 16) to Risankizumab therapy for Hidradenitis Suppurativa as well as
511	receiver operating curve for testosterone and HiSCR50.
512	
513	Figure 3: Baseline Multiplex gene expression (Nanostring) data for baseline tissue biopsies in 26
514	participants, stratified by lesional, perilesional and non lesional tissue.
515	
516	Figure 4: Log fold change in gene expression of select genes in responders versus non-
517	responders in Hidradenitis Suppurativa. Statistically significant elevation in gene expression was
518	seen in T cell, macrophage monocyte and dendritic cell genes compared to non-responders.
519	This included IL-17A, CXCR1, TRAT1 and LTA. Principal component analysis demonstrating
520	discrete clustering of Responders and Non-Responders based on gene expression data.
521	

522	Figure 5: Immunohistochemical staining for IL-23p19, CD11c, IL-17A and IL-17F are associated
523	with clinical response to Risankizumab therapy in Hidradenitis Suppurativa.
524	
525	
526	
527	Supplementary Figures:
528	
529	Supp Figure 1: Representative clinical photographs of response to Risankizumab therapy at
530	Week 16
531	
532	Supp Figure 2: Comparison of FSH and Total Testosterone between Responders and Non
533	responders stratified by HiSCR75 and HiSCR90.
534	
535	Supp Figure 3: Comparison of Sex Hormone Binding Globulin (SHBG); Luteinizing Hormone (LH),
536	and Body Mass Index (BMI) between Responders and Non-Responders stratified by HISCR50
537	
538	Supplementary Figure 4: Comparison of Age, Sex Hormone Binding Globulin (SHBG); Body Mass
539	Index (BMI), Luteinizing Hormone (LH), and free testosterone between Responders and Non-
540	Responders stratified by HISCR75
541	

542	Supplementary Figure 5: Comparison of Sex Hormone Binding Globulin (SHBG); Age, free
543	testosterone, Luteinizing Hormone (LH), Body Mass Index (BMI), and between Responders and
544	Non-Responders stratified by HISCR90
545	
546	Supplementary Figure 6: Principal Component Analysis demonstrating clustering of lesional and
547	perilesional tissue samples distinct from non lesional samples with highlighted associated
548	genes. Log2Fold change of genes in lesional, perilesional and non-lesional tissue compared to
549	site-matched healthy controls.
550	
551	Supplementary Figure 7: Heatmap with hierarchical clustering demonstrating discrete
552	clustering of Responders and Non-Responders to Risankizumab in Hidradenitis Suppurativa.
553	
554	Supplementary Figure 8: Representative immunohistochemistry for CD11c and IL23p19 in
555	responders and non responders to Risankizumab in Hidradenitis Suppurative. Additionally,
556	correlation between Serum FSH and Serum Testosterone with CD11c+ IHC score.
557	
558	
559	Supplementary Tables:
560	Supp Table 1: Inclusion, Exclusion Criteria
561	Supp Table 2: Table of Individual Patient Characteristics of participants
562	Supp Table 3: nCounter Human Fibrosis V2.0 Gene List
563	Supp Table 4: Data from the NOVA Trial adapted from NCT03628924

- 564 Supp Table 5: Reactome Pathway Analysis of Responders to Risankizumab Therapy
- 565 Supp Table 6: Logistic Regression analyses for HiSCR50/ HiSCR75 and HiSCR90

- 567
- 568
- 569

Variable	Total (n=26)	(HiSCR50)	P-Value	
		Responders (18/26, 69.2%)	Non-Responders (8/26, 30.8%)	
Gender n (%)	Male: 15 (57.7%) Female: 11 (42.3%)	Male 14/18 (77.8%) Female 4/18 (22.2%)	Male: 1/8 (12.5%) Female: 7/8 (87.5%)	P<0.01
Age (Median)	Median=31.5	Median= 31	Median=40	P=0.08
BMI (Median)	Median=28	Median=28	Median= 36.5	P=0.11
Insulin Resistance n, (%)	4/26 (15.4%)	4/18 (22.2%)	0/8 (0%)	P<0.001
Hurley Stage (n,%)	Hurley 2: 13/26 (50%) Hurley 3: 13/26 (50%)	Hurley 2: 7/18 (38.9%) Hurley 3: 11/18 (61.1%)	Hurley 2: 6/8 (75%) Hurley 3: 2/8 (25%)	P=0.06
Baseline IHS4 Score (Median)	42	40	41	P=0.87
Median Serum Total Testosterone	9.7nmol/L	20.3 nmol/L	1.0 nmol/L	P<0.001
Serum FSH	6.2 mIU/mL	3.2 mIU/mL	10 mIU/mL	P<0.001
Serum LH	5.45 IU/L	4.5 IU/L	16.5 IU/L	P=0.01
Serum CRP	12.3 mg/L	13.0 mg/L	11.2 mg/L	P=0.36

HiSCR50

HiSCR50

II 6ST		
6600		
CCRZ		
IL1B		
TLR4		
IL13		
MARCO		
TRAT1		
C3AR1		
\$100A12		
TNEPSE17		
CYCL9		
CACLS		
PLPP4		
МАРК9		
SYK		
CXCL11		
MMP8		
TLR6		
MS4A4A		
MVD88		
ADAM17		
ADAMIT/		
IGFI		
S100A4		
CXCR4		
NUMB		
CSF1R		
IRAK3		
CD209		
TNF		
GZMB		
MMD13		
CD244		
C0244		
FCRLZ		
IFNG		
CXCR6		
IRF8		
CCL13		

Log2 Fold Change Responders vs Non-Responders

Gene

