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Abstract

Many cases of adrenal lesions, known as adrenal incidentalomas, are discovered

incidentally on CT scans performed for other medical conditions. Whilst they are

largely benign, these lesions can be secretory and/or malignant. Therefore, early

investigation is crucial to promptly and efficiently manage those requiring interven-

tion whilst to reassuring the remaining majority in a timely manner. Traditionally,

the detection of adrenal lesions on CT scans relies on manual analysis by radiolo-

gists, which can be time-consuming and unsystematic. Using AI and deep learning,

we examined whether or not applying these technology can augment the detection

of adrenal incidentalomas in CT scans. We developed a 2.5D deep learning model

to perform image classification on 3D CT scans of patients to classify between le-

sion and healthy adrenal glands. When tested on an independent test set, our 2.5D

model obtained an AUC of the ROC curve of 0.95, and a classification sensitivity

of 0.86, and specificity of 0.89. These results suggest that deep learning may be a

promising tool for detecting adrenal lesions and improving patient care.

1 Introduction

Autopsy studies reveal a statistic that as many as 6% of all natural deaths displayed a

previously undiagnosed adrenal lesion (e.g., Kloos et al., 1995; Mansmann et al., 2004;

Anagnostis et al., 2009). Such lesions are also found incidentally (and are therefore

referred to as adrenal incidentalomas) in approximately 1% of chest or abdominal com-

puted tomography (CT) studies (e.g., Abecassls et al., 1985; Bitter and Ross, 1989;

Caplan et al., 1994; Song et al., 2008; Sherlock et al., 2020). It is estimated that these

lesions could affect up to 50,000 patients annually in the United Kingdom (UK), with

significant impact on patient health, including 10 to 15% cases of excess hormone pro-

duction, together with 1 to 5% cases of cancer (Hanna et al., 2020). It is a significant

challenge to the health care system, in a standardised way, to promptly reassure the
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majority with no abnormalities whilst effectively and promptly focusing on those with

hormone excess or cancers. Issues include: over-reporting (false positives), causing

patient anxiety and unnecessary investigations (wasting resources of the health care

system); and under-reporting (missed cases), with potentially fatal outcomes. This has

major impacts on patient well-being and clinical/cost-effectiveness.

The main aim of this study is to examine whether or not using Artificial Intelligence

(AI) can improve the detection of adrenal incidentalomas in CT scans. Previous studies

have suggested that AI has the potential in distinguishing different types of adrenal

lesions (e.g., Yi et al., 2018; Elmohr et al., 2019; Moawad et al., 2021; Kusunoki et al.,

2022). In this study, we specifically focused on detecting the presence of any type

of adrenal lesion in CT scans. To demonstrate this proof-of-concept, we investigated

the potential of applying deep learning techniques to predict the likelihood of a CT

abdominal scan presenting as ‘normal’ or ‘abnormal’, the latter implying an adrenal

lesion.

Recently, applying a standard 3D deep learning model for classification on medical

CT scans has shown some promising results (e.g., Nie et al., 2016; Kruthika et al., 2019;

Zhou et al., 2019; Singh et al., 2020). However, the acquisition of a sufficient amount of

CT scans for 3D deep learning models training is challenging (e.g., a high operating cost,

limited number of available CT scanners, and patients exposure to radiation). In many

cases, the performance of 3D deep learning models are limited by the small and non-

diversified dataset. Training, validating, and testing the model with a small dataset can

lead to many disadvantages, for example, a high risk of overfitting the training-validation

set (low prediction ability on an unseen test set), and evaluating the model performance

within the ambit of small number statistics (e.g., an unrepresentative test set can result

in the test accuracy much lower/higher than the underlying model performance).

With a small number of CT scans available in our dataset, applying a traditional 3D

deep learning model might not be the best approach due to the high dimensional com-

plexity of the input images. Instead, we applied a 2.5D deep learning model approach

in this proof-of-concept study (Section 3). A CT scan is a 3D image composed of a

number of 2D slices but it can also be transformed into multiple so-called 2.5D images

(see Section 3.1). A 2.5D image contains a small subset of adjacent 2D slices. It has

the same pixel height and width as a 2D image but can also retain some 3D features

from the original CT scan. Applying a 2.5D model allows the deep learning model to

learn from 3D features while increasing the number of training and testing data points

in this study by ≳ 43 times.

