Multicenter analysis of atrioesophageal fistula rates before and after adoption of active esophageal cooling during atrial fibrillation ablation ================================================================================================================================================ * Javier Sanchez * Christopher Woods * Jason Zagrodzky * Jose Nazari * Matthew Singleton * Amir Schricker * Annie Ruppert * Babette Brumback * Benjamin Jenny * Charles Athill * Christopher Joseph * Dipak Shah * Gaurav Upadhyay * Erik Kulstad * John Cogan * Jordan Leyton-Mange * Julie Cooper * Kamala Tamirisa * Samuel Omotoye * Saroj Timilsina * Alejandro Perez-Verdia * Andrew Kaplan * Apoor Patel * Alex Ro * Andrew Corsello * Arun Kolli * Brian Greet * Danya Willms * David Burkland * Demetrio Castillo * Firas Zahwe * Hemal Nayak * James Daniels * John MacGregor * Matthew Sackett * Michael Kutayli * Michel Barakat * Robert Percell * Spyridon Akrivakis * Steven C. Hao * Taylor Liu * Ambrose Panico * Archana Ramireddy * Daniel Benhayon Lanes * Edward Sze * Greg Francisco * Jose Silva * Julia McHugh * Kai Sung * Leon Feldman * Nicholas Serafini * Raymond Kawasaki * Richard Hongo * Richard Kuk * Robert Hayward * Shirley Park * Andrew Vu * Christopher Henry * Shane Bailey * Steven Mickelsen * Taresh Taneja * Westby Fisher * Mark Metzl ## ABSTRACT **Background** Active esophageal cooling reduces the incidence of endoscopically identified severe esophageal lesions during radiofrequency (RF) catheter ablation of the left atrium for the treatment of atrial fibrillation. No atrioesophageal fistula (AEF) has been reported to date with active esophageal cooling, and only one pericardio-esophageal fistula has been reported; however, a formal analysis of the AEF rate with active esophageal cooling has not previously been performed. **Methods** Atrial fibrillation ablation procedure volumes before and after adoption of active cooling using a dedicated esophageal cooling device (ensoETM, Attune Medical) were determined across 25 hospital systems with the highest total use of esophageal cooling during RF ablation. The number of AEFs occurring in equivalent time frames before and after adoption of cooling were then determined, and AEF rates were compared using generalized estimating equations robust to cluster correlation. **Results** Throughout the 25 hospital systems, which included a total of 30 separate hospitals, 14,224 patients received active esophageal cooling during RF ablation, with the earliest adoption beginning in March 2019 and the most recent beginning in March 2022. In the time frames prior to adoption of active cooling, a total of 10,962 patients received primarily luminal esophageal temperature (LET) monitoring during their RF ablations. In this pre-adoption cohort a total of 16 AEFs occurred, for an AEF rate of 0.146%, in line with other published estimates of <0.1% to 0.25%. No AEFs were found in the cohort treated after adoption of active esophageal cooling, yielding an AEF rate of 0% (P<0.0001). **Conclusion** Adoption of active esophageal cooling during RF ablation of the left atrium for the treatment of atrial fibrillation was associated with a significant reduction in AEF rate. ## Introduction The treatment of atrial fibrillation (AF) using pulmonary vein isolation (PVI) involves risks to collateral structures, including the esophagus.[1-4] Esophageal injuries include ulceration, hematoma, spasm, disorders of esophageal motility, and atrioesophageal fistula (AEF). [5-9] AEF has a high mortality rate, with the latest data suggesting a survival rate of 64.7% with surgery, 31.0% with endoscopic repair, and 2.8% with medical therapy alone.[10] Despite the use of temperature sensors for luminal esophageal temperature (LET) monitoring, esophageal deviation devices, or technological advances such as contact force measuring catheters, the incidence of AEF does not appear to be decreasing,[11-13] with incidence rates for AEF estimated to range from 0.1% to 0.25%,[2] but possibly higher.[14] These estimates may reflect underreporting the true incidence as well.[10] Methods used to mitigate the risk of AEF include reducing ablation energy applied to the left atrium posterior wall, monitoring esophageal temperature [15-17], and mechanically displacing the esophagus.[18] Despite the long-standing uncertainty of its benefits [15-17, 19, 20] and the recent clinical studies demonstrating either no benefit or trends towards harm with its use, LET monitoring is still widely used.[21-23] Active esophageal cooling using a dedicated esophageal cooling device is a newer technique that has shown benefits in preclinical studies, mathematical modeling, and clinical studies.[24-34] An international multicenter randomized controlled trial is currently underway ([NCT04577859](http://medrxiv.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04577859&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom)), but this study relies on the surrogate endpoint of endoscopically detected esophageal lesion (EDEL) reduction. Because an event rate of <1% requires an extremely large sample size, no study to date has evaluated the effectiveness of any strategy in reducing AEFs. We therefore sought to perform the first study of active esophageal cooling sufficiently powered to determine the efficacy of this technique in reducing AEF formation. ## Methods ### Study Design This was a retrospective review of data from 25 hospital systems to quantify the effect of active esophageal cooling by (1) measuring AEF rates across hospital systems with the highest use of this method, and then (2) comparing these rates before and after the adoption of active esophageal cooling. The 25 hospital systems included a total of 30 separate hospitals. With central IRB review and additional approvals as required by each hospital site, data were extracted by site investigators to determine the total number of RF catheter ablations performed for the treatment of atrial fibrillation over the study time frame and the number of AEFs that occurred over this time frame. Methods used to determine these data included review of electrophysiology lab registries, the Electronic Medical Record, other recorded sources of patient follow-up (cardiology clinic records, hospital-based registry, e.g.), device shipment records, and inquiries to physician operators and laboratory managers. ### Study Time Frame The time frame of review at each site was based on the date of adoption of active esophageal cooling, such that an equivalent time before and after adoption was analyzed. The cutoff for observation across all sites was December 2022, such that the time frame of observation was from adoption forward to December 2022 and from adoption backward for an equivalent number of months. For example, in the case of a site adopting esophageal cooling into practice in May 2021, the time frame studied included a minimum of 38 months, with the 19 months from May 2021 to December 2022 consisting of the cohort of