Chen et al., 2023

1

1

1	Changes in Chemosensory Sensation during COVID-19
2	
3 4	ORIGINAL CONTRIBUTION
5	Smell, taste and chemesthesis disorders in patients with the SARS-CoV-2
6	Omicron variant in China
/	Ving Chen ^{1,†} Vuying Chen ^{1,†} Xiang Liu ² Chao Yan ³ Laiguan Zou ^{1,*}
9	This Chen ', Tuying Chen ', Mang Liu , Chao Tan , Laiquan Zou
10	¹ Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health,
11	Southern Medical University, Guangzhou, Guangdong, China
12	² Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou,
13	Guangdong, China ³ Kay Laboratory of Brain Experiment Computing (MOE & STCSM). Sharahai Chanaming ECNU
14 15	^a Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University
16	Shanghai China
17	* Correspondence: zoulg@smu.edu.cn; Tel.: +86-20-62789234
18	[†] These authors contributed equally to this work.
19	Main text word count: 2336 words
20	
21	SUMMARY
22	Background: Chemosensory disorders (including smell, taste and chemesthesis) are
23	among the established symptoms of COVID-19 infection; however, new data indicate
24	that the changes in chemosensory sensation caused by COVID-19 may differ among
25	populations and COVID-19 variants. To date, few studies have focused on the
26	influence of the SARS-CoV-2 Omicron variant on qualitative changes and quantitative
27	reductions in chemosensory function in China.
28	Methodology : We conducted a cross sectional study of patients with COVID-19
29	caused by the Omicron variant, to investigate the prevalence of chemosensory
30	disorders and chemosensory function before and during infection, using an online
31	questionnaire.
32	Results : A total of 1245 patients with COVID-19 completed the survey. The
33	prevalence rates of smell, taste, and chemesthesis disorders were 69.2%, 67.7%, and
34	31.4%, respectively. Our data indicate that sex, age, smoking, and COVID-19-related
35	symptoms such as lack of appetite dyspnea and fatigue may be associated with
36	chemosensory disorders during COVID-19
37	Conclusions . Self-rating of chemosensory function revealed that patients experienced
38	a general decline in smell taste and chemesthesis function Further longitudinal
30	research studies are needed to generate additional data based on objective
37 40	assessment and investigate the factors influencing chamosensory function in COVID
40 //1	10
41 40	19.
42 42	Konsender al anno manne COVID 10 anno section al studios Ornianos anno danas
43	Key words: chemosensory, COVID-19, cross-sectional studies, Omicron, prevalence
44	
45 46	INTRODUCTION
40 47	Coronavirus disease 2019 (COVID-19) was first detected in wunan in December 2010 and available available to $(1,2)$ is $(1,2)$.
4/ 40	2019, and rapidly spread throughout more than 80 countries (). Information from the
48 40	world Health Organization shows that the number of confirmed COVID-19 cases was
49 - 0	/56,411,/40 by 16 February, 2023 (<u>https://covid19.who.int</u>). There are reports that
50	chemosensory disorders are important symptoms of COVID-19 infection (3-3). Studies

50 chemosensory disorders are important symptoms of COVID-19 infection (5.9). Studies 51 from the United States, Europe, Malaysia, and Singapore demonstrated that 12%–

Chen et al., 2023

2

88% of COVID-19-infected patients have olfactory and taste disorders ^(4,6–8), while 52 53 studies from China reported that 5%-25% of patients have smell and/or taste disorder ^(9,10). The Omicron variant of SARS-CoV-2 was first detected in South Africa in 54 November 2021, and became the main epidemic strain in the world by 15 January 55 2022 (11,12). Some studies have found that the Omicron variant causes less smell and 56 taste dysfunction than non-Omicron SARS-CoV-2⁽¹³⁻¹⁵⁾. Further, a meta-analysis 57 found that the prevalence rates of olfactory dysfunction caused by the Omicron 58 59 variant are 8%–17% and 2%–17% the in UK and USA, respectively ⁽¹⁵⁾.

60 In China, the prevalence of olfactory dysfunction caused by the Omicron variant is 61 reported as 0-9% ⁽¹⁶⁻²⁰⁾; however, the sample sizes of studies to date have been 62 relatively small and researchers have focused on patient characteristics and clinical 63 symptoms, with insufficient discussion of chemosensory changes.

Chemosensory sensation (including smell, taste, and chemesthesis) have important 64 roles in sensing potential threats, such as toxins, bacteria, and chemical irritants ⁽²¹⁾, 65 66 but most relevant studies have focused solely on smell and taste, and ignored chemesthesis, which is defined as detection of burning, cooling, or tingling in the 67 mouth ^(5,21). Since these three systems are independent sensory systems, with distinct 68 peripheral and central neural mechanisms ⁽²²⁾, it is necessary to explore the influence 69 of COVID-19 on these three senses separately. Further, chemosensory disturbances 70 71 can result in qualitative changes or quantitative reductions in smell or taste, associated 72 with different mechanisms. Qualitative changes include parosmia (things smell 73 different from usual), phantosmia (hallucination of olfactory senses), smell 74 fluctuation, parageusia (distorted taste sensations) and phantogeusia (hallucination of 75 gustatory senses). Quantitative reductions include anosmia (complete loss of 76 olfaction), hyposmia (partial loss of olfaction), ageusia (loss of all or specific gustatory senses) and hypogeusia (reduced ability to taste things) ^(23,24). Previous 77 78 studies have generally explored changes or reductions of smell and taste, but have 79 rarely classified patient conditions according to the qualitative of the disorders.