This paper is structured as follows. In Section 2, we discuss our dataset for this

study and the data pre-processing steps for this study. In Section 3, we describe our

2.5D deep learning model for adrenal lesion classification. In Section 4, we present the

performance and results of our adrenal lesion classification model. Finally, we discuss

our results and draw conclusions in Section 5.
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Table 1: A summary of the number of patients and scans contained in the dataset for this study.

Normal Abnormal

No. of patients 50 50

No. of 3D CT scans 151 83

Training Test

No. of patients 80 20

No. of 3D CT scans 194 40

No. of 2D axial slices 8340 1863

2 Materials and dataset preprocessing

All CT scan examples included in this study were provided by the University Hospitals

of North Midlands NHS Trust. The entire dataset is completely anonymised and does

not contains personal information from patients, such as the patients’ age, gender, or

ethnicity.

2.1 The dataset

The dataset contained a study of 100 anonymised patients from the University Hospitals

of North Midlands NHS Trust. 50 of these patients did not have any sign of adrenal

lesions (labelled as ‘normal’ patients), and the other 50 patients had signs of different

types of adrenal lesions (e.g., adenomas or carcinomas; labelled as ‘abnormal’ patients).

For abnormal cases, the dataset did not contain information on the location (left or

right adrenal gland) of the lesion. In total, across the 100 patients, there are 234 3D

CT scans (151 normal and 83 abnormal) considered in this study (Table 1).

All the CT scans included in this study fulfilled some general selection criteria.

Firstly, we only selected the CT scans that covered the entire adrenal glands of the

patients (both left and right adrenal glands) in all three dimensions. All the scans have

a slice thickness between 0.5 and 3.0mm, and with the same iodinated contrast density.

2.2 Region of interest

To focus on our region of interest (ROI) of this study, which is the adrenal glands of

the patients, we manually cropped the CT scans to exclude some irrelevant body parts.

The cropping applied to all three dimensions, including a 1D cropping to select the

appropriate axial slices and a 2D cropping on the axial slices (Figure 1).

As shown in Figure 1 (top left panel), the original CT scans in the dataset have a

resolution of 512× 512×N pixel, where N is the total number of slices of the original

scan. The original axial slices covered the entire axial cross-section of the patients’ body.

We selected a region of 240× 120 pixel to cover both the left and right adrenals of the

patients (Figure 1, bottom left panel). The cropping process also contained an axial

slices selection to reduce the number of slices to n (Figure 1, top right panel), where n
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Figure 1: Illustration of the cropping process to focus on the ROI. (Top left) The original 3D CT scan

with size of 512 × 512 ×N pixel; (top right) a 1D cropping to select the n number of axial slices that

covered the adrenals from the original scan; (bottom left) a 2D cropping that focus on the 240 × 120

pixel area on the axial slice that covered the adrenals; (bottom right) combining the cropping on all the

three dimensions. The result of the cropped 3D image has a size of 240× 120× n pixel.

is the number of axial slices required to at least cover the entire adrenal glands on both

sides. Within the 234 CT scans in the dataset, the value of n is ranged from 30 to 122

with a mean at ∼ 46 slides. Combining the two cropping processes, the final 3D images

that focused on our ROI have a dimension of 240×120×n pixel (Figure 1, bottom right

panel).

2.3 Training and test sets

Some patients in the dataset have records of more than one CT scan. To avoid leaking

information to/from the independent test set during the model training process, the

training and test sets are split in terms of patient instead of individual CT scan. We

retained 20% of patients in the independent test set and the rest of 80% in the main

training set (Table 1).

This resulted in 194 CT scans in the training set for model training and validation.