patients treated with active esophageal cooling, and the equivalent time frame of 19 months prior to adopting active esophageal cooling into practice consisting of the cohort of patients treated with alternative esophageal protective strategies (primarily LET monitoring). Data from each site were obtained by electrophysiologist physicians, research assistants, and cardiology or electrophysiology fellows. ### Study Population Patients undergoing RF catheter ablation for the treatment of AF over the time frame of analysis across 25 hospital systems were included in this study. Most hospital systems consisted of a single hospital, three systems consisted of two hospitals, and one system consisted of three hospitals at which RF catheter ablations were performed. The 25 hospital systems that had the highest number of cases completed with active esophageal cooling (irrespective of when adoption occurred) were determined from data obtained from the manufacturer of the esophageal cooling device and verified by hospital staff on each site. ### Study Device In all patients treated with active esophageal cooling, the cooling was achieved with a dedicated esophageal cooling device (ensoETM, Attune Medical, Chicago, IL). This device is a multi-channel silicone tube that is inserted into the esophagus in a manner similar to a standard orogastric tube (Figure 1). The device is connected to a temperature-controlled heat-exchanger that circulates water through the closed-loop system of the device. This makes it possible to control the temperature of the esophagus by adjusting the temperature of the circulating water. For cooling applications, a water temperature of 4 °C is used. The device replaces the standard orogastric (OG) tube typically placed in patients during anesthesia and replaces the temperature probe that would be placed to perform LET monitoring. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/02/23/2023.02.21.23286267/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2023/02/23/2023.02.21.23286267/F1) Figure 1. An active esophageal cooling device shown in place in the esophagus, with endotracheal tube shown in place in the trachea (with permission). ### Statistical Analysis AEF event rates were determined by quantifying at each site the total number of patients treated over the pre- and post-cooling time periods. These event rates were then compared by using a risk difference computed with the use of generalized estimating equations with a linear link and independent working correlation structure. This targets overall rates that weight medical centers by caseload and adjusts for correlation of pre- and post-measures. The null hypothesis is that the risk difference is zero, which was tested with a two-sided level 0.05 hypothesis test. The estimated risk difference compares the AEF event rate in the pooled treatment (post-adoption) group with the AEF event rate in the pooled control (pre-adoption) group; the generalized estimating equations methodology adjusts the standard error of this estimate for possible correlation within medical centers of pre- and post-measures. A sensitivity analysis was then conducted by assuming missed AEF events and determining the impact of missed events on the statistical significance of the difference between groups. For this analysis the most conservative approach was taken, with all missing events assumed to come from the cohort of patients treated with active esophageal cooling. ## Results ### Site Characteristics The earliest adoption of active esophageal cooling across the 25 hospital systems occurred in September 2018 and the most recent in March 2022. Procedure volumes for RF catheter ablation of the left atrium at each hospital system ranged from 6 to 44 per month, with a mean procedure volume per month of 19.4 ± 10.7 (Figure 2). ![Figure 2.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/02/23/2023.02.21.23286267/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2023/02/23/2023.02.21.23286267/F2) Figure 2. Histogram of procedure volume per month at each hospital system. Bar height represents the number of sites performing the procedure volume per month represented by position on the x-axis. ### Procedure Volumes The number of patients treated with active esophageal cooling at each hospital system ranged from 212 to 1700. In total, 14,224 patients were treated with active esophageal cooling during RF catheter ablations across the 25 hospital systems over the post-adoption time frame. In the time frame prior to adoption of active cooling, a total of 10,962 patients received RF catheter ablation for the treatment of AF. Most of these patients received LET monitoring during their RF ablations, using either single or multi-sensor temperature probes; a smaller subset also received esophageal deviation. ### Procedure Characteristics The general procedures utilized by operators at the study sites reflect those of most centers performing left atrial catheter ablation in the United States. Patients were treated under general anesthesia for their ablation procedure. Electrophysiologists performed primarily wide area circumferential pulmonary vein isolation with additional posterior wall isolation, as well as mitral isthmus lines and cavotricuspid isthmus lines dependent on physician practice. Anticoagulation was administered with a heparinized target activated clotting time typically ranging from 300 to 350 seconds. Most sites utilized either the CARTO® mapping system (Biosense Webster, Inc., Diamond Bar, CA) or the EnSite Precision™ cardiac mapping system (Abbott, Abbott Park, IL) to obtain electroanatomical maps and create a three-dimensional geometry. Intracardiac echocardiography was used by almost all sites, as was an irrigated ablation catheter with contact force sensing, such as the ThermoCool® SmartTouch® Surround Flow (STSF) catheter (Biosense Webster, Inc., Diamond Bar, CA) or the TactiCath™ Contact Force Ablation catheter (Abbott, Abbott Park, IL). Power settings ranged from 30 W to 50 W, with most operators (approximately 70%) utilizing high power short duration settings (40 W to 50 W) for ablation. When utilized, a Visitag Surpoint® ablation index (Biosense Webster, Inc.) of 350 to 400 units on the posterior wall, and 450 to 550 units on the anterior wall, lateral wall, and septum was targeted. Similarly, a Lesion Index (LSI) between 4.5 and 5 posteriorly, and between 5.5 and 6 anteriorly was generally targeted. No specific changes of equipment or ablation technique at the time of adoption of esophageal cooling were reported by sites; however, a number of operators report performing more frequent posterior wall ablation after adopting cooling. ### AEF Events In the cohort of patients treated across the 25 systems prior to the adoption of active esophageal cooling, a total of 16 AEFs occurred, yielding an AEF rate of 0.146%. In the cohort of patients treated after adoption of active esophageal cooling, no AEFs were identified, representing an AEF rate of 0%, and a statistically significant difference between groups (P<0.0001). Figure 3 depicts these results, with the middle column showing the date of adoption for each site, each row representing one of the 25 different hospital systems, and the length of the horizontal bars representing the number of months before and after adoption of active esophageal cooling. At the left and right ends of each bar is a numerator of the number of AEFs and denominator of the number of RF catheter ablations performed. Each “x” represents the approximate time of occurrence of an AEF. ![Figure 3.