There is a pressing need to conduct a cross-sectional study to assess the effects of Omicron on patient smell, taste, and chemesthesis in China. The primary aim of this study was to investigate the prevalence of chemosensory disorders, as well as qualitative and quantitative changes of the chemosensory senses during Omicron infection. A secondary aim was to identify factors associated with chemosensory disorders, including sex, age, alcohol intake, chronic rhinitis, allergic rhinitis, and comorbidity or specific conditions, as well as COVID-19 related characteristics.

87

88 MATERIALS AND METHODS

89 Participants

90 Participants answered questions in an online survey about their sociodemographic 91 characteristics, COVID-19 infection status, and smell, taste, and chemesthesis 92 between 20 December 2022 and 20 January 2023. A total of 1311 patients (all aged \geq 93 18 years) recovered from COVID-19 were invited to participate in the survey. 94 Participants who did not answer all of the questions or failed to pass the lie test were 95 excluded. The final sample consisted of 1245 participants: 983 women (79.0%) and 96 262 men (21.0%), with a mean \pm standard deviation (SD) age of 25.45 \pm 6.57 years 97 old. As this was a cross-sectional study, a 0.95 power estimate, an effect size of 0.3, 98 and an α value of 0.05 were used to calculate the necessary sample size in the G*Power program⁽²⁵⁾. The sample size in our study was far larger than the result 99 100 proposed by the G*Power program. All participants read an informed consent form 101 and agreed to the use of their data for research. This study received ethics approval

Chen et al., 2023

102 from the Ethics Committee of Southern Medical University.

103

104 Data collection

105 A self-administered questionnaire was used to survey patients who had recovered 106 from COVID-19 in China. The questionnaire was adapted from existing online 107 questionnaires developed by the Global Consortium for Chemosensory Research (GCCR)⁽⁵⁾. The GCCR core questionnaire has been implemented in 10 languages as 108 of April 18, 2020, and used or adapted in many other research studies ^(4,26,27). Data 109 110 collected included demographic information, COVID-19-related characteristics, and 111 patient chemosensory situations, before and during infection. To study the sense of 112 smell and taste in further detail, smell situation options included anosmia, hyposmia, 113 parosmia, phantosmia, and smell fluctuation, and taste situation options included ageusia, hypogeusia, parageusia, and phantogeusia^(5,24). 114

- 115
- 116 Statistical analysis

117 Associations between categorical variables were tested using the Chi-Square test. 118 Self-ratings of smell, taste, and chemesthesis before and during COVID-19 diagnosis 119 were evaluated using the Wilcoxon matched pairs signed-rank test. Statistical 120 significance was set at p < 0.05 and all reported p values are two-tailed. All statistical 121 analyses were performed using IBM SPSS Statistics (SPSS, version 22).

122

123 RESULTS

124 General prevalence

125 Of 1245 patients infected with COVID-19, 69.2% (861/1245) reported having smell 126 disorder, 67.7% (843/1245) reported having taste disorder, and 31.4% (391/1245) 127 reported chemesthesis disorder (Table 1); the prevalence rates of specific types of 128 smell and taste disorder are also shown in Table 1. Among patients who experienced 129 anosmia or hyposmia (n = 819), only 12.3% (101/819) reported that the anosmia or 130 hyposmia was completely caused by nasal congestion. Further, 56.9% (708/1245) of 131 patients reported loss of both smell and taste, 12.3% (153/1245) reported loss of smell 132 only, and 10.8% (135/1245) reported loss of taste only.

133

134 Smell disorder

135 The data presented in Table 2 show that there was a statistically significant difference 136 in smoking status between patients with and without smell disorder (p < 0.05); where 137 smell disorder was significantly more common among patients who were current or 138 former smokers (p < 0.05). No statistically significant differences in other 139 demographic characteristics, including sex, age group, alcohol intake, chronic rhinitis, 140 allergic rhinitis, and comorbidity or special condition, were found between patients 141 with and without smell disorder (all p > 0.05). Significant differences in rehabilitation 142 status, COVID-19-related symptoms (lack of appetite, dry and sore throat, myalgia, 143 stuffy/running nose, dyspnea and fatigue), and COVID-19 vaccination status, were 144 also observed between patients with and without smell disorder (all p < 0.05). Chi-145 square analysis indicated that patients with symptoms including lack of appetite, dry 146 and sore throat, myalgia, stuffy/running nose, dyspnea, and fatigue, were prone to 147 having smell disorder. Further, patients who did not undergo COVID-19 vaccination 148 were more likely to experience smell disorder (p < 0.05). Associations between 149 specific types of smell disorder (anosmia, hyposmia, parosmia, phantosmia, and 150 olfactory fluctuation) and demographic/COVID-19-related characteristics are 151 presented in the supplemental material (Table S1–S5).