The remaining 40 CT scans are in the independent test set which was kept separate until

the final model performance test for this study (never involved in any model training

and validating process). There are a total 8,340 axial slices included in the training set

and 1,863 slices in the test set (Table 1).

3 2.5D deep learning model

We developed a 2.5D deep learning binary classification model to perform the adrenal

lesion detection on 3D CT scans. The definition of 2.5D images, the preparation of 2.5D

images from the 3D CT scans, the model architecture, and the model training process

for our 2.5D model is discussed in this section. We also applied a traditional 3D deep

learning model in our study for a comparison to the 2.5D model. The 3D model and its
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performance is discussed in brief in Appendix A.

3.1 2.5D images

A 2.5D image is a type of image that lies between a typical 2D and 3D image. It can

retains some level of 3D features and can potentially be processed as a 2D image by

deep learning models. A greyscale 2D image is two dimensional with a size of x × y,

where x and y are the length and width of the 2D image. And for a greyscale 3D image

(e.g., a CT scan), with a size of x × y × n, it can be considered as a combination of a

stack of n number of greyscale 2D images. The size of a 2.5D image is x × y × 3, and

it represents a stack of 3 greyscale 2D images.

Typically, an extra dimension of pixel information is required to record and display

2D colour images in electronic systems, such as the three RGB (red, green, and blue)

colour channels. This increases the size of a 2D image to x×y×3, where the 3 represents

the three RGB channels. Many commonly used families of 2D deep learning algorithms

(e.g., VGG, ResNet, DenseNet, and EfficientNet: Simonyan and Zisserman, 2015; He

et al., 2016; Huang et al., 2016; Tan and Le, 2019) have taken colour images into account

and have the ability to process images with the extra three channels. Taking advantage

of the fact that pixel volumes have the same size between 2D colour images and 2.5D

images, converting our CT scans data to 2.5D images can allow us to apply 2D deep

learning models on our images.

Figure 2 demonstrates the concept of preparing a set of 2.5D images from a 3D CT

scan. To generate a 2.5D image, we simply assembled three consecutive axial slices of

the CT scan (e.g., slice 1, 2 and 3). This allowed us to generate n number of 2.5D

images from a CT scan which has n axial slices (from a 2.5D image containing slice 1,

2, and 3 to slice n−2, n−1, and n). This provided a total number of 8,340 2.5D images

in the training set and 1,863 in the independent test set. The binary labels (abnormal

and normal) of all the 2.5D images are assigned the same as the ground truth labels

from their associate CT scans in the dataset.

3.2 Model architecture and training process

The backbone architecture for our deep learning model is a 2D convolutional neural

network (CNN). We use the EfficientNet family (Tan and Le, 2019) architecture for the

images features extraction. The model version used in this study is EfficientNetB1. We

applied transfer learning and used the pre-trained ImageNet (Russakovsky et al., 2015)

weight of EfficientNetB1 to train the classification model on our training set.

Each 2.5D image in the training set was processed through an image augmentation

layer before feeding into the EfficientNetB1 model. This image augmentation process

contained a set of augmentation parameters, including a random rotation (between

±0.05π), random spatial zoom (zoomed in by a range of 20%), random coarse dropout

(randomly dropping pixels with a probability between 0 and 0.1, e.g., DeVries and

Taylor, 2017), and random contrast (with a random contrast factor, fcont, between 0.8

and 1.2). For each original pixel value, xorig, the new pixel value, xnew, from the random
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Figure 2: Illustration of the concept on generating a set of 2.5D images from a 3D CT scan (with n

axial slices). The number coloured in green represent the axial slice number of the CT scan.

contrast augmentation is calculated by

xnew = fcont (xorig − x̄) + x̄, (1)

where x̄ is the mean pixel value of the image slice (before augmentation).

The features extracted by EfficientNetB1 was then averaged out by a 2D global-

average-pooling operation, and fed into a fully-connected layer (with random dropout

rate of 0.2). The output layer of the model uses a softmax activation function to give

the probabilities of the two classes (‘abnormal’ and ‘normal’).