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/02/23/2023.02.21.23286267/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2023/02/23/2023.02.21.23286267/F3) Figure 3. Graphical representation of AEF rates. Middle column shows the date of adoption for each site, with each row representing one of the 25 different hospital systems, and the length of the horizontal bars representing the number of months before and after adoption of active esophageal cooling. At the left and right ends of each bar is the numerator of the number of AEFs and the denominator of the number of RF catheter ablations performed, with “x” marks indicating the approximate time each AEF occurred. Abbreviation: AEF - atrioesophageal fistula. ### Sensitivity Analysis A sensitivity analysis was conducted, adding missed AEFs only to the cohort of patients treated with active esophageal cooling (the most conservative approach). Using our generalized estimating equations approach with an independent working correlation structure, the point estimate of the risk difference remains the same no matter to which hospital systems we add the missed AEFs. However, the standard error for the comparison would be larger if the added AEFs were concentrated in a single site, or in a smaller number of sites, than if they were spread across all the sites. Furthermore, it would be larger if the added AEFs were in sites with smaller caseloads. Statistical significance using a threshold for type I error of 0.05 is maintained upon adding up to 5 missed AEFs at a single site (large or small) or up to 9 missed AEFs spread across the largest sites. ## Discussion In this largest study to date on the effectiveness of any technique to reduce the incidence of AEF after left atrial ablation for the treatment of AF, we found that the adoption of active esophageal cooling was associated with a large clinically and statistically significant decrease in AEF rates. This is also the first study to systematically estimate AEF rates using more rigorous methods than have previously been employed, overcoming the limitations inherent in anonymous surveys and avoiding the constraints of existing large databases. Large databases such as the National Inpatient Sample (NIS), the Nationwide Readmissions Database (NRD), and the National Hospital Ambulatory Medical Care Survey (NHAMCS) are limited by reliability concerns and the lack of specific diagnosis codes for AEF.[5, 35] In contrast, our study relied on actual operators and hospital staff reviewing their own hospital system data, and involved a more detailed analysis than previously attempted, utilizing a population of over 25,000 ablation cases. Preclinical data as well as mathematical modeling support the findings of a significant effect size, with a dose-response effect of coolant temperature shown in a large animal model,[24] and a significant reduction of lethal isotherm formation in the esophagus shown with mathematical models.[33, 36] Although randomized clinical studies have shown reductions in severe esophageal lesions with active esophageal cooling,[31, 37, 38] the effect sizes seen were not such that the findings of no AEF in our large population sample would be expected. Downstream effects on inflammatory markers (which are well-described in the burn literature) [39-41] may be another mechanism involved in reducing the likelihood of fistula formation with cooling. Insulating effects from the pericardial fat, fibrous pericardium, and serous layers minimize cooling in the atrial myocardium so that effective lesions can still be placed,[33] with long-term follow up data confirming no decrease in freedom from atrial arrhythmias at one year with active esophageal cooling compared with LET monitoring.[32] A larger volume of retrospective data further suggests improvement in freedom from arrhythmias with cooling,[42] which may be due to differences in lesion placement sequence with the catheter, enabled by having cooling in place.[43, 44] To date, no AEF has yet been identified in a patient treated with active esophageal cooling using a dedicated esophageal cooling device, and only a single pericardio-esophageal fistula has been reported despite over 22,000 RF catheter ablations now completed using this cooling device.[45] Pericardio-esophageal fistula is a rare, and less severe, subset of fistula formation.[46] Analysis of this event suggests higher total energy was deposited over the esophagus than is typical, with higher ablation index targets on the posterior wall than the commonly used 380-400 units, and lesions stacked near the esophagus, which has recently been suggested to increase risk of injury.[33, 47-51] This may serve to emphasize that, like most technologies employed for safety, there may be limitations in the protective capabilities of cooling. Complications from the esophageal cooling device itself have been infrequent, with most occurring during long-term use for critical care patients (where durations of use extend well beyond 24 hours).[52-54] New technologies may arrive that further reduce the risk of AEF, such as irreversible electroporation, or pulsed field ablation (PFA); however concerns remain about both the long-term efficacy of procedures utilizing PFA,[55, 56] as well as growing awareness of risks emerging with PFA, including stroke, acute coronary artery spasm, and delayed arterial injury via neointimal hyperplasia and medial fibrosis resulting in arterial stenosis.[57-59] Moreover, reports of fistula formation after irreversible electroporation are abundant in the oncology literature, which raises the question of whether PFA can actually eliminate the risk of AEF.[60-68] As such, the importance of technologies that may reduce this dreaded complication remains high. ## Limitations The specific approach to data collection at each site was not standardized, and different methods of determining event rates at different sites were inevitable; however, at each site, the same approach was used for the entirety of the time frame studied (both before and after adoption of cooling), which may serve to limit significant bias in the data. In three of the 25 hospital systems included in this analysis, some physician operators did not adopt esophageal cooling at the same time, did not use cooling with the same consistency, or had not yet adopted cooling. All cases for which active esophageal cooling was used, as well as all cases of AEF regardless of adoption status, were nevertheless included in this analysis. Additional factors that could influence the rate of AEFs have not been explicitly quantified in this analysis; however, the time frames included are recent enough that major changes in technology or ablation technique have not occurred. Operators have generally been using predominantly higher power, shorter duration ablation settings, and using contact-force sensing irrigated radiofrequency ablation catheters with the same Ablation Index or Lesion Index targets during the time frame evaluated. Likewise, over this time frame, no significant secular trend in AEF rates has occurred.