Chen et al., 2023

152 Only 4.8% (60/1245) of patients reported parosmia, while 7.9% (98/1245) reported 153 phantosmia. Pleasantness rating score on 100-point scale of the distorted smell caused 154 by parosmia was 25.72 ± 24.81 (Mean \pm SD), and that of phantom smells was $26.74 \pm$ 155 25.98 (Mean \pm SD). Parosmic individuals mostly reported smells of food (e.g., meat, 156 rice, or soup) or other daily necessities (e.g., toothpaste, shampoo, or liquid detergent) 157 that became roasted, burnt, or spoiled (e.g., "The smell of chicken soup turned to 158 burning"). In phantosmic individuals, the most frequently reported phantom smells

- 159 were smoky, burnt, and rotten.
- 160 Patients rated their smell function before and during COVID-19 on a 100-point scale.
- 161 Compared to scores before COVID-19 (88.53 \pm 13.24, Mean \pm SD), those during
- 162 COVID-19 (52.38 \pm 32.83, Mean \pm SD) were significantly lower (t = 38.386, p <
- 163 0.001) (Figure 1).
- 164

165 Taste disorder

166 There were no statistically significant differences in demographic characteristics, such 167 as sex, age group, and smoking/alcohol intake, between patients with and without 168 taste disorder (all p > 0.05, Table 3). Patients with COVID-19-related symptoms, such 169 as lack of appetite, dry and sore throat, myalgia, headache, diarrhea, 170 cough/expectoration, stuffy/running nose, dyspnea, and fatigue had a significant 171 chance of experiencing taste disorder (all p < 0.05). Associations between specific 172 types of taste disorder (ageusia, hypogeusia, parageusia, phantogeusia) and 173 demographic/COVID-19-related characteristics are detailed in the supplemental 174 material (Table S6–S9). Additionally, of patients with total loss or decrease of 175 specific taste (n = 597), 36.9% (220/597) reported total loss or decrease in the taste of 176 sour, 45.9% (274/597) of sweet, 20.1% (120/597) of bitter, 51.4% (307/597) of salty, 177 and 71.9% (429/597) of umami.

178 Parageusia was described in 22.7% (282/1245) of patients, while phantogeusia was 179 identified in 26.7% (333/1245) of patients. Pleasantness rating score on 100-point 180 scale of the distorted gustatory sense caused by parosmia was 19.80 ± 21.33 (Mean \pm 181 SD), while that for gustatory hallucination was 24.97 ± 34.38 (Mean \pm SD). Most 182 patients with parageusia described that the flavors of foods, such as orange, meat, or 183 candy, became bitter (e.g., "The rice has turned bitter"). Patients with phantogeusia 184 most frequently reported a constant bitter flavor, without anything in mouth.

- 185
- Similar to smell, patients rated their taste function before and during COVID-19. The 186 score during COVID-19 (58.78 \pm 29.74, Mean \pm SD) was significantly lower than that
- 187 before COVID-19 (90.13 \pm 11.60, Mean \pm SD) (t = 37.173, p < 0.001).
- 188
- 189 Chemesthesis disorder

190 No significant differences in demographic characteristics, including sex, age group, 191 smoking and alcohol intake, chronic rhinitis, allergic rhinitis, and any comorbidity or 192 special condition, were found between patients with and without chemesthesis 193 disorder (all p > 0.05, Table 4). Significant differences in COVID-19-related 194 symptoms (lack of appetite, dyspnea, and fatigue) were detected between patients 195 with and without chemesthesis disorder (all p < 0.05).

196 Patients also rated their chemesthesis function before and during COVID-19. The 197 score during COVID-19 (71.82 \pm 26.48, Mean \pm SD) was also significantly lower 198 than that before COVID-19 (88.50 \pm 15.83, Mean \pm SD) (t = 24.700, p < 0.001).

- 199
- 200 DISCUSSION
- 201 In the current study, we found that the prevalence rates of smell, taste, and

Chen et al., 2023

202 chemesthesis disorder in 1245 patients with COVID-19 during the period of Omicron 203 variant dominance were 69.2%, 67.7%, and 31.4%, respectively. Previous studies 204 reported prevalence rates of olfactory dysfunction ranging from 3.2% to 98.3% and of taste dysfunction ranging from 5.6% to 62.7% ^(28,29). Previous research has found that 205 the reported prevalence of smell, taste, and chemesthesis disorder varies according to 206 207 differences in population, assessment method, and virus strain ⁽²⁸⁾. A meta-analysis 208 based on data from 24 studies, including over 8400 participants from 13 countries, 209 found the pooled prevalence rates of patients with smell and taste dysfunction were 41.0% and 38.2%, respectively ⁽²⁹⁾. Another meta-analysis involving 18 studies 210 211 showed that the prevalence of alteration of the sense of smell or taste was 47% ⁽³⁰⁾. 212 Importantly, recent studies have focused primarily on quantitative changes in smell and taste, while qualitative changes of smell and taste were not addressed ^(29,31-33); 213 214 however, we included five types of smell disorder (anosmia, hyposmia, parosmia, 215 phantosmia and olfactory fluctuation), and four types of taste disorder (ageusia, 216 hypogeusia, parageusia, phantogeusia) in our study. The prevalence of anosmia in our 217 study was 23.3%, that of hyposmia was 42.5%, ageusia was 19.0%, and hypogeusia 218 was 40.1%. Studies have also found that the prevalence of smell and taste disorder 219 decreased during the period of Omicron variant dominance, but remained more than 30%, similar to our findings $^{(28,34)}$. 220