The dataset (Table 1) shows a mild imbalance between the two classes in the training-

validation set with a ratio of ∼ 1 : 1.8 abnormal-to-normal. This imbalance of classes

should cause no significant deterioration to our model performance, however, we still

includeed the class weighting in our training process.

We performed a 5-fold cross validation on our training set in the model training

process. To prepare the 5-fold cross validation, we randomly split the patients in the

training set into the five subsets. For each fold, we trained a model using one of these

five subsets as the validation set and the other four subsets were combined into the

training set (the training-validation ratio of 80% : 20%). Each subset is used once (but

not more than once) as a validation set in the training process.

3.3 Model classification

3.3.1 Classifying 2.5D images

The classification of a 2.5D image is achieved by combining the five independent (fold-1

to fold-5) models trained during the 5-fold cross validation process. For each single

independent model, the model prediction is calculated and provided in the form of
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classification probability of abnormal, Pabn. We considered the 2.5D images as abnormal

if the majority (⩾ 3 out of 5 independent models) of the 5-fold models has Pabn ⩾ 0.5,

and classified as normal if the majority have Pabn < 0.5.

It is worth mentioning that having weak adrenal lesion signals (low value of Pabn)

on the majority of the 2.5D images does not necessarily mean that the CT scan and

the patient are classified as normal. In a cropped CT scan that covers the whole two

adrenal glands, the lesion(s) might only be visible only on few axial slices (therefore on

few 2.5D images). A further adjustment of the 2.5D model is needed to provide a more

comprehensive prediction in the unit of CT scans (Section 3.3.2).

3.3.2 Classifying 3D CT scans

To perform a binary classification in the unit of CT scans (instead of a single 2.5D

image), all the classification results (from the 5-fold cross validation) of the 2.5D images

that were generated from their associated CT scan are considered. To connect the

classification prediction results from the 5-fold cross validation model and the CT scan,

we introduced an operating value for our model to provide the final classification. The

CT scans are classified as normal if the number of 2.5D images with Pabn ⩾ 0.5 is lower

than the threshold operating value (in percentage). For example, if the operating value

is defined to be Xov, a CT scan will be considered as normal if there are > Xov of its

2.5D images classified as normal by the 5-fold model.

The operating value Xov is obtained by comparing the 2.5D model prediction on

the training set. Using the 2.5D model prediction on the training set and applying

different Xov (ranging from 0 to 100%), the overall accuracy for the CT scan prediction

can be calculated. The final value of Xov is chosen by the value that provides the best

accuracy in the binary classification in the unit of CT scan. The best value of Xov are

then embedded to our model to give the final classification in the unit of CT scans.

4 Performance and results

Our independent test set contains 40 CT scans (Section 2.3 and Table 1) from patients

that are excluded from the training set and the 5-fold cross validation process. There

are 19 normal CT scans and 21 abnormal CT scans in this test set, which gives a

prevalence of 0.525 on our test set1. In total, there are 1,863 2.5D images generated

from the test set (Section 3.1), 805 of them are labelled as normal and 1,058 are labelled

as abnormal. The 95% confidence interval (CI is used to represent the 95% confidence

interval hereafter) are calculated using bootstrapping with 5,000 resamples.

For the classification in the unit of 2.5D images (Section 3.3.1), the prediction result

of the 5-fold cross validation modal are shown in Figure 3. The AUC (area under

curve) of the ROC (receiver operating characteristic) curve is 0.92 (CI: 0.91 − 0.93).

The classification gives a sensitivity of 0.71 (CI: 0.68− 0.74) and specificity of 0.92 (CI:

0.90− 0.94) when considering the Pabn ⩾ 0.5 as the abnormal threshold.

1The value of prevalence presented here represent only the distribution of our independent test set,

and has no direct correlation to the prevalence of adrenal lesion in any wider population.
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Figure 3: Performance of the 2.5D model on the independent test set. (a) The confusion matrix of

the classification in the unit of 2.5D image. The true label is the ground-truth from the dataset, and

the predicted label is the classification prediction from our 2.5D model. (b) The ROC curve of the

2.5D model. The AUC of the ROC curve is 0.92. The dashed line represents a trivial model (random

guessing).