[10-13, 69, 70] Moreover, comorbidities such as congestive heart failure, coronary artery disease, lung disease, chronic kidney disease, and age have increased significantly among patients undergoing AF ablation,[5] which may further increase the likelihood of adverse events in the more recently treated population (which includes those in the post-adoption cohort that received esophageal cooling).[7, 71] Operator-specific practice changes, particularly after experiencing an AEF, may alter the risk of a subsequent AEF; however, most sites (64%) in this study had not experienced an AEF before adopting cooling. ## Conclusion Adoption of active esophageal cooling during RF ablation of the left atrium for the treatment of atrial fibrillation was associated with a significant reduction in AEF rate. ## Data Availability Data are available upon reasonable request. ## Footnotes * Disclosures: Christopher Woods: Consulting for Abbott, Research funding from Biosense Webster, Equity in Inheart Medical, Intellectual property with Attune Medical; Jason Zagrodzky: Consulting for Biosense Webster and Attune Medical; Matthew Singleton: Consulting for Biosense Webster; Babette Brumback: Consulting for Attune Medical; Charles Athill: Consultant for Abbott, Boston Scientific, Biosense Webster, and Acutus, Speaker for Zoll; Christopher Joseph: Internship with Attune Medical; Dipak Shah: Consulting for Abbott, Janssen Pharmaceuticals; Erik Kulstad: Equity and employment in Attune Medical; Gaurav Upadhyay: Consulting for Abbott, Biotronik, Boston Scientific, Medtronic, Philips BioTel, and Zoll Medical; John Cogan: Consulting for Abbott and Biosense Webster; Julie Cooper: Support for data acquisition from Attune Medical; Kamala P. Tamirisa: Speaking for Abbott, Medtronic, Consultant for Sanofi; Apoor Patel: Consulting for Biosense Webster; Brian Greet: Consulting for Medtronic; John F. MacGregor: Research for Boston Scientific; Robert L. Percell: Speaker’s bureau for Abbott, Janssen; Steven C. Hao: Consultant for Rampart IC; Ambrose Panico: Consulting for Abbott, Impulse Dynamics; Steven R. Mickelsen: Consulting for Field Medical, Atraverse Medical, Attune Medical; Mark D. Metzl: Consulting for Abbott, Biosense Webster, Attune Medical, Medtronic, Sanofi Aventis, and Philips. All others: No relevant disclosures. * Received February 21, 2023. * Revision received February 21, 2023. * Accepted February 23, 2023. * © 2023, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at [http://creativecommons.org/licenses/by-nd/4.0/](http://creativecommons.org/licenses/by-nd/4.0/) ## References 1. 1.Han HC, Ha FJ, Sanders P, Spencer R, Teh AW, O’Donnell D, Farouque O, Lim HS: Atrioesophageal Fistula: Clinical Presentation, Procedural Characteristics, Diagnostic Investigations, and Treatment Outcomes. Circulation: Arrhythmia and Electrophysiology 2017, 10(11) doi: 10.1161/circep.117.005579 PMID: 29109075. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2lyY2FlIjtzOjU6InJlc2lkIjtzOjEzOiIxMC8xMS9lMDA1NTc5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDIvMjMvMjAyMy4wMi4yMS4yMzI4NjI2Ny5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 2. 2.Kapur S, Barbhaiya C, Deneke T, Michaud GF: Esophageal Injury and Atrioesophageal Fistula Caused by Ablation for Atrial Fibrillation. Circulation 2017, 136(13):1247–1255 doi: 10.1161/circulationaha.117.025827 PMID: 28947480. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjExOiIxMzYvMTMvMTI0NyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIzLzAyLzIzLzIwMjMuMDIuMjEuMjMyODYyNjcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. 3.Ha FJ, Han HC, Sanders P, Teh AW, O’Donnell D, Farouque O, Lim HS: Challenges and limitations in the diagnosis of atrioesophageal fistula. J Cardiovasc Electrophysiol 2018, 29(6):861–871 doi: 10.1111/jce.13494 PMID: 29603477. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.13494&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29603477&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 4. 4.Kim YG, Shim J, Kim DH, Choi JI, Park SW, Pak HN, Kim YH: Characteristics of atrial fibrillation patients suffering atrioesophageal fistula after radiofrequency catheter ablation. J Cardiovasc Electrophysiol 2018, 29(10):1343–1351 doi: 10.1111/jce.13671 PMID: 29927012. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.13671&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29927012&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 5. 5.Cheng EP, Liu CF, Yeo I, Markowitz SM, Thomas G, Ip JE, Kim LK, Lerman BB, Cheung JW: Risk of Mortality Following Catheter Ablation of Atrial Fibrillation. J Am Coll Cardiol 2019, 74(18):2254–2264 doi: 10.1016/j.jacc.2019.08.1036 PMID: 31672181. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo0OiJhY2NqIjtzOjU6InJlc2lkIjtzOjEwOiI3NC8xOC8yMjU0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDIvMjMvMjAyMy4wMi4yMS4yMzI4NjI2Ny5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 6. 6.Aksu T, Golcuk S, Guler TE, Yalin K, Erden I: Gastroparesis as a Complication of Atrial Fibrillation Ablation. Am J Cardiol 2015, 116(1):92–97 doi: 10.1016/j.amjcard.2015.03.045 PMID: 25933733. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.amjcard.2015.03.045&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25933733&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 7. 7.Hosseini SM, Rozen G, Saleh A, Vaid J, Biton Y, Moazzami K, Heist EK, Mansour MC, Kaadan MI, Vangel M et al: Catheter Ablation for Cardiac Arrhythmias: Utilization and In-Hospital Complications, 2000 to 2013. JACC: Clinical Electrophysiology 2017, 3(11):1240–1248 doi: [doi.org/10.1016/j.jacep.2017.05.005](http://doi.org/10.1016/j.jacep.2017.05.005) PMID: 29759619. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29759619&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 8. 8.Steinbeck G, Sinner MF, Lutz M, Müller-Nurasyid M, Kääb S, Reinecke H: Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: a nationwide in-hospital analysis of administrative data for Germany in 2014. European Heart Journal 2018, 39(45):4020–4029 doi: 10.1093/eurheartj/ehy452 PMID: 30085086. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/eurheartj/ehy452&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30085086&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 9. 