Males are reported to be more prone to loss of smell and taste senses than females ⁽³⁵⁾; 221 222 however, our data demonstrate that females were more prone to complete loss of olfaction, similar to the findings of Lechien et al. ^(6,8). In terms of taste loss, we did 223 not detect significant differences between the sexes, similar to Al-Rawi et al. ^(3,36). 224 225 Further, Al-Rawi et al. found more significant smell and taste loss among individuals 226 in their late 30s⁽³⁾, consistent with our finding that patients aged 30–39 years are more 227 prone to anosmia and ageusia. Previous research showed that smokers are more vulnerable to anosmia and ageusia (35); however, we detected no significant 228 229 differences between smokers and non-smokers in terms of anosmia and ageusia in our 230 study. Interestingly, we found that smoking had adverse effects on smell disorders in 231 general.

We also found that some COVID-19 related symptoms, such as lack of appetite, dyspnea, and fatigue, were associated with chemosensory disorder rates. Associations of these factors with chemosensory disorders have been reported in previous research however, whether they are risk factors for chemosensory disorders requires further study.

237 In the current study, we report the prevalence, quality, and quantity of chemosensory 238 changes in patients infected with the Omicron variant in China. Patients often confuse 239 chemesthesis with smell and taste when self-reporting, thus our survey included an 240 expanded section relating to chemesthesis, with the aim of better distinguishing the 241 influences of COVID-19 infection on smell, taste and chemesthesis. We also made 242 detailed distinctions among the quality and quantity of changes in smell and taste, and 243 found that these changes differed in the COVID-19 infected population, which may 244 provide reference data for the follow-up research on the mechanism underlying 245 COVID-19 influence on smell and taste. Moreover, we expanded the Chinese version 246 of the GCCR core questionnaire, to provide reference data for future domestic 247 research.

Our study also had several limitations. First, the participants were mostly from the
southern areas of China. Second, the collection of the data for our study was based on
self-report, which may lead to confirmation bias of chemosensory disorders.
Additional objective assessment of chemosensory disorders is needed in future

Chen et al., 2023

- studies. Third, our study was cross-sectional, and longitudinal studies are needed to
- determine the direction of associations among variables in our study.
- In conclusion, the current study found that the prevalence rates of smell, taste, and
- chemesthesis disorder in 1245 patients with COVID-19 during the period of Omicron
- variant dominance were 69.2%, 67.7%, and 31.4%, respectively. Patients experienced
- 257 a general decline in the function of smell, taste, and chemesthesis. Sex, age, smoking,
- and COVID-19-related symptoms, such as lack of appetite, dyspnea, and fatigue, may be associated with chemosensory disorders during COVID-19. The present study contributes to existing knowledge of chemosensory disorders in COVID-19 by
- 261 providing Chinese data collected during Omicron variant dominance.
- 262
- 263 ACKNOWLEDGEMENTS
- 264 We thank all the participants who participated in our study.
- 265266 AUTHORSHIP CONTRIBUTION
- 267 Conceptualization, Laiquan Zou; formal analysis, Ying Chen, Yuying Chen, and
 268 Laiquan Zou; investigation, Ying Chen, Yuying Chen, Xiang Liu, Chao Yan, and
 269 Laiquan Zou; writing-original draft, Ying Chen, Yuying Chen, and Laiquan Zou;
 270 writing—review & editing, Xiang Liu, Chao Yan, and Laiquan Zou. All authors have
 271 read and agreed to the published version of the manuscript.
- 272
- 273 CONFLICT OF INTEREST
- 274 The authors declare that they have no competing interests.
- 275
- 276 FUNDING
- 277 None.278
- 279 REFERENCES
- 280
- Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with
 Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.
- 283
 283
 284
 2019 in China. N Engl J Med. 2020;382(18):1708–20.
- Al-Rawi NH, Sammouda AR, AlRahin EA, et al. Prevalence of Anosmia or Ageusia in Patients With COVID-19 Among United Arab Emirates Population. Int Dent J. 2022;72(2):249–56.
- 4. Lee S-H, Yeoh ZX, Sachlin IS, et al. Self-reported symptom study of COVID19 chemosensory dysfunction in Malaysia. Sci Rep. 2022;12(1):2111.
- 290 5. Parma V, Ohla K, Veldhuizen MG, et al. More Than Smell—COVID-19 Is
 291 Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chem
 292 Senses. 2020;45(7):609–22.
- Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–61.
- 297
 7. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported
 298 symptoms to predict potential COVID-19. Nat Med. 2020;26(7):1037–40.
- 8. Tham AC, Thein T-L, Lee CS, et al. Olfactory taste disorder as a presenting
 symptom of COVID-19: a large single-center Singapore study. Eur Arch
 Otorhinolaryngol. 2021;278(6):1853–62.