Figure 4 shows three classification examples in our test set by ‘naively’ setting Xov =

50%. The example scan 1 and 2 (left and middle panels of Figure 4) show two correctly

classified scans, where scan 1 (ground truth: normal) has almost all 2.5D images with

Pabn < 0.5 and scan 2 (ground truth: abnormal) has a majority (> 50%) of 2.5D images

with Pabn ⩾ 0.5. However, scan 3 (ground truth: abnormal) was wrongly classified as

normal because most of the 2.5D images have Pabn < 0.5. As mentioned in Section

3.3.1, the adrenal lesion might only be covered by a few slices, setting a naive value of

Xov = 50% can lead to under-performance of the model.

Applying the right value of Xov can improve the model performance in classifying

the 3D CT scans. The best operating value of Xov for our model was computed by

applying the 2.5D model on the training-validation set (Section 3.3.2). To avoid leaking

data to the independent test set, this process of finding the best Xov only obtained from

the training-validation set and never calculated from the test set. Figure 5 shows the

relative accuracy of the model prediction on the 3D scans with different Xov (ranging

from 0 to 100%). The relative accuracy peak at Xov ≈ 23.8%. This represents if 23.8%

of 2.5D images from the CT scan have Pabn ⩾ 0.5, that CT scan would be classified as

abnormal by our model.

Figure 6 shows the final 2.5D model classification performance (in the unit of CT

scans). The value of Xov = 23.8% is adopted in the model to perform this set of

classification. The AUC of the ROC curve is 0.95. The classification gives a sensitivity

of 0.86 and specificity of 0.89. The positive predictive value (PPV) has a value of 0.9

while the negative predictive value (NPV) has a value of 0.85.
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Figure 4: Three sample CT scans from the independent test set and the model prediction of them. The

line plots show the prediction probability of being abnormal Pabn of the 2.5D images of the CT scans.

Each data point (marked in dot) represents the value of Pabn for a 2.5D image. The sub-table on the

upper panel listed the ground truth and model classification labels (with Xov = 50.0% and 23.8%) of the

three scans. The lines coloured in blue (scan 1 and 2) represent the classification model gives a correct

classification (with both values of Xov). The line coloured in red (scan 3) represents the classification

model gives at least one wrong classification (the wrong classification when adopting Xov = 50.0%).

Figure 5: The variation between the operating valueXov and the relative training-validation set accuracy

of the classification in the unit of CT scans. The accuracy peaks (relative accuracy = 1) at Xov = 23.8%.

5 Discussion

We have presented the results of using deep learning models to detect adrenal lesions

in CT scans. This examines whether or not whether or not adrenal lesions can be

detected in CT scans by applying a 2.5D deep learning technique. Our approach to

developing this proof-of-concept model was to train a deep learning model to perform

image classification on patients’ CT scans, applying a 2.5D image transformation, to

determine if the CT scans are capturing lesional (abnormal) or healthy (normal) adrenal

glands.

The dataset used in this study contains 100 patients from the University Hospitals of

North Midlands NHS Trust. The ratio between abnormal and normal patients is 1 : 1,

and the ratio of abnormal and normal CT scans contained in the dataset is ∼ 1 : 1.6

(since multiple CT scans can be performed per patient). After applying the selection
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Figure 6: Performance of the 2.5D model on the independent test set (similar to Figure 3 but in the unit

of CT scans instead of 2.5D images). (a) The confusion matrix of the 2.5D model (with Xov = 23.8%)

in the unit of 3D image. The true label is the ground-truth from the dataset, and the predicted label

is the classification prediction on the CT scans from our 2.5D model. (b) The ROC curve of the 2.5D

model on CT scans. The AUC of the ROC curve is 0.95. The dashed line represent a trivial model

(random guessing).

criteria (scans covering the whole adrenal glands, have a slice thickness between 0.5 and

3.0mm, and have the same iodinated contrast density), there are 234 CT scans available

in our dataset. We retained 20% of patients (20 patients with 40 CT scans in total)

in our independent test set, which was only used for reporting the model performance

in this paper (completely unseen for the model training, validation, and the process of

calculating the operating value). Furthermore, we manually cropped the selected CT

scans to our region of interest (adrenal glands on both sides of the patient). This 3D

cropping gave a volume of 240 × 120 × n pixel that covered the two adrenal glands in

all three dimensions.