9.Ngo L, Ali A, Ganesan A, Woodman R, Krumholz HM, Adams R, Ranasinghe I: Institutional Variation in 30-Day Complications Following Catheter Ablation of Atrial Fibrillation. J Am Heart Assoc 2022, 11(4):e022009 doi: 10.1161/jaha.121.022009 PMID: 35156395. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/jaha.121.022009&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35156395&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 10. 10.Della Rocca DG, Magnocavallo M, Natale VN, Gianni C, Mohanty S, Trivedi C, Lavalle C, Forleo GB, Tarantino N, Romero J et al: Clinical presentation, diagnosis, and treatment of atrioesophageal fistula resulting from atrial fibrillation ablation. J Cardiovasc Electrophysiol 2021, 32(9):2441–2450 doi: 10.1111/jce.15168 PMID: 34260115. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.15168&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34260115&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 11. 11.Houmsse M, Daoud EG: Protection of the esophagus during catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2021 doi: 10.1111/jce.14934 PMID: 33556991. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.14934&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33556991&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 12. 12.Black-Maier E, Pokorney SD, Barnett AS, Zeitler EP, Sun AY, Jackson KP, Bahnson TD, Daubert JP, Piccini JP: Risk of atrioesophageal fistula formation with contact force-sensing catheters. Heart Rhythm 2017, 14(9):1328–1333 doi: 10.1016/j.hrthm.2017.04.024 PMID: 28416466. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2017.04.024&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 13. 13.Halbfass P, Nentwich K, Krug J, Roos M, Sonne K, Ene E, Hamm K, Barth S, Szöllösi A, Fochler F et al: Impact of surround flow catheter tip irrigation in contact force ablation on the incidence of asymptomatic oesophageal lesions after atrial fibrillation ablation: a prospective comparative study. Europace 2017, 19(7):1116–1122 doi: 10.1093/europace/euw119 PMID: 27353324. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euw119&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27353324&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 14. 14.Passman R: Atrial fibrillation: Catheter ablation. In: UpToDate. Edited by Knight BP, Mark Estes III NA. Waltham, MA; 2022. 15. 15.Carroll BJ, Contreras-Valdes FM, Heist EK, Barrett CD, Danik SB, Ruskin JN, Mansour M: Multi-sensor esophageal temperature probe used during radiofrequency ablation for atrial fibrillation is associated with increased intraluminal temperature detection and increased risk of esophageal injury compared to single-sensor probe. J Cardiovasc Electrophysiol 2013, 24(9):958–964 doi: 10.1111/jce.12180 PMID: 23746064. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.12180&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23746064&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 16. 16.Muller P, Dietrich JW, Halbfass P, Abouarab A, Fochler F, Szollosi A, Nentwich K, Roos M, Krug J, Schade A et al: Higher incidence of esophageal lesions after ablation of atrial fibrillation related to the use of esophageal temperature probes. Heart Rhythm 2015, 12(7):1464–1469 doi: 10.1016/j.hrthm.2015.04.005 PMID: 25847474. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2015.04.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25847474&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 17. 17.Tschabrunn CM, Silverstein J, Berzin T, Ellis E, Buxton AE, Josephson ME, Anter E: Comparison between single- and multi-sensor oesophageal temperature probes during atrial fibrillation ablation: thermodynamic characteristics. Europace 2015, 17(6):891–897 doi: 10.1093/europace/euu356 PMID: 25777771. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euu356&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25777771&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 18. 18.Palaniswamy C, Koruth JS, Mittnacht AJ, Miller MA, Choudry S, Bhardwaj R, Sharma D, Willner JM, Balulad SS, Verghese E et al: The Extent of Mechanical Esophageal Deviation to Avoid Esophageal Heating During Catheter Ablation of Atrial Fibrillation. Journal of the American College of Cardiology: Clinical Electrophysiology 2017, 3(10):1146–1154 doi: 10.1016/j.jacep.2017.03.017 PMID: 29759498. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiamNlcCI7czo1OiJyZXNpZCI7czo5OiIzLzEwLzExNDYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMy8wMi8yMy8yMDIzLjAyLjIxLjIzMjg2MjY3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 19. 19.Kuwahara T, Takahashi A, Takahashi Y, Okubo K, Takagi K, Fujino T, Kusa S, Takigawa M, Watari Y, Yamao K et al: Incidences of esophageal injury during esophageal temperature monitoring: a comparative study of a multi-thermocouple temperature probe and a deflectable temperature probe in atrial fibrillation ablation. J Interv Card Electrophysiol 2014, 39(3):251–257 doi: 10.1007/s10840-013-9868-5 PMID: 24532111. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10840-013-9868-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24532111&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 20. 20.Kadado AJ, Akar JG, Hummel JP: Luminal esophageal temperature monitoring to reduce esophageal thermal injury during catheter ablation for atrial fibrillation: A review. Trends in Cardiovascular Medicine 2019, 29(5):264–271 doi: [doi.org/10.1016/j.tcm.2018.09.010](http://doi.org/10.1016/j.tcm.2018.09.010) PMID: 21. 21.Schoene K, Arya A, Grashoff F, Knopp H, Weber A, Lerche M, König S, Hilbert S, Kircher S, Bertagnolli L et al: Oesophageal Probe Evaluation in Radiofrequency Ablation of Atrial Fibrillation (OPERA): results from a prospective randomized trial. Europace 2020, 22(10):1487–1494 doi: 10.1093/europace/euaa209 PMID: 32820324. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euaa209&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32820324&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 22. 22.Meininghaus DG, Blembel K, Waniek C, Kruells-Muench J, Ernst H, Kleemann T, Geller JC: Temperature Monitoring and Temperature-driven irrigated Radiofrequency Energy Titration do not prevent thermally-induced Esophageal Lesions in Pulmonary Vein Isolation A randomized study controlled by esophagoscopy before and after catheter ablation. Heart Rhythm 2021 doi: 10.1016/j.hrthm.2021.02.003 PMID: 33561587. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2021.02.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33561587&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 23. 23.Chen S, Schmidt B, Seeger A, Bordignon S, Tohoku S, Willems F, Urbanek L, Throm C, Konstantinou A, Plank K et al: Catheter ablation of atrial fibrillation using ablation index-guided high power (50 W) for pulmonary vein isolation with or without esophageal temperature probe (the AI-HP ESO II). Heart Rhythm 2020, 17(11):1833–1840 doi: 10.1016/j.hrthm.2020.05.029 PMID: 32470628. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2020.05.029&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32470628&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 24. 