Chen et al., 2023

302	9.	Song J, Deng Y, Wang H, et al. Self-reported Taste and Smell Disorders in
303		Patients with COVID-19: Distinct Features in China. 2021;
304	10.	Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized
305		Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol.
306		2020;77(6):683.
307	11.	Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and
308		risk of hospital admission in individuals infected with SARS-CoV-2 during
309		periods of omicron and delta variant dominance: a prospective observational
310		study from the ZOE COVID Study. The Lancet. 2022;399(10335):1618–24.
311	12.	Hu J, Peng P, Cao X, et al. Increased immune escape of the new SARS-CoV-2
312		variant of concern Omicron. Cell Mol Immunol. 2022;19(2):293-5.
313	13.	Chee J, Chern B, Loh WS, Mullol J, Wang DY. Pathophysiology of SARS-
314		CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical
315		Impact. Curr Allergy Asthma Rep. 2023;23(2):121–31.
316	14.	Rodriguez-Sevilla JJ, Güerri-Fernádez R, Bertran Recasens B. Is There Less
317		Alteration of Smell Sensation in Patients With Omicron SARS-CoV-2 Variant
318		Infection? Front Med. 2022;9:852998.
319	15.	von Bartheld CS, Wang L. Prevalence of Olfactory Dysfunction with the
320		Omicron Variant of SARS-CoV-2: A Systematic Review and Meta-Analysis.
321		Cells. 2023;12(3):430.
322	16.	Li Q, Liu X, Li L, et al. Comparison of clinical characteristics between SARS-
323		CoV-2 Omicron variant and Delta variant infections in China. Front Med.
324		2022;9:944909.
325	17.	Liang Y, Mao X, Kuang M, et al. Interleukin-6 affects the severity of olfactory
326		disorder: a cross-sectional survey of 148 patients who recovered from
327		Omicron infection using the Sniffin' Sticks test in Tianjin, China. Int J Infect
328		Dis. 2022;123:17–24.
329	18.	Yang W, Yang S, Wang L, et al. Clinical characteristics of 310 SARS-CoV-2
330		Omicron variant patients and comparison with Delta and Beta variant patients
331		in China. Virol Sin. 2022;37(5):704–15.
332	19.	Zhang H, Chen W, Ye X, et al. Clinical characteristics of patients infected with
333		novel coronavirus wild strain, Delta variant strain and Omicron variant strain
334		in Quanzhou: A real world study. Exp Ther Med. 2022;25(1):62.
335	20.	Shen J, Wu L, Wang P, et al. Clinical characteristics and short-term recovery
336		of hyposmia in hospitalized non-severe COVID-19 patients with Omicron
337		variant in Shanghai, China. Front Med. 2022;9:1038938.
338	21.	Green BG. Chemesthesis and the Chemical Senses as Components of a
339		"Chemofensor Complex." Chem Senses. 2012;37(3):201–6.
340	22.	Speth MM, Singer-Cornelius T, Oberle M, Gengler I, Brockmeier SJ,
341		Sedaghat AR. Olfactory Dysfunction and Sinonasal Symptomatology in
342		COVID-19: Prevalence, Severity, Timing, and Associated Characteristics.
343	• •	Otolaryngol Neck Surg. 2020;163(1):114–20.
344	23.	Iannilli E, Leopold DA, Hornung DE, Hummel T. Advances in Understanding
345	~ 1	Parosmia: An fMRI Study. ORL. 2019;81(4):185–92.
346 247	24.	Epstein JB, Smutzer G, Doty RL. Understanding the impact of taste changes in
54/ 249	27	oncology care. Support Care Cancer. $2016;24(4):1917-31$.
548 240	25.	Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical
349 250		power analysis program for the social, behavioral, and biomedical sciences.
35U 251	24	Benav Kes Methods. $200/;39(2):1/5-91$.
321	26.	Ceccnetto C, DI PIZIO A, Genovese F, et al. Assessing the extent and timing of