To prepare the images for our 2.5D deep learning approach, we preprocessed all the

selected CT scans further by transforming them to a set of 2.5D images. Each cropped

CT scan with n axial slices can generate n number of 2.5D images, and each 2.5D image

has a volume size of 240 × 120 × 3 pixels. In total, there are 8,340 2.5D images in

our training set and 1,863 in the independent test set. Technically, the 2.5D images

generated are a type of 3D images but only have an image depth (axial slices in this

case) of 3. The three slices contained in a 2.5D image are three consecutive slices of

their CT scan, where some 3D features are retained.

We developed our 2.5D deep learning model using EfficientNetB1 as our base archi-

tecture. Although EfficientNetB1 is a 2D CNN, it has the ability to process our 2.5D

images because the CNN itself is designed for processing images with an image depth

= 3 (commonly it applies on the three channels for the RGB colour of 2D images). Dur-

ing the training phase, we performed a 5-fold cross validation process on the training set

data. A set of image augmentation processes was also applied to the training samples

on each fold.
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Moreover, we also computed that the best operating value is at Xop = 23.8% from

the training set. This threshold means that a CT scan is classified as abnormal if more

than 23.8% of the 2.5D images are predicted to be abnormal (with Pabn ⩾ 0.5). The

reason why this Xop threshold was applied is due to the nature of many adrenal lesions

only appearing on a small number of axial slices within the whole CT scan. Naively

setting Xop = 50% might not truly reflect the underlying performance of the model and

lead to missing many abnormal scans (a high number of false negatives).

Applying the 5-fold model of 2.5D image classification on the independent test set

gives the AUC of the ROC curve of 0.92, sensitivity of 0.71, and specificity of 0.92.

Compared with the values of AUC and specificity, the value of sensitivity is relatively

low. It is mainly caused by the high number of false negative predictions. One of

the reasons that induced this high number of false negative is due to the labelling of

the 2.5D images. In our dataset for this study, the only ground truth labels are the

binary labels (abnormal and normal) in the unit of CT scans, and the locations of the

adrenal lesions are completely unknown within the scans. As we assigned to the 2.5D

images the same labels as given by the CT scan, and the adrenal lesion might not affect

the whole adrenal glands (lesions visible only on a few axial slices within the cropped

scans), many 2.5D images were labelled as abnormal but did not carry signals of adrenal

lesions. This resulted in some 2.5D images that were taken from an abnormal CT scan

actually being correctly predicted to be normal because they do not carry signals of

adrenal lesion, and covered only a normal region of an abnormal patient. Despite this

introducing some extra noise (due to the limitation of the dataset), the presented model

and its performance still managed to demonstrate a satisfactory level of ability to classify

between abnormal and normal in the unit of 2.5D images.

Adopting Xop = 23.8% (value calculated only from the training set and completely

independent from the test set) on the final 3D CT scan classification can reduce the

impact caused by the data noise mentioned above. This set a higher threshold for

classifying a CT scan as abnormal (from the overall prediction of all its 2.5D images).

In the unit of CT scans, our classification model yields a sensitivity = 0.86, specificity

= 0.89, PPV = 0.9, NPV = 0.85, and an AUC of the ROC curve of 0.95 on the

independent test set.

Comparing to a traditional 3D CNN model (Appendix A), our 2.5D model gives

a better performance when tested on the same data. One of the drawbacks of using

traditional 3D CNN models in this study is the small number of samples in our dataset.