24.Montoya MM, Mickelsen S, Clark B, Arnold M, Hanks J, Sauter E, Kulstad E: Protecting the esophagus from thermal injury during radiofrequency ablation with an esophageal cooling device. Journal of atrial fibrillation 2019, 11(5):2110 doi: 10.4022/jafib.2110 PMID: 31139296. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4022/jafib.2110&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31139296&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 25. 25.Kulstad E, Schieber J: Esophageal heat transfer devices and methods for cardiac tissue ablation. In: USPTO. Edited by USPTO, vol. WO / 2019/195354; 2019. 26. 26.Mercado-Montoya M, Kulstad E, Mickelsen S: Protection of the Esophagus with a Novel Esophageal Cooling Device: A Mathematical Model of Experimental Findings. In: European Society of Cardiology 2018 Congress: September 28, 2018 2018; Munich, Germany; 2018. 27. 27.Kulstad E, Mercado-Montoya M, Shah S: Influence of thermal conductivity on esophageal protection with a cooling device during high-power short-duration radiofrequency ablation - Abstract P1861. European Heart Journal 2019, 40(Supplement_1) doi: 10.1093/eurheartj/ehz748.0611 PMID: [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/eurheartj/ehz748.0611&link_type=DOI) 28. 28.Mercado Montoya M, Shah S, Kulstad E: Influence Of Electrical Conductivity On Esophageal Cooling Protection During High-Power Short-Duration Ablation. In: Heart Rhythm Congress 2019: October 8 2019; Birmingham, UK; 2019. 29. 29.Mercado-Montoya M, Shah S, Mickelsen S, Kulstad E: Esophageal protection from thermal injury with an esophageal cooling device. In: 24th Annual International AF Symposium: 2019; Boston, MA; 2019. 30. 30.Clark B, Alvi N, Hanks J, Suprenant B: A Pilot Study of an Esophageal Cooling Device During Radiofrequency Ablation for Atrial Fibrillation. medRxiv 2020:2020.2001.2027.20019026 doi: 10.1101/2020.01.27.20019026 PMID: [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wMS4yNy4yMDAxOTAyNnYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjMvMDIvMjMvMjAyMy4wMi4yMS4yMzI4NjI2Ny5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 31. 31.Tschabrunn CM, Attalla S, Salas J, Frankel DS, Hyman MC, Simon E, Sharkoski T, Callans DJ, Supple GE, Nazarian S et al: Active esophageal cooling for the prevention of thermal injury during atrial fibrillation ablation: a randomized controlled pilot study. J Interv Card Electrophysiol 2022, 63(1):197–205 doi: 10.1007/s10840-021-00960-w PMID: 33620619. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10840-021-00960-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33620619&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 32. 32.Wm Leung L, Akhtar Z, A IE, Bajpai A, Li A, Norman M, Kaba R, Sohal M, Zuberi Z, Gallagher MM: Effect of Esophageal Cooling on Ablation Lesion Formation in the Left Atrium: Insights From Ablation Index Data in the IMPACT Trial and Clinical Outcomes. J Cardiovasc Electrophysiol 2022 doi: 10.1111/jce.15717 PMID: 36284450. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.15717&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36284450&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 33. 33.Mercado Montoya M, Gomez Bustamante T, Berjano E, Mickelsen SR, Daniels JD, Hernandez Arango P, Schieber J, Kulstad E: Proactive esophageal cooling protects against thermal insults during high-power short-duration radiofrequency cardiac ablation. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2022, 39(1):1202–1212 doi: 10.1080/02656736.2022.2121860 PMID: 36104029. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/02656736.2022.2121860&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36104029&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 34. 34.Joseph C, Sherman J, Ro A, Fisher WG, Nazari J, Metzl M: Procedural time reduction associated with active esophageal cooling during pulmonary vein isolation. J Interv Card Electrophysiol 2022 doi: 10.1007/s10840-022-01204-1 PMID: 35416632. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10840-022-01204-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35416632&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 35. 35.Green SM: Congruence of disposition after emergency department intubation in the National Hospital Ambulatory Medical Care Survey. Ann Emerg Med 2013, 61(4):423-426.e428 doi: 10.1016/j.annemergmed.2012.09.010 PMID: 23103322. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.annemergmed.2012.09.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23103322&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 36. 36.Mercado M, Leung L, Gallagher M, Shah S, Kulstad E: Modeling esophageal protection from radiofrequency ablation via a cooling device: an analysis of the effects of ablation power and heart wall dimensions. Biomed Eng Online 2020, 19(1):77 doi: 10.1186/s12938-020-00821-z PMID: 33046057. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12938-020-00821-z&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33046057&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 37. 37.Clark B, Alvi N, Hanks J, Joseph C, Suprenant B: An Esophageal Cooling Device During Radiofrequency Ablation for Atrial Fibrillation - A Comparison Between Reactive and Proactive Esophageal Cooling. Journal of Innovations in Cardiac Rhythm Management 2022, 13(11) doi: 10.19102/icrm.2022.13111 PMID: 36570480. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.19102/icrm.2022.13111&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36570480&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 38. 38.Leung LWM, Bajpai A, Zuberi Z, Li A, Norman M, Kaba RA, Akhtar Z, Evranos B, Gonna H, Harding I et al: Randomized comparison of oesophageal protection with a temperature control device: results of the IMPACT study. Europace 2021, 23(2):205–215 doi: 10.1093/europace/euaa276 PMID: 33205201. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euaa276&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33205201&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 39. 39.Wright EH, Harris AL, Furniss D: Cooling of burns: Mechanisms and models. Burns 2015, 41(5):882–889 doi: 10.1016/j.burns.2015.01.004 PMID: 25820085. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.burns.2015.01.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25820085&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 40. 40.Wright EH, Tyler M, Vojnovic B, Pleat J, Harris A, Furniss D: Human model of burn injury that quantifies the benefit of cooling as a first aid measure. Br J Surg 2019, 106(11):1472–1479 doi: 10.1002/bjs.11263 PMID: 31441049. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/bjs.11263&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31441049&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 41. 41.Griffin BR, Frear CC, Babl F, Oakley E, Kimble RM: Cool Running Water First Aid Decreases Skin Grafting Requirements in Pediatric Burns: A Cohort Study of Two Thousand Four Hundred Ninety-five Children. Ann Emerg Med 2020, 75(1):75–85 doi: 10.1016/j.annemergmed.2019.06.028 PMID: 31474480. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.annemergmed.2019.06.028&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 42. 42.Joseph C, Nazari J, Zagrodzky J, Brumback B, Sherman J, Zagrodzky W, Bailey S, Kulstad E, Metzl M: Improved 1-year outcomes after active cooling during left atrial radiofrequency ablation. J Interv Card Electrophysiol 2023 doi: 10.1007/s10840-023-01474-3 PMID: 36670327. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10840-023-01474-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36670327&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 43. 43.Kautzner J, Neuzil P, Lambert H, Peichl P, Petru J, Cihak R, Skoda J, Wichterle D, Wissner E, Yulzari A et al: EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace 2015, 17(8):1229–1235 doi: 10.1093/europace/euv057 PMID: 26041872. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euv057&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26041872&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 44. 44.Jankelson L, Dai M, Aizer A, Bernstein S, Park DS, Holmes D, Chinitz LA, Barbhaiya C: Lesion Sequence and Catheter Spatial Stability Affect Lesion Quality Markers in Atrial Fibrillation Ablation. JACC Clinical electrophysiology 2021, 7(3):367–377 doi: 10.1016/j.jacep.2020.09.027 PMID: 33516716. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacep.2020.09.027&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33516716&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 45. 45.Cooper J, Joseph C, Zagrodzky J, Woods C, Metzl M, Turer RW, McDonald SA, Kulstad E, Daniels J: Active esophageal cooling during radiofrequency ablation of the left atrium: data review and update. Expert Rev Med Devices 2022:1–9 doi: 10.1080/17434440.2022.2150930 PMID: 36413154. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/17434440.2022.2150930&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36413154&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 46. 46.Back Sternick E, Soares Correa F, Ferber Drumond L, Albuquerque Carreiro R, Alves Rabelo M, de Tarso Vaz de Oliveira P: Esophago-pericardial fistula after catheter ablation of atrial fibrillation: A review. J Cardiovasc Electrophysiol 2020, 31(10):2600–2606 doi: 10.1111/jce.14723 PMID: 32829527. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jce.14723&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32829527&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 47. 47.Das M, Loveday JJ, Wynn GJ, Gomes S, Saeed Y, Bonnett LJ, Waktare JEP, Todd DM, Hall MCS, Snowdon RL et al: Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace 2017, 19(5):775–783 doi: 10.1093/europace/euw105 PMID: 27247002. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euw105&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27247002&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 48. 48.Müller J, Berkovitz A, Halbfass P, Nentwich K, Ene E, Sonne K, Simu G, Chakarov I, Barth S, Waechter C et al: Acute oesophageal safety of high-power short duration with 50 W for atrial fibrillation ablation. Europace 2022, 24(6):928–937 doi: 10.1093/europace/euab329 PMID: 35134155. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euab329&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35134155&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 49. 49.Sánchez-Muñoz EJ, Berjano E, González-Suárez A: Computer simulations of consecutive radiofrequency pulses applied at the same point during cardiac catheter ablation: Implications for lesion size and risk of overheating. Computer methods and programs in biomedicine 2022, 220:106817 doi: 10.1016/j.cmpb.2022.106817 PMID: 35468542. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.cmpb.2022.106817&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35468542&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 50. 50.Teres C, Soto-Iglesias D, Penela D, Falasconi G, Viveros D, Meca-Santamaria J, Bellido A, Alderete J, Chauca A, Ordoñez A et al: Relationship between the posterior atrial wall and the esophagus: esophageal position and temperature measurement during atrial fibrillation ablation (AWESOME-AF). A randomized controlled trial. Journal of Interventional Cardiac Electrophysiology 2022 doi: 10.1007/s10840-022-01302-0 PMID: 35861901. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10840-022-01302-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35861901&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 51. 51.Montoya MM, Gomez-Bustamante T, Berjano E, Kulstad EB, Mickelsen SR, Hernandez-Arango P, Schieber J, Daniels JD: Impact of Time Between Stacked Lesions During Radiofrequency Atrial Ablation With Active Esophageal Cooling. Circulation 2022, 146(Suppl_1):A14906–A14906 doi: doi:10.1161/circ.146.suppl_1.14906 PMID: [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/circ.146.suppl_1.14906&link_type=DOI) 52. 52.Leung LWM, Akhtar Z, Bajpai A, Zuberi Z, Li A, Norman M, Kaba RA, Sohal M, Gallagher MM: A Registry Review Update of 7120 Catheter Ablations for Atrial Fibrillation Using a Dedicated Esophageal Temperature Control Device for Protection -CA-528-03. Heart Rhythm 2022, 19(5):S8 doi: 10.1016/j.hrthm.2022.03.101 PMID: [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2022.03.101&link_type=DOI) 53. 53.Anderson CM, Joseph C, Fisher R, Berry D, Diestelhorst JB, Kulstad C, Wayne M: Targeted Temperature Management Using Esophageal Cooling. Ther Hypothermia Temp Manag 2022, 12(4):235–239 doi: 10.1089/ther.2022.0033 PMID: 36301260. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/ther.2022.0033&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36301260&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 54. 54.Goury A, Poirson F, Chaput U, Voicu S, Garcon P, Beeken T, Malissin I, Kerdjana L, Chelly J, Vodovar D et al: Targeted Temperature Management Using The “Esophageal Cooling Device” After Cardiac Arrest (The COOL Study): A feasibility and safety study. Resuscitation 2017, 121:54–61 doi: 10.1016/j.resuscitation.2017.09.021 PMID: 28951293. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.resuscitation.2017.09.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28951293&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 55. 55.Stojadinović P, Wichterle D, Peichl P, Nakagawa H, Čihák R, Hašková J, Kautzner J: Autonomic Changes Are More Durable After Radiofrequency Than Pulsed Electric Field Pulmonary Vein Ablation. JACC Clinical electrophysiology 2022, 8(7):895–904 doi: 10.1016/j.jacep.2022.04.017 PMID: 35863816. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacep.2022.04.017&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35863816&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 56. 56.Kim MY, Stavrakis S: For Better or Worse, Pulse Field Ablation Is Kinder to Some Nerves. JACC Clinical electrophysiology 2022, 8(7):905–907 doi: 10.1016/j.jacep.2022.05.006 PMID: 35863817. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacep.2022.05.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35863817&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 57. 57.Reddy VY, Petru J, Funasako M, Kopriva K, Hala P, Chovanec M, Janotka M, Kralovec S, Neuzil P: Coronary Arterial Spasm During Pulsed Field Ablation to Treat Atrial Fibrillation. Circulation 2022, 146(24):1808–1819 doi: 10.1161/circulationaha.122.061497 PMID: 36134574. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/circulationaha.122.061497&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36134574&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 58. 58.Ekanem E, Reddy VY, Schmidt B, Reichlin T, Neven K, Metzner A, Hansen J, Blaauw Y, Maury P, Arentz T et al: Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace 2022, 24(8):1256–1266 doi: 10.1093/europace/euac050 PMID: 35647644. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/europace/euac050&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35647644&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 59. 59.Koruth JS, Kawamura I, Buck E, Jerrell S, Brose R, Reddy VY: Coronary Arterial Spasm and Pulsed Field Ablation: Preclinical Insights. JACC Clinical electrophysiology 2022, 8(12):1579–1580 doi: 10.1016/j.jacep.2022.06.015 PMID: 36543509. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacep.2022.06.015&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36543509&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 60. 60.Tian G, Liu X, Zhao Q, Xu D, Jiang T: Irreversible Electroporation in Patients with Pancreatic Cancer: How Important Is the New Weapon? Biomed Res Int 2018, 2018:5193067 doi: 10.1155/2018/5193067 PMID: 29854763. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2018/5193067&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29854763&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 61. 61.Lundy M, Garland-Kledzik M, Shen P: Arterio-Enteric Fistula after Irreversible Electroporation. Am Surg 2019, 85(1):e55–e57 doi: PMID: 30760375. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30760375&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 62. 62.Oikonomou D, Karamouzis MV, Moris D, Dimitrokallis N, Papamichael D, Kountourakis P, Astras G, Davakis S, Papalampros A, Schizas D et al: Irreversible Electroporation (IRE) Combined With Chemotherapy Increases Survival in Locally Advanced Pancreatic Cancer (LAPC). Am J Clin Oncol 2021, 44(7):325–330 doi: 10.1097/coc.0000000000000826 PMID: 33979098. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/coc.0000000000000826&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33979098&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 63. 63.Kluger MD, Epelboym I, Schrope BA, Mahendraraj K, Hecht EM, Susman J, Weintraub JL, Chabot JA: Single-Institution Experience with Irreversible Electroporation for T4 Pancreatic Cancer: First 50 Patients. Ann Surg Oncol 2016, 23(5):1736–1743 doi: 10.1245/s10434-015-5034-x PMID: 26714959. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1245/s10434-015-5034-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26714959&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 64. 64.He C, Sun S, Zhang Y, Li S: Irreversible Electroporation Plus Anti-PD-1 Antibody versus Irreversible Electroporation Alone for Patients with Locally Advanced Pancreatic Cancer. J Inflamm Res 2021, 14:4795–4807 doi: 10.2147/jir.S331023 PMID: 34584438. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/jir.S331023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34584438&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 65. 65.Landström FJ, Reizenstein JA, Nilsson CO, Beckerath MV, Löfgren AL, Adamsson GB, Möller C: Electrochemotherapy - possible benefits and limitations to its use in the head and neck region. Acta Otolaryngol 2015, 135(1):90–95 doi: 10.3109/00016489.2014.947655 PMID: 25496181. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/00016489.2014.947655&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25496181&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 66. 66.Paiella S, Butturini G, Frigerio I, Salvia R, Armatura G, Bacchion M, Fontana M, D’Onofrio M, Martone E, Bassi C: Safety and feasibility of Irreversible Electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study. Dig Surg 2015, 32(2):90–97 doi: 10.1159/000375323 PMID: 25765775. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000375323&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25765775&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 67. 67.Yan L, Chen YL, Su M, Liu T, Xu K, Liang F, Gu WQ, Lu SC: A Single-institution Experience with Open Irreversible Electroporation for Locally Advanced Pancreatic Carcinoma. Chin Med J (Engl) 2016, 129(24):2920–2925 doi: 10.4103/0366-6999.195476 PMID: 27958223. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4103/0366-6999.195476&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27958223&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 68. 68.Vroomen L, Scheffer HJ, Melenhorst M, van Grieken N, van den Tol MP, Meijerink MR: Irreversible Electroporation to Treat Malignant Tumor Recurrences Within the Pelvic Cavity: A Case Series. Cardiovasc Intervent Radiol 2017, 40(10):1631–1640 doi: 10.1007/s00270-017-1657-6 PMID: 28470395. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00270-017-1657-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28470395&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 69. 69.Shen KR: Commentary: The rising storm of atrioesophageal fistulae after catheter ablation for atrial fibrillation. JTCVS Tech 2021, 6:169 doi: 10.1016/j.xjtc.2020.12.013 PMID: 34318186. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.xjtc.2020.12.013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34318186&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 70. 70.Grosse Meininghaus D, Blembel K, Waniek C, Kruells-Muench J, Ernst H, Kleemann T, Geller JC: Temperature monitoring and temperature-driven irrigated radiofrequency energy titration do not prevent thermally induced esophageal lesions in pulmonary vein isolation: A randomized study controlled by esophagoscopy before and after catheter ablation. Heart Rhythm 2021, 18(6):926–934 doi: 10.1016/j.hrthm.2021.02.003 PMID: 33561587. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.hrthm.2021.02.003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33561587&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom) 71. 71.Li F, Zhang L, Wu LD, Zhang ZY, Liu HH, Zhang ZY, Zhang J, Qian LL, Wang RX: Do Elderly Patients with Atrial Fibrillation Have Comparable Ablation Outcomes Compared to Younger Ones? Evidence from Pooled Clinical Studies. J Clin Med 2022, 11(15) doi: 10.3390/jcm11154468 PMID: 35956085. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm11154468&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35956085&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F02%2F23%2F2023.02.21.23286267.atom)