Chen et al., 2023

352	chemosensory impairments during COVID-19 pandemic. Sci Rep.
353	2021;11(1):17504.
354	27. Albayay J, Fontana L, Parma V, Zampini M. Chemosensory Dysfunction in
355	Long-Term COVID-19 Assessed by Self-Reported and Direct Psychophysical
356	Methods. Life. 2022;12(10):1487.
357	28. Song J, Jing Q, Zhu E, et al. Alterations in smell or taste in individuals
358	infected with SARS-CoV-2 during periods of Omicron variant dominance. Int
359	J Infect Dis. 2023;128:278–84.
360	29. Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell
361	and Taste Dysfunction in Patients With COVID-19: A Systematic Review and
362	Meta-analysis. Mayo Clin Proc. 2020;95(8):1621-31.
363	30. Borsetto D, Hopkins C, Philips V, et al. Self-reported alteration of sense of
364	smell or taste in patients with COVID-19: a systematic review and meta-
365	analysis on 3563 patients. Rhinology. 2020;58(5):430-6.
366	31. Luers JC, Rokohl AC, Loreck N, et al. Olfactory and Gustatory Dysfunction in
367	Coronavirus Disease 2019 (COVID-19). Clin Infect Dis Off Publ Infect Dis
368	Soc Am. 2020;71(16):2262–4.
369	32. Mercante G, Ferreli F, De Virgilio A, et al. Prevalence of Taste and Smell
370	Dysfunction in Coronavirus Disease 2019. JAMA Otolaryngol Head Neck
371	Surg. 2020;146(8):1–6.
372	33. Pellegrino R, Mainland JD, Kelly CE, Parker JK, Hummel T. Prevalence and
373	correlates of parosmia and phantosmia among smell disorders. Chem Senses.
374	2021;46:bjab046.
375	34. Boscolo Rizzo P, Tirelli G, Meloni P, et al. Coronavirus disease 2019
376	(COVID 19)-related smell and taste impairment with widespread diffusion
377	of severe acute respiratory syndrome–coronavirus $\Box 2$ (SARS \Box CoV $\Box 2$)
378	Omicron variant. Int Forum Allergy Rhinol. 2022;12(10):1273–81.
379	35. Al-Ani RM, Acharya D. Prevalence of Anosmia and Ageusia in Patients with
380	COVID-19 at a Primary Health Center, Doha, Qatar. Indian J Otolaryngol
381	Head Neck Surg. 2022;74(S2):2703–9.
382	36. Moein ST, Hashemian SM, Mansourafshar B, Khorram Tousi A, Tabarsi P,
383	Doty RL. Smell dysfunction: a biomarker for COVID 19. Int Forum Allergy
384	Rhinol. 2020;10(8):944–50.
385	
386	CORRESPONDING AUTHOR
387	Laiquan Zou
388	Chemical Senses and Mental Health Lab, Department of Psychology, School of
389	Public Health, Southern Medical University, Guangzhou, Guangdong, China

- 390 Tel.: +86-20-62789234
- 391 zoulq@smu.edu.cn;
- 392

Chen et al., 2023

- 393 FIGURES
- 394

395 **Figure 1** The results of self-rating of smell, taste, and chemesthesis function

Chen et al., 2023

10

400 TABLES

401 Table 1 The prevalence of smell, taste, and chemesthesis disorders among

402	patients with COVID-19
-----	------------------------

Variable	n	Total prevalence (N = 1245)	Prevalence in people with smell/taste/chemesthesis disorder
Smell disorder*	861	69.2%	
Anosmia	290	23.3%	33.7%
Hyposmia	529	42.5%	61.4%
Parosmia	60	4.8%	7.0%
Phantosmia	98	7.9%	11.4%
Smell fluctuation	438	35.2%	50.9%
Taste disorder*	843	67.7%	\
Ageusia	236	19.0%	28.0%
Hypogeusia	499	40.1%	59.2%
Parageusia	282	22.7%	33.5%
Phantogeusia	333	26.7%	39.5%
Chemesthesis disorder	391	31.4%	
Complete loss	35	2.8%	9.0%
Partial loss	356	28.6%	91.0%
402 *Multiple responses			

403 *Multiple responses

Chen et al., 2023

11

	Smell disorder ((%)	Total (%)	
Variable	Yes $(n = 861)$	No $(n = 384)$	N = 1245	– p value
Sex				
Male	170 (19.7)	92 (24.0)	262 (21.0)	0.000
Female	691 (80.3)	292 (76.0)	983 (79.0)	0.092
Age. vears	()			
18–29	702 (81.5)	327 (85.2)	1029 (82.7)	
30–39	116 (13.5)	38 (9.9)	154 (12.4)	
40-49	30 (3.5)	16 (4.2)	46 (3.7)	0.204
≥ 50	13 (1.5)	3 (0.8)	16(1.3)	
Smoking	、 ,	~ /	~ /	
Current	32 (3.7)	5 (1.3)	37 (3.0)	0.010
Former	38 (4.4)	9 (2.3)	47 (3.8)	0.012
Never	791 (91.9)	370 (96.4)	1161 (93.3)	
Alcohol			~ /	
Yes	441 (51.2)	184 (47.9)	625 (50.2)	0.000
No	420 (48.8)	200 (52.1)	620 (49.8)	0.282
Chronic rhinitis			~ /	
Yes	137 (15.9)	48 (12.5)	185 (14.9)	0.110
No	724 (84.1)	336 (87.5)	1060 (85.1)	0.118
Allergic rhinitis				
Yes	208 (24.2)	91 (23.7)	299 (24.0)	0.061
No	653 (75.8)	293 (76.3)	946 (76.0)	0.861
Any comorbidity or special				
condition [#]				
Yes	106 (12.3)	42 (10.9)	148 (11.9)	0.490
No	755 (87.7)	342 (89.1)	1097 (88.1)	0.489
Method of diagnosis				
PCR test	134 (15.6)	67 (17.4)	201 (16.1)	
Antigen test	459 (53.3)	200 (52.1)	659 (52.9)	0.706
Symptoms	268 (31.1)	117 (30.5)	385 (30.9)	
Rehabilitation status				
Complete	283 (32.9)	167 (43.5)	450 (36.1)	< 0.001
Partial	578 (67.1)	217 (56.5)	795 (63.9)	< 0.001
Symptoms [*]				
Fever	818 (95.0)	358 (93.2)	1176 (94.5)	0.206
Lack of appetite	547 (63.5)	168 (43.8)	715 (57.4)	< 0.001
Dry and sore throat	692 (80.4)	284 (74.0)	976 (78.4)	0.011
Myalgia	604 (70.2)	240 (62.5)	844 (67.8)	0.008
Headache	598 (69.5)	256 (66.7)	854 (68.6)	0.328
Diarrhea	191 (22.2)	71 (18.5)	262 (21.0)	0.140
Cough/expectoration	747 (86.8)	321 (83.6)	1068 (85.8)	0.140
Stuffy/running nose	704 (81.8)	281 (73.2)	985 (79.1)	0.001
Dyspnea	158 (18.4)	43 (11.2)	201 (16.1)	0.002
Fatigue	602 (69.9)	232 (60.4)	834 (67.0)	0.001