The performance result presented in Appendix A suggested that training such 3D CNN

models with only 194 3D image samples might be difficult for the model to achieve a good

performance. Using a 2.5D model approach has several advantages which improve the

model predictive performance in this study. One of the advantages is the increase of the

number of data points for model training (from 194 CT scans to 8,340 2.5D images).

The evaluation of the test performance can also benefit from an increase number of

data points in the test set (from 40 CT scans to 1,863 2.5D images). Furthermore, the

backbone of the 2.5D model is a 2D CNN, which is smaller in size and less demanding

on computer resources than a 3D CNN. It also allows the model to access a wider
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knowledge base (ImageNet, Russakovsky et al., 2015) through transfer learning for the

model training.

We performed a proof-of-concept study using a 2.5D deep learning classification

model to detect adrenal lesions on 3D CT scans. The results and performance of our

2.5D deep learning model demonstrate the ability and potential of applying such deep

learning techniques on detecting adrenal lesions on CT scans. It also shows an oppor-

tunity to detect adrenal incidentalomas using deep learning. Nonetheless, we are aware

that the proof-of-concept study presented in this paper is subject to some limitations.

A small dataset from a non-diversified source may work well for the proof-of-concept

but developing more robust prediction models can be difficult with datasets of this size.

Acquiring extra information about the CT scans (e.g., the location of the lesions) in

the dataset can also help to improve the model training by reducing the data noise.

In future work, we will consider training an automated cropping tool to focus on the

region of interest (adrenal glands), augmenting the dataset (increase the number of

samples and improve the diversity of the data sources) and apply different training

processes to improve the model robustness (e.g., knowledge distillation, Hinton et al.,

2015). Further follow-up study will be conducted to advance our current model beyond

a proof-of-concept.
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Appendix A 3D deep learning model

Alongside to the 2.5D model (Section 3), we also investigated the approach of applying

a 3D CNN to our use case.

A.1 Data and the 3D model

Following the same 3D images acquisition procedure described in Section 2, we have 234

3D CT images (cropped to focus on the ROI) available for the 3D model training and

testing (same as the examples considered in the main body of this paper: 194 images

in the training set and 40 images in the independent test set).

Throughout the dataset, the minimum number of axial slices required to cover the

entire adrenal glands on both side, nmin, is 30. To avoid any upsampling on the 3D

images, we downsampled all the images in the dataset to a size of 240× 120× 30 pixel

for the 3D model training and testing.

The base architecture of our 3D deep learning model is a 3D residual network model

(3D ResNet). The 3D ResNet model adopted in this study follow the architecture

suggested by Solovyev et al. (2022), which transformed to 3D based on the original

2D ResNet model family (He et al., 2016). For the model training and performance

testing demonstrated in this appendix, the 3D ResNet34 was chosen as the kernel model

architecture.
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Figure 7: Similar to Figure 6 but for the performance of the 3D CNN model on the independent test

set. (a) The confusion matrix of the 3D model. (b) the ROC curve of the 3D model. The AUC of the

ROC curve is 0.79.

The features extracted by the 3D ResNet34 are then averaged out by a 3D global-

average-pooling operation, and fed into a fully-connected layer (with random dropout

rate of 0.4). The output layer of the model uses a softmax activation function to give

the probabilities of the two classes (‘abnormal’ and ‘normal’).

For the model training, we retained 20% of patients in the training set to be our

validation set. The model was then trained on the remaining 80% of patients in the

training set and the classification performance on the validation set was monitored. The

final model weights are the set of parameters that provide the smallest validation loss

during this 3D model training.

A.2 Classification performance

The performance of the 3D classification model were tested on the independent test

set (same test set for the 2.5D model performance test used in Section 4). Our 3D

model has a moderate overall performance on the test set, providing an AUC-ROC of

0.79 (Figure 7) and a 95% CI at 0.64 and 0.91. For the classification predictions, we

consider a CT scan to be an abnormal case if the prediction of the abnormal probability

Pabnormal ⩾ 0.5. This resulted in a sensitivity of 0.62 and specificity of 0.68 (see also

the confusion matrix of this classification in Figure 7).
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