405 Table 2 Association between smell disorder and demographic/COVID-19-related 406 characteristics among patients

Chen	et	al	20)23
Chen	υı	ш.,	20	20

12

COVID-19 vaccination

Yes (n = 1208)	828 (96.2)	380 (99.0)	1208 (97.0)	0.007
No (n = 37)	33 (3.8)	4 (1.0)	37 (3.0)	0.007

407 [#]Comorbidity or special condition includes hypertension, diabetes, cardiovascular

408 disease, cerebrovascular disease, neoplastic disease, immune deficiency, chronic

409 kidney disease, thyroid disease, rheumatoid arthritis, spinal joint disease, bronchial

410 asthma, mental illness, and in the third trimester of pregnancy or perinatal period.

411 *Multiple responses

Chen et al., 2023

13

	Taste disorder (%)	Total (%)	
Variable	Yes $(n = 843)$	No $(n = 402)$	Yes $(n = 1245)$	– p value
Sex	· · · · · ·	. ,	· · · · · ·	
Male	167 (19.8)	95 (23.6)	262 (21.0)	0.400
Female	676 (80.2)	307 (76.4)	983 (79.0)	0.122
Age, years	~ /		· · · ·	
18–29	687 (81.5)	342 (85.1)	1029 (82.7)	
30–39	113 (13.4)	41 (10.2)	154 (12.4)	0.400
40-49	32 (3.8)	14 (3.5)	46 (3.7)	0.430
≥ 50	11 (1.3)	5 (1.2)	16(1.3)	
Smoking	× ,			
Current	27 (3.2)	10 (2.5)	37 (3.0)	0.101
Former	37 (4.4)	10 (2.5)	47 (3.8)	0.194
Never	779 (92.4)	382 (95.0)	1161 (93.3)	
Alcohol	~ /		· · · ·	
Yes	430 (51.0)	195 (48.5)	625 (50.2)	0.400
No	413 (49.0)	207 (51.5)	620 (49.8)	0.409
Chronic rhinitis				
Yes	129 (15.3)	56 (13.9)	185 (14.9)	0.524
No	714 (84.7)	346 (86.1)	1060 (85.1)	0.524
Allergic rhinitis				
Yes	206 (24.4)	93 (23.1)	299 (24.0)	0.615
No	637 (75.6)	309 (76.9)	946 (76.0)	0.615
Any comorbidity or special				
condition [#]				
Yes	109 (12.9)	39 (9.7)	148 (11.9)	0.100
No	734 (87.1)	363 (90.3)	1097 (88.1)	0.100
Method of diagnosis				
PCR test	135 (16.0)	66 (16.4)	201 (16.1)	
Antigen test	438 (52.0)	221 (55.0)	659 (52.9)	0.466
Symptoms	270 (32.0)	115 (28.6)	385 (30.9)	
Rehabilitation status				
Complete	292 (34.6)	158 (39.3)	450 (36.1)	0.100
Partial	551 (65.4)	244 (60.7)	795 (63.9)	0.109
Symptoms [*]				
Fever	800 (94.9)	376 (93.5)	1176 (94.5)	0.324
Lack of appetite	554 (65.7)	161 (40.0)	715 (57.4)	< 0.001
Dry and sore throat	677 (80.3)	299 (74.4)	976 (78.4)	0.017
Myalgia	591 (70.1)	253 (62.9)	844 (67.8)	0.011
Headache	599 (71.1)	255 (63.4)	854 (68.6)	0.007
Diarrhea	196 (23.3)	66 (16.4)	262 (21.0)	0.006
Cough/expectoration	739 (87.7)	329 (81.8)	1068 (85.8)	0.006
Stuffy/running nose	681 (80.8)	304 (75.6)	985 (79.1)	0.036
Dyspnea	158 (18.7)	43 (10.7)	201 (16.1)	< 0.001
Fatigue	598 (70.9)	236 (58.7)	834 (67.0)	< 0.001

413 Table 3 Association between taste disorder and demographic/COVID-19-related 414 characteristics among patients

Chen et al., 2023

14

COVID-19 vaccination

Yes	814 (96.6)	394 (98.0)	1208 (97.0)	0.150
No	29 (3.4)	8 (2.0)	37 (3.0)	0.139
<i>µ</i>				

415 [#]Comorbidity or special conditions included hypertension, diabetes, cardiovascular

416 disease, cerebrovascular disease, neoplastic disease, immune deficiency, chronic

417 kidney disease, thyroid disease, rheumatoid arthritis, spinal joint disease, bronchial

418 asthma, mental illness, and in the third trimester of pregnancy or perinatal period.

419 ^{*}Multiple responses.

Chen et al., 2023

15

422 characteristics							
Variable	Chemesthesis d	isorder (%)	Total (%)	– n value			
	Yes $(n = 391)$	No (n = 854)	Yes $(n = 1245)$	p vulue			
Sex							
Male	70 (17.9)	192 (22.5)	262 (21.0)	0.066			
Female	321 (82.1)	662 (77.5)	983 (79.0)	0.000			
Age, years							
18–29	310 (79.3)	719 (84.2)	1029 (82.7)				
30–39	60 (15.3)	94 (11.0)	154 (12.4)	0.170			
40–49	15 (3.8)	31 (3.6)	46 (3.7)	0.160			
≥ 50	6 (1.5)	10(1.2)	16(1.3)				
Smoking							
Current	12 (3.1)	25 (2.9)	37 (3.0)	0.014			
Former	16 (4.1)	31 (3.6)	47 (3.8)	0.914			
Never	363 (92.8)	798 (93.4)	1161 (93.3)				
Alcohol							
Yes	203 (51.9)	422 (49.4)	625 (50.2)				
No	188 (48.1)	432 (50.6)	620 (49.8)	0.412			
Chronic rhinitis							
Yes	62 (15.9)	123 (14.4)	185 (14.9)				
No	329 (84.1)	731 (85.6)	1060 (85.1)	0.503			
Allergic rhinitis		()					
Yes	86 (22.0)	213 (24.9)	299 (24.0)				
No	305 (78.0)	641 (75.1)	946 (76.0)	0.259			
Any comorbidity or special							
condition [#]							
Yes	49 (12.5)	99 (11.6)	148 (11.9)	a			
No	342 (87.5)	755 (88.4)	1097 (88.1)	0.635			
Method of diagnosis	~ /	× ,					
PCR test	60 (15.3)	141 (16.5)	201 (16.1)				
Antigen test	204 (52.2)	455 (53.3)	659 (52.9)	0.693			
Symptoms	127 (32.5)	258 (30.2)	385 (30.9)				
Rehabilitation status							
Complete	126 (32.2)	324 (37.9)	450 (36.1)				
Partial	265 (67.8)	530 (62.1)	795 (63.9)	0.051			
Symptoms [*]	(,						
Fever	369 (94.4)	807 (94.5)	1176 (94.5)	0.930			
Lack of appetite	261 (66.8)	454 (53.2)	715 (57.4)	< 0.001			
Dry and sore throat	312 (79.8)	664 (77.8)	976 (78.4)	0.416			
Myalgia	270 (69 1)	574 (67.2)	844 (67.8)	0 519			
Headache	266 (68 0)	588 (68.9)	854 (68 6)	0.772			
Diarrhea	84 (21.5)	178 (20.8)	262 (21.0)	0.797			
Cough/expectoration	341 (87.2)	727 (85.1)	1068 (85 8)	0 329			
Stuffy/running nose	309 (79 0)	676 (79 2)	985 (79.1)	0.959			
Dyspnea	87 (22.3)	114 (13 3)	201 (16 1)	< 0.001			
Fatigue	284 (72.6)	550 (64.4)	834 (67.0)	0.004			
	,			J.J.J.			

421 **Table 4 Association between chemesthesis disorder and patient demographic** 422 **characteristics**

Chen et al., 2023

16

COVID-19 vaccination

Yes				374 (95.7)	834	(97.7)	1208 (97.0)	0.052	
No				17 (4.3)	20 ((2.3)	37 (3.0))	0.055	
400	#0	1 * 1*.	• •	1	1 1 11		1. 1	1.	1	Ĩ

423 [#]Comorbidity or special conditions included hypertension, diabetes, cardiovascular

424 disease, cerebrovascular disease, neoplastic disease, immune deficiency, chronic

425 kidney disease, thyroid disease, rheumatoid arthritis, spinal joint disease, bronchial

426 asthma, mental illness, and in the third trimester of pregnancy or perinatal period.

427 ^{*}Multiple response.